
SBAC-PAD'99 1 lth Symposium on Computer Architecture and High Performance Computing- Natal- Braz.il 167

On the Effectiveness of the Scheduling Algorithm
of the Dynamically Trace Scheduled VLIW

Architecture
A. F. de Souza· and P. Rounce

Department o f Compu ter Science
University College London

Gowcr Street, London WCIE 6BT- UK
a.souza@rs.ucl .ar.uk, p.rnunre@rs.ud .ar.uk

Abstract-
In a machine that follows the dynamically trace sclleduled

VL/W (DTSVLIW) architecture, VLIW instructions are built
dynamically through a scheduling algorithm that can be
implemented in hardware. These VLIW instructions are
cached so that the machine can spend most of its time
executing VLIW instructions without sacrificing any binary
compatibility. This paper evaluates the effectiveness of the
DTSVLIW instruction·scheduling algorithm by comparing it
with the first come first served (FCFS) algorithm, used for
microinstruction compaction, and the Greedy algorithm, used
by the Dynamic Instruction Formatting architecture. In order
to perform these comparisons, we have performed experiments
using the SPECint95 benchmark suíte.

Keywords-VLIW, instruction scheduling, ILP

I. INTRODUCTION

Recently, research on superscalars have incorporated
into these architectures new features such as trace cache
[ROT97], value prediction, and instruction reuse [SOD98],
which allow them to exploit large amounts of instruction
level parallelism (ILP). These features, however, increase
the implementation complexity, slowing down the clock of
machines that use them. Moreover, simple supcrscalar
machines with fast clocks have proved to be more powerful
than their more complex counterparts [SMI94].

Very Long lnstruction Word (VLIW) architectures
[FIS 84] are potentially the most simple and direct way of
exploiting ILP, and have shown to perform better than
superscalars using similar hardware [HAR96]. Different
from superscalars, VLIW machines do not dynamically
make any decision about multiple operation issue - the
VLIW compiler is responsible to translate source code into
long instructions - and thus their hardware is simple and
fast. However, the assumptions built into the object code by
the VLIW compiler about the VLIW hardware prevent
object code compatibility between different
implementations of the same VLIW instruction set

· Sponsored by CAPES (Brazilian Govemment Agency)

architecture (ISA). VLIW processors with different leveis
of parallelism require recompilation of the source code.
This problem is known as the VLJW object code
compatibility problem and has limited the commercial
interest in VLIW machines [RAU93].

To get over the VLIW object code compatibility
problem, a dynamically scheduled VLJW (DSVLIW) was
presented by Rau [RAU93]. However, this architecture
cannot be used to implement an existent sequential ISA due
to its VLIW ISA.

Ebcioglu and Altman [EBC97] with their DAISY
machine can translate dynamically from the objcct code of a
generic ISA to the object code o f a VLIW using a Virtual
Machine Monitor (VMM) implemented in software and
running on a VLIW machine. The VMM operates on each
page-fault , producing new pagcs o f VLIW instructions from
pages containing the cxisting ISA code. The DAISY
machine concept relies on the ability of the VMM to
translate code fast, and o n the reusability of this code.
However, since the VMM is implemented in software, the
cost of the translation is necessarily high. In addition,
because the VMM translates code on a page-fault basis, it
does static scheduling only, which means that the VMM
does not know much about the dynamic behaviour of
branches, relaying on heuristics to determine their outcome.
This can impose severe limitations on its performance.

A machine implementing the Dynamic Instruction
Formatting (DIF) concept (Nair and Hopkins [NAI97])
performs code re-formatting in hardware. In a DIF machine,
the original code is executed on a primary processar (a
simple processar, less aggressive in exploiting paralle lism)
and, at the same time, re-formatted into blocks of VLIW
instructions that are stored in a VLIW cache for subsequent
execution on a VLIW engine. As with standard superscalar
designs, code dependencies have to be handled, but this is
only done when the code is reformatted, not each time it is
fetched from the DIF's VLIW cache. This allows the extra
speed of the VLIW engine to be fully utilised while
allowing backward code compatibility.

168 SBAC-PAD'99 Jlth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

A machine that follows the DIF concept schedules the
trace observed during execution and as such records the
dynamic branch behaviour related to this execution .. This
allows fo r more ILP than that achievable through techmques
that perform static scheduling based on heuristics.

The architecture that forms the basis of this paper, the
dynamically trace scheduled VL/W arch_itecture
(DTSVLIW) [DES98a], is a variant of the DIF archllecture.
Our earlier work [DES99a] demonstrates similar or better
performance results to the DIF and superscalar, but _a with
simpler architecture that should be ~uch e~ster to
implement. The DTSVLIW schedules the mstructton trace
using an algorithm that can be implemented in hardwa~e. ~o
achieve performance, this algorithm has to be effecttve m
producing VLIW code and has to be simple enoug~ not to
render the clock cycle time longer than that determtned by
the VLIW Engine design. In [DES99a) we have proved that
the core operations of the DTSVLIW scheduling algorithm
can be implemented with hardware as simple as an integer
adder and, as such, should not impact the DTSVLIW clock
cycle. However, the effectiveness of this algorithm has not
yet been investigated. In this paper, the performa~ce of the
DTSVLIW scheduling algorithm is compared wtth that of
two other algorithms: the First Come First Served (FCFS)
algorithm, historically used for microcode compaction
[DA V8 1); and the Greedy algorithm, used in the DIF
architecture. To perform these comparisons, we have
modified our DTSVLIW execution-driven simulator to
make it able to use the FCFS and Greedy algorithms, and
have performed experiments using the SPECint95
benchmark suíte.

