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Abstract-
In a machine that follows the dynamically trace sclleduled 

VL/W (DTSVLIW) architecture, VLIW instructions are built 
dynamically through a scheduling algorithm that can be 
implemented in hardware. These VLIW instructions are 
cached so that the machine can spend most of its time 
executing VLIW instructions without sacrificing any binary 
compatibility. This paper evaluates the effectiveness of the 
DTSVLIW instruction·scheduling algorithm by comparing it 
with the first come first served (FCFS) algorithm, used for 
microinstruction compaction, and the Greedy algorithm, used 
by the Dynamic Instruction Formatting architecture. In order 
to perform these comparisons, we have performed experiments 
using the SPECint95 benchmark suíte. 
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I. INTRODUCTION 

Recently, research on superscalars have incorporated 
into these architectures new features such as trace cache 
[ROT97], value prediction, and instruction reuse [SOD98], 
which allow them to exploit large amounts of instruction
level parallelism (ILP). These features, however, increase 
the implementation complexity, slowing down the clock of 
machines that use them. Moreover, simple supcrscalar 
machines with fast clocks have proved to be more powerful 
than their more complex counterparts [SMI94]. 

Very Long lnstruction Word (VLIW) architectures 
[FIS 84] are potentially the most simple and direct way of 
exploiting ILP, and have shown to perform better than 
superscalars using similar hardware [HAR96]. Different 
from superscalars, VLIW machines do not dynamically 
make any decision about multiple operation issue - the 
VLIW compiler is responsible to translate source code into 
long instructions - and thus their hardware is simple and 
fast. However, the assumptions built into the object code by 
the VLIW compiler about the VLIW hardware prevent 
object code compatibility between different 
implementations of the same VLIW instruction set 
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architecture (ISA). VLIW processors with different leveis 
of parallelism require recompilation of the source code. 
This problem is known as the VLJW object code 
compatibility problem and has limited the commercial 
interest in VLIW machines [RAU93]. 

To get over the VLIW object code compatibility 
problem, a dynamically scheduled VLJW (DSVLIW) was 
presented by Rau [RAU93]. However, this architecture 
cannot be used to implement an existent sequential ISA due 
to its VLIW ISA. 

Ebcioglu and Altman [EBC97] with their DAISY 
machine can translate dynamically from the objcct code of a 
generic ISA to the object code o f a VLIW using a Virtual 
Machine Monitor (VMM) implemented in software and 
running on a VLIW machine. The VMM operates on each 
page-fault , producing new pagcs o f VLIW instructions from 
pages containing the cxisting ISA code. The DAISY 
machine concept relies on the ability of the VMM to 
translate code fast, and o n the reusability of this code. 
However, since the VMM is implemented in software, the 
cost of the translation is necessarily high. In addition, 
because the VMM translates code on a page-fault basis, it 
does static scheduling only, which means that the VMM 
does not know much about the dynamic behaviour of 
branches, relaying on heuristics to determine their outcome. 
This can impose severe limitations on its performance. 

A machine implementing the Dynamic Instruction 
Formatting (DIF) concept (Nair and Hopkins [NAI97]) 
performs code re-formatting in hardware. In a DIF machine, 
the original code is executed on a primary processar (a 
simple processar, less aggressive in exploiting paralle lism) 
and, at the same time, re-formatted into blocks of VLIW 
instructions that are stored in a VLIW cache for subsequent 
execution on a VLIW engine. As with standard superscalar 
designs, code dependencies have to be handled, but this is 
only done when the code is reformatted, not each time it is 
fetched from the DIF's VLIW cache. This allows the extra 
speed of the VLIW engine to be fully utilised while 
allowing backward code compatibility. 
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A machine that follows the DIF concept schedules the 
trace observed during execution and as such records the 
dynamic branch behaviour related to this execution .. This 
allows fo r more ILP than that achievable through techmques 
that perform static scheduling based on heuristics. 

