
SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 157

LogP Modelling of List Algorithms
W. Amme1, P. Braun1, W. Lowe2, andE. Zehendner1

1 FakuiHit flir Mathematik und lnformatik.
Friedrich-Schiller-Universitat.

07740 Jena- Germany.
E-mail: amme, braunpet, nez@idec02. in f. uni- j ena. de

2 IPD, Universitat Karlsruhe.
76 128 Karlsruhe - Germany.

E-mrul: loewe@ipd.info.uni-karlsruhe.de

Abstract-
We presenl lechniques for dislribuling lists for processing on dis

lribuled and shared mcmory archilectures. The LogP cosi model is ex
lended for evalualing lhe schedules for lhe given problerns and archilec
lures. We consider bolh bounded and unbounded lists. The lheoretical
results are confinncd by measurements on a KSR-1.

Keywords- Parallel Lisl Compulations, LogP Model, Runlime Pre
dictions and Measurements

I. INTRODUCTION

Most parallel algorithms operate on arrays because they
are easy to distribute and redistribute, particularly, if their
size is fixed, (c.f. [9]). However, arrays are not appropriate
for a wide range o f problems, e.g. for algorithms on graphs.
But the lack of efficient distribution techniques of the ele
ments forces programmers to use arrays instead of lists even
i f the latter is a better choice from a designer's point of view.
The problem is even worse for the parallelization of sequen
tial c ode, as the programmer usually does not consider parai
lei execution.

The obvious solution, which would be the list converted
into an array before distribution, is too wasteful in memory.
As shown below, it is also a bad choice w.r.t. the required
time. Matsumoto, Han and Tsuda [8) proposed to collect
only the addresses of list elements in an array and distribute
this array. This saves memory if the element's size exceeds
the size of an address. However, it only works for (virtual)
shared memory systems. To decide whether it is more effi
cient than the former solution, we have to compare costs for
local and non-local copy operations. The costs depend on the
size o f the data.

In general, to compare the different strategies for distribu
tion, a cost model is required which would reftect the time
for searching a list compared to the time for computation
on the elements. Additionally, latency, overhead, and band
width for communication should be considered. The LogP
machine [2] is a generic machine model reftecting the com
munication costs with parameters Latency, overhead, and
gap (which is actually the inverse of the bandwidth). The
number o f processors are described by parameter P. The pa-

rameters have been determined for severa) parallel computers
[2, 3, 6, 4]. These works confirmed ali LogP-based runtime
predictions.

In a virtual shared memory machine, access to non-local
objects is done by data transfer via a communication net
work. Of course, there is a Latency between initiating the
access and receiving the object. Initiating and receiving may
be two separa te operations that cause overhead on the proces
sors. Between both operations, computations are possible. A
gap between two succeeding memory accesses must be guar
anteed due to bandwidth limitations. Hence, virtual shared
memory architectures are also covered by the LogP model.

With lhe cost model, we may predict lhe quality of each
distribution technique in lerms o f the required execution time
on a specific target machine. This paper is restricted to ap
plications where the parallel computations on the single list
elements are independent of each other, analyzed e.g. by
techniques of [I). Dueto this restriction, our approach may
achieve better results than a general solution, confronted with
the same situation. The proposed algorithm is not intended
to replace general techniques, but to complete them.

The paper is organized as follows: In section 2, we define
the cost model. In section 3, we introduce the distribution
algorithms. Section 4 compares the approaches w.r.t. exe
cution times within the cost model. Section 5 confirms the
results by measurements. Finally, we conclude our results
and show directions o f further work.

li. THE COST MODEL

The LogP cost model reftects communication costs but ig
nores computation times. However, since communication
times are given in terms of machine cycles, these costs are
comparable with execution times on the processors. In ad
dition to the machine dependent parameters L, o, and g, we
assume two further parameters:

• e · n defines the (maximum) costs for searching the list
o f size n on the processors o f our parallel machine, and

158 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazi/

• k · n denote the (maximum) costs for computations on
n list elements.

Note that the Jatter depends on both, the processor architec
ture and the concrete algorithm. However, ali parameters are
easily computable at compile time and may therefore be used
for optimization.