This paper is organised as follows. Section li presents
the DTSVLIW architecture and its scheduling algorithm,
and Section III presents the DIF architecture and its
scheduling algorithm. In Section IV, the FCFS algorithm is
described and compared with the DTSVLIW and Greedy
algorithms. Section V presents the experimental
methodology, describes the experiments, and discusses the
experimental results. Finally, in Section VI, our conclusions
are presented together with future work proposals.

Fig. 1: The Dynamically Trace Scheduled VLJW Architecture.

li. THE DTSVLIW ARCHITECTURE AND ITS
SCHEDULING ALGORITHM

The DTSVLIW, in Figure l , has two execution engines:
the Scheduler Engine and the VLIW Engine; and two
caches for instructions: the Instruction Cache and the VLIW
Cache. The Schcduler Engine fetches instructions from the
Instruction Cache and executes the original code for the
first time using a simple pipelined processor, the Primary
Processor. The instruction trace it produces is dynamically
scheduled by the Scheduler Unit into VLIW instructions,
which are saved as blocks of VLIW instructions in the
VLIW Cache for the VLIW Engine to execute, if the same
code needs to be re-executed. In a DTSVLIW machine, the
Scheduler Engine provides for object-code compatibil ity,
and the VLIW Engine provides VLIW performance and
simplicity.

The Primary Processor executes Sparc-7 ISA [SUN87]
code, while the VLIW Engine executes a sub-set. The
VLIW Engine has a simple fetch - execute - write-back
pipeline for each functional unit (multicycle instructions
execute in pipelined functional units with more than one
execute stage). A decode stage is not necessary as decoded
instructions are saved in the VLIW Cache. The DTSVLIW
implementation presented here uses the checkpoinring
exception handling mechanism proposed by Hwu and Patt
[HWU87).

The key issues to be resolved in the DTSVLIW
archi tecture are the scheduling of the instruction trace into
long instructions (term used in thc rest of this paper to refer
to VLIW instructions) and the addressing within thcsc long
instructions. The Primary Processar and the VLIW Engine
themselves are not a challenge. Multicyle instructions
impact upon both the operation and performance of the
architecture. Their scheduling requires spccial care to
respect dependencies in any of their cycles. This can restrict
the packing of instructions into long instructions limiting
achievable parallelism. T he DTSVLIW scheduling of
multicycle instructions is described in [DES99b].

The Scheduler Engine of the DTSVLIW is composed of
the Primary Processar plus the Scheduler Unit (Figure I).
When an instruction arrives in thc execute pipeline stage of
the Primary Processar, it is sent to the Scheduler Unit. The
Scheduler Unit implements in hardware a simplified version
of the Firsr Come Firsr Served (FCFS) algorithm. We have
chosen this algorithm for three reasons. First, it rarr
(nt)Tj
0.33j
0.306 812 Tc .035Tc 0w.450 Td
(Firsr)Tj
064j
0.1621355 Tc 1.ne21.4 Tm
(of)Tj
0.169 g
-087302 Tc 0462 0 Td
(lin)Tj
0.169 g
0790209 Tc 1tr3Tj
0.306o0 Td
(h)T0 g
0 Tc 1u2 0 Td
(lin)Tj
01169 g
0.0337 Tc 1tio3Tj
0.306o0 Td
(h)T61.169 g
0.507 0 Td
(n)Tj
0196m
(it)T19 Tc 0at95 0 Td
(in 0.001 Tc 2aTd
(easo0969 g
-080336 Tc 0time0 Td
(Firsr)Tj
0,)Tj
1621355 Tc 1and29 0 Td
(on)90 005 Tc 10.0145c -5 197.0.16.8 co3Tj
0.306o0 Td
(h
0.0268 Tc 9.4
079 197.0.16.8 62 0 Td
(lin)Tj
031 Tf
-052.306 g
0.id33Tj
0.306o0 Td
(h)T70225 Tc 4.959 0 Td
(r)Tj
0.306 g
0..81 Tm
(the)Tj
0639 g
-08102 Tc 0461tru1tions0 Td
(Firsr)Tj
0.169 g5-0.051 Tc 3.219 0 Td(the)Tj
(to)Tj-2-0.57 Tc .0.16d8 244.81 Tm
(impl)Tj
0169 g
)T673209 Tc 1tr3Tj
0.306o0 TT1_1606 g
0.0j
0 Tc 0.ct 0 Td
(this)Tj
0.3041225 Tc 4o3Tj
0.306o0 TT138306 g
0
0.169 g
0rdTm
(SchTj
0.231 g
 0 0049 Tc 0.9 Td
(Firsr)Tj
08769 g
079619 Tc 0at95 0 T(ithm)Tj
0.e)Tj
015749 Tc 0.9ey.81 Tm
(impl)Tj
291 g
 0 0225 Tc 4appear321 0 Td
(.)Tj
013)Tj
0Tj
0 Tc 1during.81 Tm
(impl)Tj
244
0>4 o f this l i n the
0.e easo02 of thThe