The architecture that forms the basis of this paper, the 
dynamically trace scheduled VL/W arch_itecture 
(DTSVLIW) [DES98a], is a variant of the DIF archllecture. 
Our earlier work [DES99a] demonstrates similar or better 
performance results to the DIF and superscalar, but _a with 
simpler architecture that should be ~uch e~ster to 
implement. The DTSVLIW schedules the mstructton trace 
using an algorithm that can be implemented in hardwa~e. ~o 
achieve performance, this algorithm has to be effecttve m 
producing VLIW code and has to be simple enoug~ not to 
render the clock cycle time longer than that determtned by 
the VLIW Engine design. In [DES99a) we have proved that 
the core operations of the DTSVLIW scheduling algorithm 
can be implemented with hardware as simple as an integer 
adder and, as such, should not impact the DTSVLIW clock 
cycle. However, the effectiveness of this algorithm has not 
yet been investigated. In this paper, the performa~ce of the 
DTSVLIW scheduling algorithm is compared wtth that of 
two other algorithms: the First Come First Served (FCFS) 
algorithm, historically used for microcode compaction 
[DA V8 1 ); and the Greedy algorithm, used in the DIF 
architecture. To perform these comparisons, we have 
modified our DTSVLIW execution-driven simulator to 
make it able to use the FCFS and Greedy algorithms, and 
have performed experiments using the SPECint95 
benchmark suíte. 

This paper is organised as follows. Section li presents 
the DTSVLIW architecture and its scheduling algorithm, 
and Section III presents the DIF architecture and its 
scheduling algorithm. In Section IV, the FCFS algorithm is 
described and compared with the DTSVLIW and Greedy 
algorithms. Section V presents the experimental 
methodology, describes the experiments, and discusses the 
experimental results. Finally, in Section VI, our conclusions 
are presented together with future work proposals. 

Fig. 1: The Dynamically Trace Scheduled VLJW Architecture. 

li. THE DTSVLIW ARCHITECTURE AND ITS 
SCHEDULING ALGORITHM 

The DTSVLIW, in Figure l , has two execution engines: 
the Scheduler Engine and the VLIW Engine; and two 
caches for instructions: the Instruction Cache and the VLIW 
Cache. The Schcduler Engine fetches instructions from the 
Instruction Cache and executes the original code for the 
first time using a simple pipelined processor, the Primary 
Processor. The instruction trace it produces is dynamically 
scheduled by the Scheduler Unit into VLIW instructions, 
which are saved as blocks of VLIW instructions in the 
VLIW Cache for the VLIW Engine to execute, if the same 
code needs to be re-executed. In a DTSVLIW machine, the 
Scheduler Engine provides for object-code compatibil ity, 
and the VLIW Engine provides VLIW performance and 
simplicity. 

The Primary Processor executes Sparc-7 ISA [SUN87] 
code, while the VLIW Engine executes a sub-set. The 
VLIW Engine has a simple fetch - execute - write-back 
pipeline for each functional unit (multicycle instructions 
execute in pipelined functional units with more than one 
execute stage). A decode stage is not necessary as decoded 
instructions are saved in the VLIW Cache. The DTSVLIW 
implementation presented here uses the checkpoinring 
exception handling mechanism proposed by Hwu and Patt 
[HWU87). 

The key issues to be resolved in the DTSVLIW 
archi tecture are the scheduling of the instruction trace into 
long instructions (term used in thc rest of this paper to refer 
to VLIW instructions) and the addressing within thcsc long 
instructions. The Primary Processar and the VLIW Engine 
themselves are not a challenge. Multicyle instructions 
impact upon both the operation and performance of the 
architecture. Their scheduling requires spccial care to 
respect dependencies in any of their cycles. This can restrict 
the packing of instructions into long instructions limiting 
achievable parallelism. T he DTSVLIW scheduling of 
multicycle instructions is described in [DES99b]. 

The Scheduler Engine of the DTSVLIW is composed of 
the Primary Processar plus the Scheduler Unit (Figure I). 
When an instruction arrives in thc execute pipeline stage of 
the Primary Processar, it is sent to the Scheduler Unit. The 
Scheduler Unit implements in hardware a simplified version 
of the Firsr Come Firsr Served (FCFS) algorithm. We have 
chosen this algorithm for three reasons. First, it rarr
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Fig. 2: Scheduling algorithm running example. (a) C code 
fragment. (b) Assembly language version of the C code (c) Four 
snapshots of a three instructions wide and four long instructions 
deep scheduling list, filled with instructions coming from the 
Primary Processor after 3. 8, 9, and li cycles o f the completion of 
the first instruction. The shaded instructions in each snapshot are 
also candidate instructions. 