Sending (receiving) a message in a distributed memory
system or iniliating a far access in a shared memory sys
tem costs time o (overhead) on the processor. A processor
can not send (receive) two messages and simultaneously ini
tiate two far accesses, rcspectively, within time g, but may
perform other operation immediately after a scnd (receive)
and load or pre-fetch (store) operation, rcspcctively. In a dis
tributed memory system, the time between the end o f sending
a message and the start o f receiving this message is defined
as latency L. In a shared memory system, L denotes the time
between the end of the initiation of a far access and the time
the date is actually transfered.

If the sending processor is still busy with sending the last
bytes of a message while the receiving processor is already
busy with receiving, the send and the receive overhead for
this message overlap. This happens on many systems, espe
cially for long messages. Modeling this effect as a negative
value for the latency avoids the distinction of cases in further
calculations.

The time for communication depends on the amount of
transfered data. This is not covered by the original LogP
machine model but considered e.g. in [4] where L , o, g are
functions of the message size instead of constants. This pa
per uses L(s) , o(s), and g(s), respectively, to denote the la
tency, overhead, and gap, respectively, for data transfers of
size s. A single (indivisible) item is of size 1. L(O), o(O),
and g(O) denote the cost for data of size zero. That include
cost for function calls, etc. The observation from practice
is that L(s), o(s), and g(s) may b~ nicely approximated by
linear functions. We write max(o, g) (s) for max(o(s) , g(s))
which is, by assumption, also a linear function.

Example 1 For parsytec's PowerXplorer we measured the
values of L(s), o(s), and g(s) for a wide range of sizes s.
We approximatedfollowingfunctions: g(s) = 117 + 1.43 · s,
o(s) = 70 + s , and L(s) = - 0.82 · s. These approximations
have been confinned by comparing predicted and measured
execution times [4/.

lll. DISTRIBUTION STRATEGIES

For the parallel processing of a linear list, it is necessary
to map the set of Joop iterations into the set of available
processors. There are well-known scheduling methods for
loops, which are exclusively based on scalar variables or ar
ray operands. Unfortunately these methods cannot be ap
plied when para\Jelizing algorithm using linear lists, as the

iteration space often must be known at compile time. Fur
ther, when using these methods we must be able to access ali
neccssary dates in constant time. For linear lists these two
demands are obviously not fulfilled.

Essentially, when the list length is known, distribution
strategies for linear lists work in two phases:

I . The list elements must be assigned to the processors.
2. A parallel execution o f the list is then performed.

For shared memory architectures, it is sufficient to assign the
addresses to the processors. The actual data transfer is au
tomatically performed i f accesses to the addresses occur. In
a distributed memory system, the list elements themselves
must be distributed.

As already mentioned, Matsumoto, Han and Tsuda [8] of
fer an approach for shared memory systems that-after de
termination of the list Jength-stores the address of each list
element in an array. This array is scheduled vertically to the
processor set and then processed in parallcl. Analogously on
distributed memory systems, we may store the list e lements
in an array instead of their addresses. We ca\J this method
vectorization or vector method.

Vectorization takes additional memory o f size c* n, where
c denotes the size of an address (for shared memory ma
chines) and the size of a list e lement (for distributed mem
ory machines), respectively. This size may be reduced to the
maximum size of data transfered to a single processor. For
distributed memory architectures, this is a constant part of
n, and for shared memory machines, it is even reduced to
P. The former reduction is easily obtained by interleaving
the copy and the distribute operations. The reduction to P is
achieved as follows: We collect the entry elements l; o f a list
in an array l. An entry element l; is an anchor of the Jist's
portion that is to compute on processor i. Clearly, lll = P.
Determination of the entry elements can be performed by a
simple list crossing. In a second phase, each processor i bc
gins working on the list item which corresponds to l;. The
processar stops when it reaches li+t or the last element. We
call this approach list method.

In comparison to the classification above, we distinguish
step-by-step methods from pipeline methods. In the former
case, distribution and computation are done step by step. Ob
viously, each processor should work on at most m = r f; l
elements sequentially to guarantee Joad balancing. In the
pipeline method, the processors may start working immedi
ately after they received their portion o f the list.

Since the distribution of the elements and addresses, re
spectively, is not completed for ali processors at the same
time, uniform distribution does not guarantee load balancing.
This problem is discussed in the subsections and .

SBAC-PAD'99 1 lth Symposium on·Computer Architecture and High Performance Computing - Natal- Brazil 159

Time

Fig. I. Sequential distribution of array elements

IV. A NALYZ ING THE COSTS

This scction compares the time for cxecution for the d if
ferent distribution strategies w.r.l. the cost model from sec
tion II. The first two subsections consider distributed mem
ory machincs. The ncxt subsection describes necessary mod
ifications to apply the results to shared memory machines.
The final subsection discusses the results and extends them
to the case where n is not known at compile time.