(FCFS) implon h30.02337 Tc 62 0 Td
(lin)Tj51.169 g
0..81 Tm
(The)Tj
ET
BT
/Suspect <</Con Tm
(e)Tj
0.306 g
/T122 Unit thT h e Unit al gor i t h m F i r s r g o r this

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 169

f<r(5Uill=O. i=~ i<x; i-++) 1: (J"

I 2:scili
5Uill=a(i)+sum 3: (J"

4: (J"

I~ 5: ld
(a) 6: ail

7: ai!
8: sttxx:
9: ble
IQ (J"

slh-> o r rO. o. r9 scthi hi(56). r8

slt-> o r r8, 8. ri I

slh ·> or rO. o. r9 sethi hi(56). r8
o r r8. 8. r i I
ld lriO+r ll), r8 3dd riO, 4, riO

slt -> add r9. r8. r9 subce rl0.'4*x-1, rO

slh -> o r rO. o. r9 sethi hi(56). r8
o r r8. 8. ri I add. riO. 4, r32
ld (riO+r ll). r8 COPY r32. ri O

slt-> add r9, r8. r9 blc IOOD

slh -> or rO. o. r9 sclh i hi(56). r8
o r r8, 8. ri I add riO. 4. r32
ld (ri O+rll). r8 COPY r32. riO

slt ·> add r9. r8, r9 blc loop

(c)

J{),0.r9
li(56), ri!
tS. 8. r li
rü, O, riO
(riOt<-11]. ri!
r9. r8. r9
rl0.4. rl0
riO. 4"x-l. rO
I~
J{),O,rO

(h)

o r rO.O. riO

o r rO. O. ri O

#r9=5Uill
#ri!=lerrp
#r li =*a
rl0=4"i

rq>

aftcr
3 cyclcs

a H c: r
R cydcs

subcc r32. 4•x-l. rO
allcr

9 cyclcs

o r rO. O. riO
aftcr

subcc r32. 4"x- l. rO I I C)~lcs

ld [riO+rl ú. r8

Fig. 2: Scheduling algorithm running example. (a) C code
fragment. (b) Assembly language version of the C code (c) Four
snapshots of a three instructions wide and four long instructions
deep scheduling list, filled with instructions coming from the
Primary Processor after 3. 8, 9, and li cycles o f the completion of
the first instruction. The shaded instructions in each snapshot are
also candidate instructions.

A. The DTSVLIW Scheduling Algorithm

The implemented version o f the FCFS algorithm acts on
a list, the scheduling list. This list has a lixed number of
elements, each containing one Jong instruc tion and a
candidate instruction, which holds an instruction for
scheduling into the long instruction. A broad overview of
the algorithm is that an instruction completing execution by
the Primary Processar is placed at the end o f the scheduling
lis t on the next clock cycle. On each subsequent cycle it can
move up to the next higher e lement in the lis t if: it has not
reached the head of the lis t; and there is space for it in the
next e lement; and there is not a dependency with
instructions in next element. Figure 2 shows an example of
the algorithm scheduling a fragment of cede that adds aJI
e lements of a vector. In Figure 2, slh and slt stand for
scheduling list head and tail , respectively, and the
destination register of the instructions is the rightmost. The
scheduling a lgorithm ignores nop instructions. The details
o f the a lgorithm's ope ration are as fo llows.

An instruction arriving in the execute pipeline s tage of
the Primary Processar in one cycle can be inserted into the

scheduling list in the next, by placing a copy of it in a
candidate instruction and also in a suitable slot of the
corresponding long instruction. The copy in the Jong
instruction slot is called the companion instruction and its
position in the long instruction (the slot number) is recorded
in the candidate instruction. If there are no data, contra i, or
resource dependencies on any instruction in the Jist's tail
element, the incoming instruction becomes a candidate
instruction in the list' s tail element; otherwise, the incoming
instruction becomes a candidate instruction in a new tail
e lement added to the list. In Figure 2b, instructions 1 and 2
are inserted by the fi rs t method, while instruction 3 is
inserted by the second method dueto a fl ow dependency on
r8 (there is a flow dependency on instruction i if it reads
from any position written by any instructionj before i).

After an instruction has been inserted into the Jist, the
next step isto move this instruction and its companion up as
far as they can go in the list o f lo ng instructions. An
instruction can move up from long instruc tion i to Jong
instruction i · I i f it is not flow dependent o n any instruction
in the long instruction i - I and there is a suitable slot
avai lable. If the instruction cannot move up, it is installed in
long instruction i by invalidating the candidate instruction
and leaving its companion in i. In Figure 2, instruction 3 is
installed in the fourth cycle, while instruction 8 is moved up
in the ninth cycle.
_ The candidate instruction in i can be piaced in Jong
mstruction i - I even if there is an output dependency on
any instruction in i - I (the re is an instruction in i - I that
writes in a storage position written by the candidate
instruc tion in i), or an anti dependency on any instruction in
i (t~~re is ~n instruction in i that reads from a storage
posltJon wntten by the candidate instruction in i), or a
centro! dependcncy on any instruction in i (there is an
conditional branch or indirect branch in i). However, in
such cases, the candidate instruction has to be split. The
split is done by renaming e ither the candidate instruc tion's
output that has caused the anti/output dependency or aJI
outputs if there is a control dependency, and by
transforming the companion instruction into a copy
instruction and Jeaving it permanently in the slot it occupies
in long instruction i. This copy instruction pe rforms the
copy of the renaming register (or the renaming registers)
content to the instruction' s origina l output (or instruction's
original outputs). In Figure 2, instruction 7 is split in the
ninth cycle.