A. The DTSVLIW Scheduling Algorithm 

The implemented version o f the FCFS algorithm acts on 
a list, the scheduling list. This list has a lixed number of 
elements, each containing one Jong instruc tion and a 
candidate instruction, which holds an instruction for 
scheduling into the long instruction. A broad overview of 
the algorithm is that an instruction completing execution by 
the Primary Processar is placed at the end o f the scheduling 
lis t on the next clock cycle. On each subsequent cycle it can 
move up to the next higher e lement in the lis t if: it has not 
reached the head of the lis t; and there is space for it in the 
next e lement; and there is not a dependency with 
instructions in next element. Figure 2 shows an example of 
the algorithm scheduling a fragment of cede that adds aJI 
e lements of a vector. In Figure 2, slh and slt stand for 
scheduling list head and tail , respectively, and the 
destination register of the instructions is the rightmost. The 
scheduling a lgorithm ignores nop instructions. The details 
o f the a lgorithm's ope ration are as fo llows. 

An instruction arriving in the execute pipeline s tage of 
the Primary Processar in one cycle can be inserted into the 

scheduling list in the next, by placing a copy of it in a 
candidate instruction and also in a suitable slot of the 
corresponding long instruction. The copy in the Jong 
instruction slot is called the companion instruction and its 
position in the long instruction (the slot number) is recorded 
in the candidate instruction. If there are no data, contra i, or 
resource dependencies on any instruction in the Jist's tail 
element, the incoming instruction becomes a candidate 
instruction in the list' s tail element; otherwise, the incoming 
instruction becomes a candidate instruction in a new tail 
e lement added to the list. In Figure 2b, instructions 1 and 2 
are inserted by the fi rs t method, while instruction 3 is 
inserted by the second method dueto a fl ow dependency on 
r8 (there is a flow dependency on instruction i if it reads 
from any position written by any instructionj before i). 

After an instruction has been inserted into the Jist, the 
next step isto move this instruction and its companion up as 
far as they can go in the list o f lo ng instructions. An 
instruction can move up from long instruc tion i to Jong 
instruction i · I i f it is not flow dependent o n any instruction 
in the long instruction i - I and there is a suitable slot 
avai lable. If the instruction cannot move up, it is installed in 
long instruction i by invalidating the candidate instruction 
and leaving its companion in i. In Figure 2, instruction 3 is 
installed in the fourth cycle, while instruction 8 is moved up 
in the ninth cycle. 
_ The candidate instruction in i can be piaced in Jong 
mstruction i - I even if there is an output dependency on 
any instruction in i - I (the re is an instruction in i - I that 
writes in a storage position written by the candidate 
instruc tion in i), or an anti dependency on any instruction in 
i (t~~re is ~n instruction in i that reads from a storage 
posltJon wntten by the candidate instruction in i), or a 
centro! dependcncy on any instruction in i (there is an 
conditional branch or indirect branch in i). However, in 
such cases, the candidate instruction has to be split. The 
split is done by renaming e ither the candidate instruc tion's 
output that has caused the anti/output dependency or aJI 
outputs if there is a control dependency, and by 
transforming the companion instruction into a copy 
instruction and Jeaving it permanently in the slot it occupies 
in long instruction i. This copy instruction pe rforms the 
copy of the renaming register (or the renaming registers) 
content to the instruction' s origina l output (or instruction's 
original outputs). In Figure 2, instruction 7 is split in the 
ninth cycle. 

Conditional and indirect branches do not move up. They 
are instaJled when inserted and establish a tag for their long 
instruction. Ali instructions subsequently placed receive the 
last established tag. During VLIW execution, the VLIW 
Engine evaluates the conditional and indirect branches and 
validates their tags if they fo Jlow the same direction 
observed during scheduling. Only instructions with valid 
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tags have their results written in the machine state. In Figure 
2, the second instance of instruction 5 receives the tag 
established by instruction 9 in cycle eleven. 