A. Step-by-Step Method

First we analyze the step-by-step method using vectoriza
tion. Collecting n list elements in an array takes time e · n .
Thereafter, blocks of size m = f~ 1 must be distributed to
the processors. Figure 1 sketches the distribution algorithm.

Lemma 1 Sequential distribution of an array of size n is
(upper-) bounded by

tseq(n) = (P- 2) · max(o,g)(m) + L (m) + 2o(m).

Proof' P - 1 blocks of size m must be sent sequen
tially. The last block leaves the source processor at time
(P- 2) · max(o(m) , g(m)) + o(m). Transmission requires
time L(m). The last processor requires time o for receiving
~m~~- o

However, this is not always the best choice. Consider
the following algorithm for distribution, a binary tree tech
nique which may outperform the sequential distribution: The
source processor possesses the complete array. If a processor

Fig. 2. Tree distribution of array elements

P; possesses an array equal in size to or smaller than m , it
starts computation. Otherwise, P; keeps m array elements
and sends the remainder of the array to two other processors
Pf and P[, neither o f which possess an array yet. P; sends
half of the array to Pf and the other half to P[. Figure 2
sketches this distribution algorithm.

Lemma 2 The tree distribution of an array of size n is
(upper-) bounded by

ttree(n) = llogPJ ·
n 1

(max(o,g)('2(1- p)) +
n 1

L('2(1 - p)) +
n 1

2o(2 (1 - p))).

Proof' We consider the longest path in the broadcast tree. Its
depth is l log P J. Ignoring the m items remaining on the pro
cessors, each P; sends half of its array to the two following
processors. The i -th send operation on the longest path sends
s; = F data items. It requires at most

t ; = max(o, g)(s;) + L(s;) + 2o(s;)

by the same reasoning as in lemma 1 (set P = 3 to see this).
By using the linearity of max(o,g)(s) , L(s) , and o(s), and
iterating i from 1 to llog P J, the proof is completed. o

It is not possible to guarantee that either algorithm offers
better results in ali situations. For small array sizes, the tree

160 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

distribution outperfonns the sequential, for small numbers
of processors, the opposite is true. We therefore combine
both algorithms such that the sequential algorithm starts to
distribute the array to p $ P - 1 processors sequentially.
Each of the p processors obtains ~ array elements. Then
these elements are further distributed by the tree technique to
maximal numbers of llog(f P;pl + l)J processors.

Lemma 3 The combined (sequential-tree-) distribution of
the datais (upper-) bounded by

n n n
t comb = (p- 2) · max(o, g)(-) +L(-)+ 2o(-) +

p p p

llog(fp- pl + 1)J ·
p

n 1
(max(o, g)(

2
P (1 - p)) +

n 1
L(2P(l - p)) +

n 1
2o(

2
p(1- p))).

Proof-Sketch: Correctness follows immediately from the
Jemmas 1 and 2. o

Now we choose a value for p, such that t comb is minimal.
This depends, o f course, on the LogP parameters and may be
easily computed for concrete architectures.

Example 2 For the LogP parameter functions from exam
ple 1. figure 3 shows the time (in Jl.Sec) for distributing
n = 1024 and 10.000.000 array elements, respectively, de
pending on P. Jn the former case p = 5 is optimal, w.r.t. ou r
algorithm, in the latter case apure sequellfial distribution is
most efficient.

We compare now the time needed for distribution by vec
torization with the list approach. It turns out that the list
approach is always preferable because of its advantages in
memory usage:

Lemma 4 The list approach does not increase the distribu
tion time compared to vectorization.