Conditional and indirect branches do not move up. They
are instaJled when inserted and establish a tag for their long
instruction. Ali instructions subsequently placed receive the
last established tag. During VLIW execution, the VLIW
Engine evaluates the conditional and indirect branches and
validates their tags if they fo Jlow the same direction
observed during scheduling. Only instructions with valid

170 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

tags have their results written in the machine state. In Figure
2, the second instance of instruction 5 receives the tag
established by instruction 9 in cycle eleven.

When there is no free element for an incoming
instruction, the scheduling list is flushed to the VLIW
Cache as a block and the incoming instruction is inserted
into an empty list as thc first instruction of a new block. The
list is saved as a block, but on a one long instruction per
cycle basis; nevertheless, instructions can be continuously
inserted into the new block at the same time as the old block
is being saved. This is achieved by making the scheduling
list circular, and by using pointers to the head, tail , and
current Iist element ready to be sent to the VLIW Cache. As
instructions are inserted into the list at the maximum rate of
one instruction per clock cycle, it is always possible to save
the content of a list element before it is needed for an
incoming instruction [DES99a].

B. Addressing

Instruction addressing has to change once instructions
are scheduled into long instructions. A block of long
instructions is stored as a VLIW Cache line. There is one
address for the whole block, and this is the address of the
first instruction scheduled in the block: the need to execute
this instruction determines that the VLIW Engine can
execute the block. For fetching long instructions from a
block, the VLIW Engine maintains a line index that is
incremented from zero. This is compared with a maximum
value in the VLIW Cache line to determine the fetch of the
last long instruction in a block, in which case the next fetch
is made using the address of the instruction that follows the
block, also stored in the cache line. This mechanism
requires only two instruction addresses to be stored in a
cache line. Individual instruction addresses are not required,
since the block wi ll execute as a whole unless a branch is
made out of the block, in which case the information needed
to build the target address is stored as part of each branch
instruction. When blocks are sequentially executed, no
bubbles occur in the VLIW Engine pipeline, and only a
single bubble occurs when a branch is made out of a block.

In a DTSVLIW machine, the VLIW Engine and the
Primary Processar never operate at the same time and no
machine state has to be transferred between them, as they
share the DTSVLIW · machine state. This simplifies the
design of both, even allowing the VLIW Engine to share
functional units, register file 's ports, and data cache's ports
with the Primary Processor. The cost in cycles of swapping
between them is equal to the sum of a number of pipeline
stages of both processors only (the stages discarded in one
processor plus the stages refilled in the other).

On a VLIW Cache miss, the Primary Processor takes
over execution, fetching from the last PC value produced by
the VLIW Engine. The Fetch Unit does not issue fetches to

the VLIW Cache again until an instruction arrives at the
execution stage of the Primary Processor. At this point, the
Scheduler Unit restarts to schedule a new block, the address
of which will be the last address produced by the VLIW
Engine when executing the previous block. This connects
these blocks forming a block chain. In steady state, the
VLIW Cache contains ali most frequently executcd traces.

III. THE DIF ARCHITECTURE ANO ITS SCHEDULING
ALGORITHM

In contras! to the DTSVLIW, which uses the scheduling
list for scheduling, a DIF machine schedules instructions
using a hardware table, which has as many entries as
resources in the machine and records the earliest long
instruction in which each resource is available [NAI97]. Its
proposed scheduler implements the Greedy algorithm, by
checking ali resources necessary for each new instruction
against this table and scheduling the instruction in the
carliest long instruction possible.

Instead of using copy instructions to implement register
renaming, a DIF machine has a number o f instances of each
ISA register and extra bits are added to each register
specifier to specify the register being used during VLIW
cxecution. A register-mapping table is used to access thc
current ISA register set. Renaming is performed by
specifying the extra bits during scheduling and by copying
the new register mapping - the exit map - to the register
mapping table every time the execution leaves a block.
Each exit point of a block (ali branches and the final long
instruction) has to carry its own exit map. This mechanism
may not be practical for machines with a large number of
physical registers, however. The Sparc ISA, for example,
allows processor implementations with as many as 520
integer registers due to its rcgister windows [SUN87].
Although most Sparc processors havc only 128 integer
registers, a single exi t map for such processar, with four
instances of each register, would require 256 bits just for
the integer registers.

The DIF architecture accesses its register fi le differently
to the DTSVLIW. The DIF h as to translate each register
specifier to access its register file due to its renaming
mechanism, while the DTSVLIW accesses its registers
directly. Again different from the DTSVLIW, which fetches
one long instruction per VLIW Cache access, the unit of
communication between the DIF cache and its VLIW
Engine is an entire block of long instructions. A more
detailed discussion of the differences between DTSVLIW
and DIF is presented in [DES99a].