When there is no free element for an incoming 
instruction, the scheduling list is flushed to the VLIW 
Cache as a block and the incoming instruction is inserted 
into an empty list as thc first instruction of a new block. The 
list is saved as a block, but on a one long instruction per 
cycle basis; nevertheless, instructions can be continuously 
inserted into the new block at the same time as the old block 
is being saved. This is achieved by making the scheduling 
list circular, and by using pointers to the head, tail , and 
current Iist element ready to be sent to the VLIW Cache. As 
instructions are inserted into the list at the maximum rate of 
one instruction per clock cycle, it is always possible to save 
the content of a list element before it is needed for an 
incoming instruction [DES99a]. 

B. Addressing 

Instruction addressing has to change once instructions 
are scheduled into long instructions. A block of long 
instructions is stored as a VLIW Cache line. There is one 
address for the whole block, and this is the address of the 
first instruction scheduled in the block: the need to execute 
this instruction determines that the VLIW Engine can 
execute the block. For fetching long instructions from a 
block, the VLIW Engine maintains a line index that is 
incremented from zero. This is compared with a maximum 
value in the VLIW Cache line to determine the fetch of the 
last long instruction in a block, in which case the next fetch 
is made using the address of the instruction that follows the 
block, also stored in the cache line. This mechanism 
requires only two instruction addresses to be stored in a 
cache line. Individual instruction addresses are not required, 
since the block wi ll execute as a whole unless a branch is 
made out of the block, in which case the information needed 
to build the target address is stored as part of each branch 
instruction. When blocks are sequentially executed, no 
bubbles occur in the VLIW Engine pipeline, and only a 
single bubble occurs when a branch is made out of a block. 

In a DTSVLIW machine, the VLIW Engine and the 
Primary Processar never operate at the same time and no 
machine state has to be transferred between them, as they 
share the DTSVLIW · machine state. This simplifies the 
design of both, even allowing the VLIW Engine to share 
functional units, register file 's ports, and data cache's ports 
with the Primary Processor. The cost in cycles of swapping 
between them is equal to the sum of a number of pipeline 
stages of both processors only (the stages discarded in one 
processor plus the stages refilled in the other). 

On a VLIW Cache miss, the Primary Processor takes 
over execution, fetching from the last PC value produced by 
the VLIW Engine. The Fetch Unit does not issue fetches to 

the VLIW Cache again until an instruction arrives at the 
execution stage of the Primary Processor. At this point, the 
Scheduler Unit restarts to schedule a new block, the address 
of which will be the last address produced by the VLIW 
Engine when executing the previous block. This connects 
these blocks forming a block chain. In steady state, the 
VLIW Cache contains ali most frequently executcd traces. 

III. THE DIF ARCHITECTURE ANO ITS SCHEDULING 
ALGORITHM 

In contras! to the DTSVLIW, which uses the scheduling 
list for scheduling, a DIF machine schedules instructions 
using a hardware table, which has as many entries as 
resources in the machine and records the earliest long 
instruction in which each resource is available [NAI97]. Its 
proposed scheduler implements the Greedy algorithm, by 
checking ali resources necessary for each new instruction 
against this table and scheduling the instruction in the 
carliest long instruction possible. 

Instead of using copy instructions to implement register 
renaming, a DIF machine has a number o f instances of each 
ISA register and extra bits are added to each register 
specifier to specify the register being used during VLIW 
cxecution. A register-mapping table is used to access thc 
current ISA register set. Renaming is performed by 
specifying the extra bits during scheduling and by copying 
the new register mapping - the exit map - to the register
mapping table every time the execution leaves a block. 
Each exit point of a block (ali branches and the final long 
instruction) has to carry its own exit map. This mechanism 
may not be practical for machines with a large number of 
physical registers, however. The Sparc ISA, for example, 
allows processor implementations with as many as 520 
integer registers due to its rcgister windows [SUN87]. 
Although most Sparc processors havc only 128 integer 
registers, a single exi t map for such processar, with four 
instances of each register, would require 256 bits just for 
the integer registers. 

The DIF architecture accesses its register fi le differently 
to the DTSVLIW. The DIF h as to translate each register 
specifier to access its register file due to its renaming 
mechanism, while the DTSVLIW accesses its registers 
directly. Again different from the DTSVLIW, which fetches 
one long instruction per VLIW Cache access, the unit of 
communication between the DIF cache and its VLIW 
Engine is an entire block of long instructions. A more 
detailed discussion of the differences between DTSVLIW 
and DIF is presented in [DES99a]. 