Proof' The send operations must be perfonned sequentially.
lnstead o f making a copy o f the whole list first, and then dis
tributing the copy, we interleave the copy and the distribute
operations. Since each list element is copied only once, the
cost of e · n for the copy operations is not exceeded. The
costs for distribution o f the copy remain the same. o

If the time e · n for collecting n list elements exceeds the
difference between g(n) and o(n), the gap is always guar
anteed. That means we may ignore max(o, g) and use o in
stead.

j

R• 1024
·~r-~--~----~--~~--~----r----r--~

ssoo

''Ci:im~··:..:.:.:.:··

sequential
lrae ·····

roooL-~--~----~--~~--~----~--~--~
6 8 10 12 14 16

lowl

n• SOOOOOOO

"""l>nod-.................................. ~ .. ,"""
Se-+07 liM ···· ·

3.S..07

2.S..07

1.S..07 ••........ ::: .. ::-: .•. :::-... ::: .. ::: ... ::-:c ... ::-: .. ,., ... = .. ·=--~-- - - - ----l
1-7 L-~-~--~-~a--~,o~-~,~2 -~,~. -~,e

lowl

Fig. 3. Times for sequential, tree and combined distribution on a
PowerXplorer

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 161

Note that for some LogP parameter functions, the com
bined algorithm is always faster then the pure sequential al
gorithm even if the size of the array approaches infinityl .
However, these parameter functions describe only artificial
architectures since both L and o must be constants, while g
must increase with the size o f the data transfer. Therefore, we
assume that for existing parallel machines, the pure sequen
tial distribution is the fastest for sufficiently large array sizcs
n. This means that for sufficiently large n, it is adequate to
describe the costs of distribution by the (linear) function t seq
instead of tcomb·

The following theorem merges the results from this sub
section:

Theorem 5 Using the step-by-step approach, parai/e/ com
putation o f a list with n elements is (upper-) bounded by

tstep-by-step (n)
n = t se9 (n)+e·n+k·(p+1),

which is a linear function in n.

Proof Becausc of lemma I and the time e · n for copying
n list elements, distribution o f the list takes time tseq (n) +
e · n. Each processar works sequentially on r~ l elemcnts,
which explains the term (~ + 1) · n as an upper boundary
for computations. t 5 .,9 (n) as well as e· n and k · (.p + 1) are
linear functions. Therefore, t step- by-step(n) is linear. o

B. Pipeline Methods

We use the sequentiallist approach to distribute the list el
ements according to the pipeline method. The question is:
how many list elements should each processar get to guaran
tee that no unnecessary idle times occur? Let t; be the time
for collecting the list elements dedicated to processar p; plus
the costs for the corresponding send operation, 1 ~ i < P .
Because of the observations from the last subsection, t; is
defined by the following recurrence:

t1 = o(nl) + e · n1 ,

t ; t;-1 + o(n;) +e· n; ,

(I)

(2)

where n; is the amount of data sent to processar p;. T; de
notes the time processar p; needs to complete computations.
Processar pp is the source processar (the processar that pos
sesses the originallist): We set tp = tp_ 1 • The source pro
cessar may start its computations if ali messages have been
sent. Obviously, it holds that

Tp = tp_ l + k · np, (3)

T; = t; + o(n;) + L(n;) + k · n;, (4)

1To see this, compute a ditferentiation of tcomb with respect to p. For
some values o f the LogP parameter functions, this derivative is zero for I <
p < P which is a minimum for tcomb· Maple does most ofthejob.

To avoid idle times on the processar, we solve the following
linear equation system:

T; = T;+l, 1 ~ i ~ P, (5)
p

n = :Ln;. (6)
i= l

Let o(s) = oo+o·s and L(s) = Lo+L·s. The linearequation
system may be expressed symbolically as 1 ~ i ~ P - 2 by
transforming the equations above.

T; = T;+1

t; + o(n;) + L(n;) + kn; =
ti+l + o(n;+I) + L(ni+d + kni+l

t; + o(n;) + L(n;) + kn; =
t; + 2o(ni+I) + eni+l + L(ni+I) + kn;+l

o(n;) + L(n;) + kn;

2o(n;+I) + eni+l + L(ni+i) + kni+1
=

(o+ L+ k)n; - (2o +L+ e + k)n;+1 = oo

By similar transformations we obtain

TP-1

(o+ L+ k)nP- 1 - (o + L+ k)np

= Tp

o
We sctm1 = o+L+kandm2 = -(2o+L+e+k). The
general linear equation system for arbitrary LogP parameters
is defined by

ffi) m2 o o o o oo
o m1 m2 o o o oo
o o ml m2 o o o o

ii=

o o o o m2 o o o
o o o o m1 m2 o
1 1 1 1 1 1 n

where the matrix is squared with P rows and columns. The
i-th row, 1 ~ i < P- 1, represents the equations o f the form
T; = Ti+ 1 (note the special case for i = P - 1). The last
row represents equation (6). The solution is real valued for
n 1 · · · np. We must round it out such that n = "L::1 n ; still
holds.