IV. THE FCFS ALGORITHM

The FCFS algorithm is a superset of the DTSVLIW and
DIF algorithms and has historically been used for
microcode compaction (DA V81). Microcode compaction is

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Bra'l.il 171

the process of combining microoperations (MOs) into
microinstructions (Mls) in a way that reduces the space
required by the microprogram and, hopefully, the time
needed for the microprogram execution. DeWitt [DEW76)
has shown that microcode compaction is a NP-complete
problem; therefore, a single-pass algorithm such as the
FCFS is a cost-effective solution only. Nevertheless, the
FCFS algorithm can achieve optimum execution-time
scheduling, as shown by Davidson et ai. [DA V81).

The description of the FCFS algorithm presented here is
based on that of Davidson et a i. The original algorithm
operates over a Iist of MOs coming from a straight-line
microcode segment (SLM), which is a sequence of MOs
containing no branch MO except perhaps one at the end,
and no entry point except at the beginning (a SLM is a basic
block of MOs). The algorithm takes MOs from the SLM
and groups them to form Mls with multiple MOs. Here,
however, we use the FCFS algorithm to schedule
instructions coming from a trace (produced dynamically
during program execution) into long instructions. Because
we are using a trace, where the direction of each branch is
fixed, we are able to schedule instructions past conditional
and indirect branches by renaming these instructions. The
details o f the FCFS algorithm are as follows.

I. Take one instruction from the trace and, if there is
no dependency, add it to the last long instruction of the
list of long instructions. If there is any dependency, add
one empty long instruction to the end of the list and add
the instruction to this long instruction. If this makes the
list longer than the BLOCK_SIZE, save the previous
list's contents in the VLIW Cache and start a new list
with a single long instruction containing the instruction.
2. Search the list of long instructions and find the
earliest long instruction where flow dependencies and
resource dependencies allow the added instruction to be
placed. Rename the instruction if appropriate, and put it
in the long instruction found.
3. If the added instruction cannot move up due to lack
of a suitable slot in any long instructions above the one
in the tail and the Iist is smaller than BLOCK_SIZE - I,
add one long instruction at the top of the list and put the
new instruction there. A new long instruction is added to
the top to allow any subsequent instruction that may be
data dependent on the just added instruction to be added
to an already existing Iong instruction, instead of
forming a new long instruction at the bottom o f the list.
4. Go to step l.
The difference between the DIF and the FCFS

algorithms is that DIF does not implement the step 3 of
FCFS; i.e. the DIF algorithm never adds long instructions at
the top of the scheduling list but only at the bottom. The
DTSVLIW algorithm does not add instructions at the top
either and, in addition, only moves up an instruction if there

is a slot available in the next Iong instruction in the list. This
can cause premature installing of instructions that could be
moved to a Iong instruction two or more entries up in the
list, limiting the code density and achievable parallelism.

Primary Processor

Decoded lnslruclion Size
lns1ruc1ion l..alencv
N. of Renanúng Regislers

TABLEI
Fixed Parameters . four·slage (felch. decode. execu1e. and wrile

back) pipeline . no branch prediclion hardware . laken branches cause a 2-cycle bubble in lhe
pipeline

6 byles
I cvc1e
inleRer = f.p. = memorv - fla~s 256

TABLE 11
B h k enc mar . oroerams

Bt nchmark /nput

compress 400000 e 2231
gcc ·03 ÍUitlD.Í

.20 40 19 null.in
ijpeg vi.2o.oom -GO
m88ksim dhrv.bi2
perl primes.pl
vonex vonex.in
xlisp queens 7

V. METHODOLOGY AND EXPERIMENTAL RESULTS

A simulator of the DTSVLIW has been implemented in
C (23K !ines of code), and execution-driven simulation
performed to produce the results reported here. Ali results
were produced with the simulator running in test mode in
order to guarantee correct simulation. Test mode puts two
machines to run together: the DTSVLIW and a test machine
with the same characteristics of the Primary Processor of
the DTSVLIW. The DTSVLIW starts first, and every time
an instruction or a block of long instructions is completed,
the simulator switches to the test machine, which runs until
its program counter becomes equal to the DTSVLIW 's. The
Sparc ISA state of both machines is compared and, if not
equal, an error is signalled and the simulation interrupted.
The test mode has been very useful for experimental
evaluation because in this mode it is possible to measure the
precise number of instructions necessary for the execution
of a program, since the test machine can provide it. A
DTSVLIW simulator alone cannot provide this number due
to copy instructions and instructions executed speculatively.
The instructions per cycle performance index used
throughout this section has been produced dividing the
number of instructions necessary to execute the program, as
counted by the test machine, by the number of cycles
consumed by DTSVLIW execution.

The simulator receives as input executables generated
by the gcc compiler and faithfully models the DTSVLIW.
Model parameters that are invariant for simulations are
presented in Table I, and the benchmark programs used -

172 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

the SPECint95 benchmark suite - are shown in Table li.
The Primary Processor fuliy implements the Sparc-7 ISA.