IV. THE FCFS ALGORITHM 

The FCFS algorithm is a superset of the DTSVLIW and 
DIF algorithms and has historically been used for 
microcode compaction (DA V81 ). Microcode compaction is 
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the process of combining microoperations (MOs) into 
microinstructions (Mls) in a way that reduces the space 
required by the microprogram and, hopefully, the time 
needed for the microprogram execution. DeWitt [DEW76) 
has shown that microcode compaction is a NP-complete 
problem; therefore, a single-pass algorithm such as the 
FCFS is a cost-effective solution only. Nevertheless, the 
FCFS algorithm can achieve optimum execution-time 
scheduling, as shown by Davidson et ai. [DA V81 ). 

The description of the FCFS algorithm presented here is 
based on that of Davidson et a i. The original algorithm 
operates over a Iist of MOs coming from a straight-line 
microcode segment (SLM), which is a sequence of MOs 
containing no branch MO except perhaps one at the end, 
and no entry point except at the beginning (a SLM is a basic 
block of MOs). The algorithm takes MOs from the SLM 
and groups them to form Mls with multiple MOs. Here, 
however, we use the FCFS algorithm to schedule 
instructions coming from a trace (produced dynamically 
during program execution) into long instructions. Because 
we are using a trace, where the direction of each branch is 
fixed, we are able to schedule instructions past conditional 
and indirect branches by renaming these instructions. The 
details o f the FCFS algorithm are as follows. 

I. Take one instruction from the trace and, if there is 
no dependency, add it to the last long instruction of the 
list of long instructions. If there is any dependency, add 
one empty long instruction to the end of the list and add 
the instruction to this long instruction. If this makes the 
list longer than the BLOCK_SIZE, save the previous 
list's contents in the VLIW Cache and start a new list 
with a single long instruction containing the instruction. 
2. Search the list of long instructions and find the 
earliest long instruction where flow dependencies and 
resource dependencies allow the added instruction to be 
placed. Rename the instruction if appropriate, and put it 
in the long instruction found. 
3. If the added instruction cannot move up due to lack 
of a suitable slot in any long instructions above the one 
in the tail and the Iist is smaller than BLOCK_SIZE - I, 
add one long instruction at the top of the list and put the 
new instruction there. A new long instruction is added to 
the top to allow any subsequent instruction that may be 
data dependent on the just added instruction to be added 
to an already existing Iong instruction, instead of 
forming a new long instruction at the bottom o f the list. 
4. Go to step l. 
The difference between the DIF and the FCFS 

algorithms is that DIF does not implement the step 3 of 
FCFS; i.e. the DIF algorithm never adds long instructions at 
the top of the scheduling list but only at the bottom. The 
DTSVLIW algorithm does not add instructions at the top 
either and, in addition, only moves up an instruction if there 

is a slot available in the next Iong instruction in the list. This 
can cause premature installing of instructions that could be 
moved to a Iong instruction two or more entries up in the 
list, limiting the code density and achievable parallelism. 

Primary Processor 

Decoded lnslruclion Size 
lns1ruc1ion l..alencv 
N. of Renanúng Regislers 

TABLEI 
Fixed Parameters . four·slage (felch. decode. execu1e. and wrile 

back) pipeline . no branch prediclion hardware . laken branches cause a 2-cycle bubble in lhe 
pipeline 

6 byles 
I cvc1e 
inleRer = f.p. = memorv - fla~s 256 

TABLE 11 
B h k enc mar . oroerams 

Bt nchmark /nput 

compress 400000 e 2231 
gcc ·03 ÍUitlD.Í 

.20 40 19 null.in 
ijpeg vi.2o.oom -GO 
m88ksim dhrv.bi2 
perl primes.pl 
vonex vonex.in 
xlisp queens 7 