Theorem 6 Using the pipeline approach, para/lei computa
tion o f a list with n elements is (upper-) bounded by

tpipe(n) = (o+ e)* n +
(P- 1) * 0o + (k- o- e)* (np + 1),

which is a Linear function in n.

162 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

ProofSketch: For the execution time tpipe(n) it holds that

Easy substitutions for Tp using equations (I) to (6) complete
the correctness proof. To note that tpipe (n) is linear, observe
that np is a constant portion of n depending on the LogP
parameters. o

C. Shared Memory Machines

For shared memory systems, the cost function for the data
transfer differs slightly. For our purpose it is sufficient to
consider load or pre-fetch operations to non-local data. Such
an opcration takes time o on the processor. L time units !ater,
the data is available locally; the next load or pre-fetch must
guarantce time g. However, i f the transpor! o f data from non
local to local memory may not be divided from the load oper
ation (e.g. no pre-fctch operation exists), this differentiation
is worth nothing. We have to consider far accesses as an in
divisible function. In the latter case, wc may integrate these
costs into the costs k for the computations on thc list.

In the step-by-stcp method, r n · PP 11 elements must be
considered for the determination of the entry elements. Af
terwards, ali processors execute r~ l elements in parallel.
Ahogether, this results in costs:

tstep-by-step (n)
P-1 n

e · (n · - - + 1) + k · (- + 1) p p .

For the pipeline method, the quota o f the list for each pro
cessar can be calculated by solving a linear equation system.
Ali processors should stop their work at the same time. We
set m = ~ and obtain, by similar computations as in the last
subsection:

-m m+1 o o o o
-m 1 m+1 o o o

ii=

-m 1 1 1 1 m+1 o
1 1 1 1 1 2 n

Example 3 Table I shows the proportional distribution of
the list to four processors for different cost re/ations m.

The costs for executing the whole list can be determined by
n1.

tpipe (n) (n1 + 1) · (e+ k).

D. Discussion

The pipeline method is always fas ter then the step-by-step
method, if P > 1 and communication is not ' free' . This is
obvious as idle times between receiving the data and starting
computations is saved, while load balancing is guaranteed.

TABLEI

PROPORTIONAL DISTRIBUTION OF A LINEAR .

m

I 50.00 25.00 12.50 12.50
2 39.13 26.09 17.39 17.39
3 34.78 26.09 19.57 19.57
4 32.47 25.97 20.78 20.78
5 31.03 25.86 21.55 21.55
lO 28.07 25.52 23.20 23.20
50 25.62 25.12 24.63 24.63
100 25.31 25.06 24.81 24.81
250 25.12 25.02 24.93 24.93

We assumed that n is known in advance. If only upper
bounds for n are statically known, the (upper) time bounds
are still guaranteed since they are monotonely increasing
with n. Now we drop this assumption and claim that N is
a random variable with expectation n = E[N].

Theorem 7 Let T step-by-step(n) and Tpipe(n) be random
variables for the time required for computation on lists with
expected length n using the step-by-step and the pipeline
methods, respectively. For these expectations it holds that

tstep-by-step (n)

tpipe(n)

= E [Tstep-by-step(n)J,and

E [Tpipe (n)J.

Proof" tstep-by-step(n) and tpipe(n) are linear in n, see the
orems 5 and 6. Because of the linearity of the expectation
operator, the theorem holds. <>

When the number o f list items is unknown and its variance
is too large, the list length may also be quantified by a com
plete list crossing at runtime. The calculation of the last sub
sections then occur also at runtime. This is not too expensive
because the linear equation systems give a percentage of the
list length n schcduled to each processor, i f n is variable. We
should only count the additional costs for the list crossing.
Obviously, the described methods are easily extendable to
any linear cost function for communication of list elements
and succeeding parallel computations.

V. MEASUREMENTS

Ali methods have been implemented on a KSR-1 system
[7] with eight processors, each with eight MByte local mem
ory. The KSR-1 is a virtual-shared-memory-system, i.e.,
each processar has its own local memory, but there is only
one global address space. Every memory cell can be ac
cessed by every processar through a communication network
called ALLCACHE-engine.