Each program was run for 50 miliion or more
instructions each experiment, as counted by the test
machine. We have chosen to run this number of instructions
because this is optimisticaliy the number of instructions that
a DTSVLIW machine is capable of execute between
operating system context switches. (Supposing that the
DTSVLIW can execute 5 instructions per cycle, a clock rate
of I GHz, and one context switch every IOms.)

e -
• 7~------------------1~------------------~
ü
~6 ~------------------1~------------------~
i 5~----------------~1~------------------~
~ 4 ~--111-----:::---------=:11 ~---il----.1

E 3
ü
2 2 ..
.E 1

o
catrp<ess gcc go ijpeg rr68ksim pe~ vortex xlisp

Benchmark

Fig. 3: Variation of parallelism with the block size and geometry

A. Effect o f tlze 8/ock Size and Geometry on the
Pelformance of the DTSVL/W

Figure 3 shows the effect of the block size, in terms of
the number of instructions, and of the block geometry -
instructions per long instruction (width) versus long
instructions per block (height) - on the DTSVLIW
performance. The numbers in the legend are instructions per
long instruction and long instructions per block,
respectively. Sinee we are only interested in the
performance of the algorithms, the experiments leading to
the results in this figure and throughout this section were
performed with perfect instruction and data caches (no miss
penalty), Iarge VLIW Cache (3072-Kbyte), and no next
long instruction miss penalty. Adding these and other
factors is likely to hide the difference in the effectiveness of
the algorithms.

As the graph shows, the performance of DTSVLIW
machines with the same block sizes and different geometry
is significantly different. For example, the performance of a
machine with 4x8 configuration is lower than the machine
with 8x4 configuration for ali benchmark programs. The
block width and height affect the cosl of implementing a
DTSVLIW machine in different ways. Large long
inslruclions imply many functional unils, data cache porls,
and register file ports, while a large number of long
instructions in a block implies many renaming regislers and
more resource consuming hardware for recovering from
exceptions [DES99a]. A large number of long inslructions
in a block can also have an impact on the required size of
lhe VLIW Cache for lhe same performance [DES99a] . To

increase just the width or just the height of the block does
not appear to be the best approach to achieve cost/effective
performance: a DTSVLIW with 8x8-block geometry
performs better than machines with 4x 16 and 16x4
geomelry in the majorily of the SPECint95 benchmarks.
The DTSVLIW benefits from large block sizes but nol
linearly. As the graph in Figure 3 shows, a 16-fold increase
in the number of instructions of a block (from 4x4 to
16x 16) does not quite double its performance on average.

The performance o f lhe 16x 16 configuration on the
ijpeg benchmark is exlraordinary and has been invesligated.
This benchmark spends most of its execution in one loop.
With a large enough block size, more than one loop
iteration can be scheduled into a single block, allowing
instructions from these iterations to overlap, extracting
much greater paralielism (in Figure 2, instruction 5 of the
second loop iteration overlaps wilh instructions of the first) .

The results presented in Figure 3 show better overall
DTSVLIW performance than preliminary results published
elsewhere [DES98b] . The improvements are due to more
accurate implementation of the scheduling algorithm:
previously we were very conservalive with instructions
dealing with different sizes of data (byte, word, and long
word), which resulted in false data dependencies.

e • --------. --- -------~ OOTSVu.Y 44

• D GREEO'I' c.c
~ • ~--------------11:::-----------------..., ••CFs "
l 5 O OTSVLO'/ U

~ 4 D GAEEOY 11

i 3 • FCF"S e 1
.;; 2 OOTSVLM 16 18

.S. C CAEEOY 16 16

jUA.IAJJII.,LLIL..I&JCII.,LL._..J.A,JJ....,.....,CLaJJIUA,,LULJ.......,,u&.LLU U&I.Al •FCFS 16 16

P9 m&asim ~ 1o0r1o abp

O.nchm•,lt

Fig. 4: Performance o f the DTSVLIW, Greedy, and FCFS
algorithms- untyped F.U.

8. Performance o f the Three Scheduling Algorithms
Untyped Functional Units

In order to permit visualising the differences between
the three scheduling algorilhms, we have chosen to use
blocks with three different geometries: 4x4, 8x8, and
16x 16. As shown in Figure 4, ali three scheduling
algorithms perform very similarly. The DTSVLIW
algorithm achieves marginally inferior results in most cases.
This is to be expected as it is possible for inslructions to be
blocked from moving up the scheduling list by fuli long
instructions at some interior position of the list. This
prevents empty instruction slots at higher list.positions from
being filled, reducing the code density in the block and
limiting the achievable parallelism. Blocking in this fashion
does not occur for the other algorithms. However, the
DTSVLIW algorithm is expected to provide a much more
feasiblc and faster implementation, and the results in Figure

SBAC-PAD '99 I I th Symposium on Compu ter Architecture and High Performance Computing -Natal- Brazil 173

4 demonstrate that its use should not significantly prejudice
the architecture: in some cases, our simplified algorithm
does as well as and even outperforms the other algorithms.
This is markedly so for the I6x I6-ijpeg run, but also seen in
the J6x I6-m88ksim run. It would seem that some particular
combination o f instructions is particularly well suited to the
simplified FCFS algorithm. The 16x I6 performance on the
ijpeg benchmark is superior to ali others for ali three
algorithms, and exceptionally so for the DTSVLIW
algorithm.