V. METHODOLOGY AND EXPERIMENTAL RESULTS 

A simulator of the DTSVLIW has been implemented in 
C (23K !ines of code), and execution-driven simulation 
performed to produce the results reported here. Ali results 
were produced with the simulator running in test mode in 
order to guarantee correct simulation. Test mode puts two 
machines to run together: the DTSVLIW and a test machine 
with the same characteristics of the Primary Processor of 
the DTSVLIW. The DTSVLIW starts first, and every time 
an instruction or a block of long instructions is completed, 
the simulator switches to the test machine, which runs until 
its program counter becomes equal to the DTSVLIW 's. The 
Sparc ISA state of both machines is compared and, if not 
equal, an error is signalled and the simulation interrupted. 
The test mode has been very useful for experimental 
evaluation because in this mode it is possible to measure the 
precise number of instructions necessary for the execution 
of a program, since the test machine can provide it. A 
DTSVLIW simulator alone cannot provide this number due 
to copy instructions and instructions executed speculatively. 
The instructions per cycle performance index used 
throughout this section has been produced dividing the 
number of instructions necessary to execute the program, as 
counted by the test machine, by the number of cycles 
consumed by DTSVLIW execution. 

The simulator receives as input executables generated 
by the gcc compiler and faithfully models the DTSVLIW. 
Model parameters that are invariant for simulations are 
presented in Table I, and the benchmark programs used -
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the SPECint95 benchmark suite - are shown in Table li. 
The Primary Processor fuliy implements the Sparc-7 ISA. 

Each program was run for 50 miliion or more 
instructions each experiment, as counted by the test 
machine. We have chosen to run this number of instructions 
because this is optimisticaliy the number of instructions that 
a DTSVLIW machine is capable of execute between 
operating system context switches. (Supposing that the 
DTSVLIW can execute 5 instructions per cycle, a clock rate 
of I GHz, and one context switch every IOms.) 
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Fig. 3: Variation of parallelism with the block size and geometry 

A. Effect o f tlze 8/ock Size and Geometry on the 
Pelformance of the DTSVL/W 

Figure 3 shows the effect of the block size, in terms of 
the number of instructions, and of the block geometry -
instructions per long instruction (width) versus long 
instructions per block (height) - on the DTSVLIW 
performance. The numbers in the legend are instructions per 
long instruction and long instructions per block, 
respectively. Sinee we are only interested in the 
performance of the algorithms, the experiments leading to 
the results in this figure and throughout this section were 
performed with perfect instruction and data caches (no miss 
penalty), Iarge VLIW Cache (3072-Kbyte), and no next 
long instruction miss penalty. Adding these and other 
factors is likely to hide the difference in the effectiveness of 
the algorithms. 

As the graph shows, the performance of DTSVLIW 
machines with the same block sizes and different geometry 
is significantly different. For example, the performance of a 
machine with 4x8 configuration is lower than the machine 
with 8x4 configuration for ali benchmark programs. The 
block width and height affect the cosl of implementing a 
DTSVLIW machine in different ways. Large long 
inslruclions imply many functional unils, data cache porls, 
and register file ports, while a large number of long 
instructions in a block implies many renaming regislers and 
more resource consuming hardware for recovering from 
exceptions [DES99a]. A large number of long inslructions 
in a block can also have an impact on the required size of 
lhe VLIW Cache for lhe same performance [DES99a] . To 

increase just the width or just the height of the block does 
not appear to be the best approach to achieve cost/effective 
performance: a DTSVLIW with 8x8-block geometry 
performs better than machines with 4x 16 and 16x4 
geomelry in the majorily of the SPECint95 benchmarks. 
The DTSVLIW benefits from large block sizes but nol 
linearly. As the graph in Figure 3 shows, a 16-fold increase 
in the number of instructions of a block (from 4x4 to 
16x 16) does not quite double its performance on average. 

The performance o f lhe 16x 16 configuration on the 
ijpeg benchmark is exlraordinary and has been invesligated. 
This benchmark spends most of its execution in one loop. 
With a large enough block size, more than one loop 
iteration can be scheduled into a single block, allowing 
instructions from these iterations to overlap, extracting 
much greater paralielism (in Figure 2, instruction 5 of the 
second loop iteration overlaps wilh instructions of the first) . 