SBAC-PAD '99. 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 163

80000

70000

60000

50000

30000

20000

10000

b t ·S1ep
ill-ppo -

Y«f:Of • S1ep ·O··
YedOf • pipe X

KSR-Tmaa

n

Fig. 4. Execulion times for m = 5 on a KSR- 1 w ith 8 processors.

Figure 4 shows the results o f ou r measurements for m = 5.
The performance is gaged in clock cyclcs for different list
lengths (n = 10, - - -, 250). It shows that, except for small n,
the list approach with the pipeline method is faster than ali
other methods. This ranking remains the same for increasing
m. The relative difference gets smaller for increasing com
putation costs k.

TABLE 11

SPEED UP FOR PARALLEL LOOPS ON AR RAYS VERSUS LI STS.

IP I array I list

2 1,46 1,97
3 2,34 2,79
4 2,67 3,49
5 4,03 3,76

6 5,33 4,65
7 6,40 6,26

With the list approach combined with the pipeline mcthod,
we are able to achieve a speed-up o f 6.26 on the eight proces
sors. Compared to parallel execution on an array (instead of
a list), the parallel computation on a linear list is only slightly
less effective now. Table 11 shows this behavior.

VI. CONCLUSION AND FUTURE WORK

We compared methods for distributing lists for process
ing on parallel machines. We used the cost model of the
LogP machine [2] to describe the communication cost on
target architectures. Computation costs are given by linear
functions in terms of the size of the lists. We discussed se
quential as well as tree techniques for the distribution of the
list elements, and derived an algorithm that combines both

strategies. Uniform distribution of the list elements to the
processors leads to idle times because an efficient distribu
tion is not balanced, see subsection . These idle times may
be avoided by pre-computations at compile time, see subsec
tion and 4.3. Optimizations require either the length of the
list, or an upper boundary of this length, or its expectation.
We confirmed the results by measurements on a KSR-1 , see
section V.

The results may also be extended to:
I. distribution of arrays,
2. other distribution algorithms, and
3. arbitrary linear cost functions describing communica

tion, synchronization and computation costs of pro
grams of parallel architectures.

The latter leads to a framework for designers o f parallel pro
grams which gives a uniform view on distributed as well as
shared memory machines. To validate this statement, we will
continue to apply ou r methods to other parallel machines.

REFERENCES

[I) W. Amme, E. Zehendner: Data dependenee analysis in programs
with pointers. Proc. 6th Workshop on Compilers for Parallel Comput
ers (CPC'96), Aachen, 1996. Konferenzen des Forschungszentrums
Jülich. Vol. 2 1, 1996. p. 37 1-382.

[21 D. Culler, R. Karp, D. Pallerson, A. Sahay. K. E. Schauser. E. Santos,
R. Subramonian. and T. von Eicken. LogP: Towards a realistic model
of parallel computation. In 4th ACM SJGPU\N Symposiwn on Princi
plu cmd Practice of Parai/e/ Programming (PPOPP 93), pages 1-12.
1993. published in: S IGPLAN Nolices (28) 7.

(3) D. Culler, R. Karp, D. Pauerson. A. Sahay, K. E . Schauser. E. San
tos. R. Subramonian, and T. von Eicke n. LogP: A practical model
of parallel computation. Communications of the ACM. 39(li):78-85,
1996.

[4] J. Eisenbiegler, W. Lowe, and A. Wehrenpfennig. On the optimiza
tion by redundancy using an extended logp model. In lntem ational
Conferena on Advances in Parai/e/ and Di.ttributed Compllling. IEEE
Computcr Society Press, 1997.

[5] W. Lowe, W Zimmermann. and J. Eisenbicgler. Optimizing parallel
programs on machines with expensive communicalion. EUROPAR'
96. Parai/e/ Processing, 1996.

[6] B. Di Martino and G. lancllo. Parallelization of non-simultaneous iter
alive methods for systems of linear cquations. In LNCS 854. Parai/e/
Processing: CONPAR'94-VAPP VI, pages 254-264. Springcr. 1994.

[7] Kendall Square Rescarch, KSR/Series Parallel Programming,
KSR!Series Performance und KSR/Series C Programming

[8] A. Matsumoto, D. S. Han, T. Tsuda: Alias analysis of pointers in Pas
cal and Fon ran 90: dependence analysis between pointcr references.
Acta lnformatica. Vol. 33 (1996) 99- 130.

[9] H. Zima, B. Chapman: Supercompilers for parallel and vector com
puters. New York: ACM Press, 1990.