The fuJI FCFS is as good or be tter than the Greedy
algorithm for the I6x I6 runs, but is outperformed by the
Greedy algorithm for the smaJicr gcometries, particularly
for the 4x4 runs. This happens because, in order to take fuii
advantage o f Jong instruc tions added to the top o f the block,
the FCFS algorithm needs to be unbounded in the block
size. Larger geometries improve its relative performance,
reflecting the movement towards an unbounded block. The
difference between the Greedy and the fuJI FCFS algorithm
is just the extra step whcre, when resource constraints soie ly
restrain the movement o f an instruction to a higher position,
a ncw long instruction is added at the top o f the block for
the instruction. In some cases, this extra Jong instruction
cannot be fiiied by subsequent instructions, as these havc
dependcncies with instructions in the middle of the block.
These instructions whcn added to the end o f the biock cause
the block to be filled, flushing the block to the cache with
thc first long instruction only partially fiiied, reducing the
paralleiism. The Greedy algorithm does not add the new
long instruction at the front of the block allowing for
another one at the end of the block that must be more
effectively fill ed despite the dependencies caused by
instructions added to it. Increasing the block size and width
reduces the resource blocking of instructions and also
aJlows for more instructions to be added after rcsource
blocking occurs. This gives more opportunity for the added
front Jong instruction to be fill ed.

The simulations discussed until here were performed
with untyped func tional units, i.e. ali functional units could
execute ali instructions; however, machines using typed
functional units are a more like ly scenario in an
implementation. We discuss the performance of the three
algorithms for machines with typed functional units next.

--·· . ·- -·-~··----·-·- ---- --1 OOTSVUW S~

• a GREEOY S'
~ 6 t-- - --------------....:

1
• FCFS S A

i S O OTSVLIW 10 8

• 4 Q GREEOY 10 a
~ 3 • FCFS >00

i 2 oOTSYUW 20 16

J; 1 a GREEDY 20 16

O jl.La.I&.IJI,WU&.IA.WLJa.La.ll:LLI.I.A,l.I&JIW..LLI..LIJI..llLWJl,IJ.Il1I.J..Il • FCFS 2010

~rass gcc go tj>eg m88kSim per1 YOI11X ldisp

Benchmark

Fig. 5: Performance of the Three Algorithms - typed F.U.

TABLE 111
Summary o f the es lt 4 4 & 5 4 r u s- X X h" fi mac me con tgurations

Rdative Pu(ornranu
AveraKe Pu(ornrance (ipc) 5x414x4 Alxorithm I FCFS

4x4 5x4 4x4 5x4
DTSVLIW 2.35 1.80 77% 103% 100%
GREEDY 2.41 1.83 76% 106% 102%
FCFS 2.28 1.80 79% 100% 100%

TABLEIV
Summary o f lhe results - 8x8 & I Ox8 machine configurations

R~lativê Performance
A vera •e Performance (iocl /Ox8 I llx8 Alxnrithm I FCFS

llx8 /Ox/1 8x8 /Ox8
DTSVLIW 3.24 2.77 85% 92% 97%
GREEDY 3.55 2.91 82% 100% 102%
FCFS 3.53 2.85 81% 100% 100%

TABLE V
Summary o f the results 16 16 & 20 16 - X X h" fi mac me con Jguration

Relative Performance

Avtral1< Perl ormance (ipc) 20x/61 16x/6 Al11orithm I FCFS
J6x /6 20xl6 16x/6 20x/6

DTSVLIW 4.53 3.77 83% 103% 96%
GREEDY 4.40 3.94 89% 100% 100%
FCFS 4.41 3.93 89% 100% 100%

C. Performance o f the Three Scheduling Algorithms
Typed Functional Units

s

In order to evaluate the impact of typed functional units
in the performance of the scheduling algorithms, we have
pcrformcd experiments using three machine configurations:
5x4 - with 2 integer, I loadlstore, I floating point, and I
branch units, and a 4 Iong instructions height block; I Ox8 -
with twice the number of functional units and twice the
number of long instructions of the previous configuration;
and 20x 16- with four times the number of functional units
and four times the number of long instructions of the 5x4
configuration. The results are presented in graph form in
Figure 5. Table III , Table IV, and Table V summarise the
data shown in Figure 4 and Figure 5.

As a visual comparison between the graphs in Figure 4
and Figure 5 shows, the use of typed functional units causes
significant performance Joss, even though the typed
configurations have 25% more instruc tion slots in each Jong
instruction than the similar untyped ones. As shown in
Table III, the 5x4 configuration achieves from 77% to 79%
of the 4x4 average performance for the three algorithms,
while the I Ox8 configuration achieves from 8 1% to 85% o f
the 8x8 performance, as shown in Table IV. The 20x l 6
configuration achieves from 83% to 89% of the I6x l 6
performam;e, as can be seen Table V. Larger typed
configurations show smaller performance losses, which
indicates that their number of func tional units is reasonably
balanced for the available instruction-level para11elism.

The relative performance of the three algorithms did not
change much from machines with untyped to machines with
typed functional units. In T able III, Table IV, and Table V ,
the Jast two columns contain the average performance of

174 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

each algorithm as a percentage of that of the FCFS
algorithm. As the tables show, the performances of the
DTSVLIW and Greedy algorithms as percentage of the
FCFS algorithm vary from 92% to 106% percent for
configurations with untyped functional units, and from 96%
to 102% for typed configurations; i.e., the DTSVLIW and
Greedy algorithms have presented performances closer to
the FCFS with typed functional units. This shows that, for
the range of configurations used, the DTSVLIW algorithm
performs almost as well as the more complex Greedy and
FCFS algorithms.