The results presented in Figure 3 show better overall 
DTSVLIW performance than preliminary results published 
elsewhere [DES98b] . The improvements are due to more 
accurate implementation of the scheduling algorithm: 
previously we were very conservalive with instructions 
dealing with different sizes of data (byte, word, and long 
word), which resulted in false data dependencies. 
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Fig. 4: Performance o f the DTSVLIW, Greedy, and FCFS 
algorithms- untyped F.U. 

8. Performance o f the Three Scheduling Algorithms 
Untyped Functional Units 

In order to permit visualising the differences between 
the three scheduling algorilhms, we have chosen to use 
blocks with three different geometries: 4x4, 8x8, and 
16x 16. As shown in Figure 4, ali three scheduling 
algorithms perform very similarly. The DTSVLIW 
algorithm achieves marginally inferior results in most cases. 
This is to be expected as it is possible for inslructions to be 
blocked from moving up the scheduling list by fuli long 
instructions at some interior position of the list. This 
prevents empty instruction slots at higher list.positions from 
being filled, reducing the code density in the block and 
limiting the achievable parallelism. Blocking in this fashion 
does not occur for the other algorithms. However, the 
DTSVLIW algorithm is expected to provide a much more 
feasiblc and faster implementation, and the results in Figure 
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4 demonstrate that its use should not significantly prejudice 
the architecture: in some cases, our simplified algorithm 
does as well as and even outperforms the other algorithms. 
This is markedly so for the I6x I6-ijpeg run, but also seen in 
the J6x I6-m88ksim run. It would seem that some particular 
combination o f instructions is particularly well suited to the 
simplified FCFS algorithm. The 16x I6 performance on the 
ijpeg benchmark is superior to ali others for ali three 
algorithms, and exceptionally so for the DTSVLIW 
algorithm. 

The fuJI FCFS is as good or be tter than the Greedy 
algorithm for the I6x I6 runs, but is outperformed by the 
Greedy algorithm for the smaJicr gcometries, particularly 
for the 4x4 runs. This happens because, in order to take fuii 
advantage o f Jong instruc tions added to the top o f the block, 
the FCFS algorithm needs to be unbounded in the block 
size. Larger geometries improve its relative performance, 
reflecting the movement towards an unbounded block. The 
difference between the Greedy and the fuJI FCFS algorithm 
is just the extra step whcre, when resource constraints soie ly 
restrain the movement o f an instruction to a higher position, 
a ncw long instruction is added at the top o f the block for 
the instruction. In some cases, this extra Jong instruction 
cannot be fiiied by subsequent instructions, as these havc 
dependcncies with instructions in the middle of the block. 
These instructions whcn added to the end o f the biock cause 
the block to be filled, flushing the block to the cache with 
thc first long instruction only partially fiiied, reducing the 
paralleiism. The Greedy algorithm does not add the new 
long instruction at the front of the block allowing for 
another one at the end of the block that must be more 
effectively fill ed despite the dependencies caused by 
instructions added to it. Increasing the block size and width 
reduces the resource blocking of instructions and also 
aJlows for more instructions to be added after rcsource 
blocking occurs. This gives more opportunity for the added 
front Jong instruction to be fill ed. 

The simulations discussed until here were performed 
with untyped func tional units, i.e. ali functional units could 
execute ali instructions; however, machines using typed 
functional units are a more like ly scenario in an 
implementation. We discuss the performance of the three 
algorithms for machines with typed functional units next. 
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Fig. 5: Performance of the Three Algorithms - typed F.U. 

TABLE 111 
Summary o f the es lt 4 4 & 5 4 r u s- X X h" fi mac me con tgurations 

Rdative Pu(ornranu 
AveraKe Pu(ornrance (ipc) 5x414x4 Alxorithm I FCFS 

4x4 5x4 4x4 5x4 
DTSVLIW 2.35 1.80 77% 103% 100% 
GREEDY 2.41 1.83 76% 106% 102% 
FCFS 2.28 1.80 79% 100% 100% 

TABLEIV 
Summary o f lhe results - 8x8 & I Ox8 machine configurations 

R~lativê Performance 
A vera •e Performance (iocl /Ox8 I llx8 Alxnrithm I FCFS 

llx8 /Ox/1 8x8 /Ox8 
DTSVLIW 3.24 2.77 85% 92% 97% 
GREEDY 3.55 2.91 82% 100% 102% 
FCFS 3.53 2.85 81% 100% 100% 

TABLE V 
Summary o f the results 16 16 & 20 16 - X X h" fi mac me con Jguration 

Relative Performance 

Avtral1< Perl ormance (ipc) 20x/61 16x/6 Al11orithm I FCFS 
J6x /6 20xl6 16x/6 20x/6 

DTSVLIW 4.53 3.77 83% 103% 96% 
GREEDY 4.40 3.94 89% 100% 100% 
FCFS 4.41 3.93 89% 100% 100% 

C. Performance o f the Three Scheduling Algorithms
Typed Functional Units 

s 

In order to evaluate the impact of typed functional units 
in the performance of the scheduling algorithms, we have 
pcrformcd experiments using three machine configurations: 
5x4 - with 2 integer, I loadlstore, I floating point, and I 
branch units, and a 4 Iong instructions height block; I Ox8 -
with twice the number of functional units and twice the 
number of long instructions of the previous configuration; 
and 20x 16- with four times the number of functional units 
and four times the number of long instructions of the 5x4 
configuration. The results are presented in graph form in 
Figure 5. Table III , Table IV, and Table V summarise the 
data shown in Figure 4 and Figure 5. 

As a visual comparison between the graphs in Figure 4 
and Figure 5 shows, the use of typed functional units causes 
significant performance Joss, even though the typed 
configurations have 25% more instruc tion slots in each Jong 
instruction than the similar untyped ones. As shown in 
Table III, the 5x4 configuration achieves from 77% to 79% 
of the 4x4 average performance for the three algorithms, 
while the I Ox8 configuration achieves from 8 1% to 85% o f 
the 8x8 performance, as shown in Table IV. The 20x l 6 
configuration achieves from 83% to 89% of the I6x l 6 
performam;e, as can be seen Table V. Larger typed 
configurations show smaller performance losses, which 
indicates that their number of func tional units is reasonably 
balanced for the available instruction-level para11elism. 

The relative performance of the three algorithms did not 
change much from machines with untyped to machines with 
typed functional units. In T able III, Table IV, and Table V , 
the Jast two columns contain the average performance of 
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each algorithm as a percentage of that of the FCFS 
algorithm. As the tables show, the performances of the 
DTSVLIW and Greedy algorithms as percentage of the 
FCFS algorithm vary from 92% to 106% percent for 
configurations with untyped functional units, and from 96% 
to 102% for typed configurations; i.e., the DTSVLIW and 
Greedy algorithms have presented performances closer to 
the FCFS with typed functional units. This shows that, for 
the range of configurations used, the DTSVLIW algorithm 
performs almost as well as the more complex Greedy and 
FCFS algorithms. 

VI. CONCLUSIONS ANO FUTURE WORK 

The dynamically trace scheduled VL/W (DTSVLIW) 
architecture takes advantage of the instruction execution 
locality in current programs. In a DTSVLIW machine, code 
fragments are scheduled into long instructions and saved in 
a VLIW Cache upon their first execution. In subsequent 
executions, a VLIW Engine executes them in a VLIW 
fashion. 

The design of the DTSVLIW architecture has been 
driven by the requirement to develop an architecture which 
can be effectively implemented to realise the fast clocking 
of VLIW machines: inherently faster than superscalar 
machines. The Primary Processar and the VLIW Engine of 
the DTSVLIW do not restrict the achievable clock rate. The 
key to an efficient and high clock rate implementation is the 
Scheduler Engine. The simplified version of the FCFS 
scheduling algorithm used by the DTSVLIW has a 
complexity that is readily implementable, and rcquires far 
fewer resources than the Greedy algorithm used by the DIF 
architecture as have been shown in our previous work 
[DES99a]. The results in this paper further demonstrate the 
effectiveness of the DTSVLIW algorithm in that there is no 
significant reduction in performance over the other 
candidate scheduling algorithms, even though these 
algorithms are expected to be much more difficult to 
implement. 

The DTSVLIW architecture opens severa( new avenues 
of research. Next long instruction prediction, suitable 
compiling techniques, and new VLIW Cache organisations 
are examples of issues that we will investigate in future 
work. 
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