VI. CONCLUSIONS ANO FUTURE WORK

The dynamically trace scheduled VL/W (DTSVLIW)
architecture takes advantage of the instruction execution
locality in current programs. In a DTSVLIW machine, code
fragments are scheduled into long instructions and saved in
a VLIW Cache upon their first execution. In subsequent
executions, a VLIW Engine executes them in a VLIW
fashion.

The design of the DTSVLIW architecture has been
driven by the requirement to develop an architecture which
can be effectively implemented to realise the fast clocking
of VLIW machines: inherently faster than superscalar
machines. The Primary Processar and the VLIW Engine of
the DTSVLIW do not restrict the achievable clock rate. The
key to an efficient and high clock rate implementation is the
Scheduler Engine. The simplified version of the FCFS
scheduling algorithm used by the DTSVLIW has a
complexity that is readily implementable, and rcquires far
fewer resources than the Greedy algorithm used by the DIF
architecture as have been shown in our previous work
[DES99a]. The results in this paper further demonstrate the
effectiveness of the DTSVLIW algorithm in that there is no
significant reduction in performance over the other
candidate scheduling algorithms, even though these
algorithms are expected to be much more difficult to
implement.

The DTSVLIW architecture opens severa(new avenues
of research. Next long instruction prediction, suitable
compiling techniques, and new VLIW Cache organisations
are examples of issues that we will investigate in future
work.

REFERENCES

[DA V81] S. Davidson, et ai., "Some Experiments in Local
Microcode Compaction for Horizontal Machines",
IEEE Transactions on Computers, V oi. C30, No. 7, pp.
460-477, July 1981.

[DES98a] A. F. de Souza and P. Rounce, "Dynamically Trace
Scheduled VLIW Architectures". Proceedings o f The
HPCN'98, in Lecture Notes on Computer Science,
Vol. 1401, pp. 993-995, 1998.

[DES98b] A. F. de Souza and P. Rounce, "SPECint95

Performance of an Implementation of the Dynamically
Trace Scheduled VLIW Architecture", Proceedings of
The lOth Brazilian Symposium on Computer
Architecture and High Performance Computing, pp.
185-188, 1998.

[DES99a] A. F. de Souza and P. Rounce, "Dynamically
Scheduling the Trace Produced During Program
Execution into VLIW Instructions", Proceedings of
The 2nd 1PPS/SPDP Merged Symposium: 13th
International Parallel Processing Symposium & I Oth
Symposium on Parallel and Distributed Processing, pp.
248-257, 1999.

[DES99b] A. F. de Souza and P. Rounce, "Effect of Multicycle
Instructions on the Integer Performance of the
Dynamically Trace Scheduled VLIW Architecture",
Proceedings of The HPCN'99, in Lecturc Notes on
Computer Science, V oi. I 593, pp. 1203- I 206. I 999.

[DEW76) D. J. DeWitt, "A Machine Independent Approach to
the Production of Optimal Horizontal Microcode",
Technical Report 76 DT4, University of Michigan,
Ann Arbor, August 1976.

[EBC97] K. Ebcioglu and E. R. Altman, "DAISY: Dynamic
Compilation for 100% Architectural Compatibility",
Proceedings of The 24th Intemational Symposium on
Compu ter Architecture, pp. 26-37. 1997.

[FIS84] J. A. Fisher, 'The VLIW Machine: A Multiprocessor
for Compiling Scientific Code", IEEE Computer, pp.
45-53, July I 984.

[HAR96] T. Hara, et ai., "Performance Comparison of ILP
Machines with Cycle Time Evatuation", Proceedings
of The 23rd lntemational Symposium on Computer
Architecture, pp. 18-26, 1996.

[HWU87] W. W. Hwu, and Y. N. Pau, "Checkpoint Repair for
Out-of-order Execution Machines", Proceedings of
The 14th lntemational Symposium on Computer
Architecture, pp. 18-26. I 987.

[NAI97] R. Nair, M. E. Hopkins, "Exploiting lnstructions Levei
Paralle1ism in Processors by Caching Scheduled
Groups", Proceedings of The 24th Intemational
Symposium on Computer Architecture, pp. 13-25,
1997.

[RAU93] B. R. Rau. "Dynamically Scheduled VLIW
Processors", Proceedings of The 26th Intcmational
Symposium on Microarchitccture, pp. 80-92, 1993.

[ROT97] E. Rotenberg, et ai. . "Trace Processors". Proceedings
of The 30th Intemational Symposium on
Microarchitecture, pp. 138-148, 1997.

[SMI94] J. E. Smith and S. Weiss, "PowerPC 601 and A1pha
21064: A Tale of Two RISCs," IEEE Computer, pp.
46-58, June I 994.

[SOD98] A. Sodani and G. Sohi, "Understanding the Difference
Between Value Prediction and Instruction Reuse",
Proceedings of The 3 I st Intemational Symposium on
Microarchitecture, pp. 205-215, 1998.

[SUN87] Sun Microsystems, 'The Sparc Architecture Manual -
Version 7", Sun Microsystems Inc., 1987.

