
SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazi/ 175

Sirnultaneous Speculation Scheduling
A. Unger1, Th. Ungerer-2 , E. Zehendner1

1 Computer Science Depanment; Friedrich Schiller University; 0·07740 Jena, Germany
{ a.unger, zehendner} @acm.org

Dept. Compu ter Design & Fault Tolerance: University o f Karlsruhe: D· 76128 Karlsruhe, Germany
ungerer@ira.uka.dc:

Absrracr-
Simullaneous Speculation Schcduling (53) is a combined compiler

and architecture technique to control multiple path execution. lt can
be applied for dual path branch speculation in case of unpredictable
branches and for mulliple path speculative execution of loop iterations.
Loop-carried dcpendences are handled by data dependence prediction.
Architectural requirements are a minimal fonn of mullithreaded pro­
cessar architecture and three new instructions (fork, sync, waiJ). Simu·
latíon results show performance gains of up to 40% over purely static
scheduling techniques by applying the S 3 technique to branches in ker­
nel sections of SPECint95 benchmark programs.

Keywords: instruction scheduling, multithreading, eager
execution, dual path execution

I. INTRODUCTION

Future processors need new ideas to extract parallelism
from program structures that are hard to parallelize. Specu­
lative parallelism is one solution to speed up the execution of
single threaded programs. Contemporary high-performance
microprocessors exploit speculative parallelism by dynamic
branch prediction and speculative execution of the predicted
branch path. Additional speculation is provided e.g. by a
speculative load instruction together with a check instruction
as part o f Intel's IA-64 ISA [I O, 11]. The check instruction
is scheduled before the use of the loaded value and prevents
speculative execution using the speculatively Joaded value.
Research of future microcarchitectures additionally looks at
the prediction of data dependences, source operand values,
value strides, address aliases, and Joad values with specula­
tive execution applying the predicted values [15, 14, 3].

A multithreaded processar is able to pursue two or more
threads of control in parallel within the processar pipeline.
Multithreading is able to increase performance o f a multipro­
gramming workload, although it may slightly decrease single
thread performance compared to a single threaded processar.

In our S3 approach ·we apply multithreading to increase
single thread performance by utilizing new forms of specu­
Jation. The 5 3 technique can be applied to replace branches
by speculative execution of both branch paths or for a spec­
ulative execution of loop iterations. The compiler employs
the 53 technique only in cases when traditiona1 techniques
probably fail and when the parallel resources of the proces­
sar cannot be usefully utilized otherwise.

Branches are usually handled by dynamic branch predic­
tion and speculative execution of the branch path with the
highest likelihood. Rerolling in case o f misspeculation is ex­
pensive. However, some branches are unpredictable, never­
theless they are speculatively executed in contemporary mi­
croprocessors. One way out is shown by the Intel IA-64 ap­
proach which includes branch instructions with 'sequential
prefetch hints' that allow to specify that only few instructions
should be prefetched after a prediction. The latter eases the
rerolling in case o f misspeculation. Moreover, the instruction
set is fully predicated. Predication forces loading and decod­
ing of instructions of both branch paths, even though only
one branch path is executed. Only instructions with the 'true'
predicate as additional operand input are executed, but ali in­
structions of both paths are Joaded, decoded, and dispatched
to the respective instruction window. Compiler scheduling is
improved by larger basic blocks, but the instructions that are
on the wrong path consume fe tch and decode bandwidth and
may clog the instruction window.

The 53 technique is most similar to predication, but uses
multithreading to execute multiple branch paths. Our tech­
nique directs the processar to stop execution of the wrong
path as soon as the branch resolves. Instructions on the
wrong path need not be fully loaded and decoded if the
branch resolves early, which is an advantage over the pred­
ication technique. On the other hand, if the branch re­
solves late, then both branch paths may be executed specula­
tively and wrong path instructions are discarded afterwards.
Rerolling is not necessary, because the correct path instruc­
tions have also been executed. Both is in contrast to predi­
cation, where instructions must be loaded and decoded even
when the predicate resolves early, and where instructions are
not executed speculatively when the predicate resolves late.

Loop unrolling and software pipelining are the means to
extract parallelism from parallelloops by compiler. Intel IA-
64 supports software pipelining by hardware by a rotation of
parts of the general-purpose, ftoating-point, and predication
registers [10, 11]. If loop-carried dependences exist, soft­
ware pipelining is much harder to apply. Here our 5 3 tech­
nique delivers a further possibility to speculatively execute
loop iterations by controlling data dependence speculation.

Section li specifies requirements for a multithreaded base

176 SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

architecture suitable for o ur compiler technique and archi­
tectural proposals that match the requirements. The 53 tech­
nique is introduced in sections III and IV. We show thc re­
Jation to othcr static techniques as well as to dynamic tech­
niques for branch handling in section V. Section VI summa­
rizes the results of translating a number of benchmarks using
our technique.

11 . TARGET ARCHITECTURES

S3 is only applicable to architectures that fulfill the fol­
lowing requirements of a multithreaded base architecture:

• First, the architecture must be able to pursue two or
more threads of control concurrently-i.e., it must pro­
vide two or more independent program counters.

• Ali concurrently executed threads of control share the
same address space, preferably the same registe r set.

• The instruction set must additionally provide three
thread handling instructions:

- fork label descriptor
Thc fork instruction creates a new thread. Exe­
cution o f the instructions starts at the label label.
A thread descriptor is returned in the register de­
scriptor.

- sync condition desci desc2
The sync instruction conditionally terminates the
execution of its own thread or the cxecution of
some other threads. Depending on the content
of the register condition, either execution of the
threads referred to by descriptor desci (condi­
rion==O) or the threads referred to by the descrip­
tor desc2 (condirion !=0) is cancelled. Ali instruc­
tio ns o f threads to be cancelled are discardcd from
the pipeline.

- wai t descriptor
The wair instruction stops execution o f the thread
until the thread referred to by descripror has been
terminated. The wair instruction is necessary for
the speculative execution of Joop iterations-as
will be demonstrated below.

Creating a new thread by thefork instruction andjoining
threads by the sync instruc tion must be extremely fast,
preferably single cycle operations. Details o f the imple­
mentation of thc thread handling instructions strongly
depend on the target architecture.

The primary target ·architectures of the proposed com­
piler technique are simultaneous multithreaded [20], mi­
crothreaded [2], and nanothreaded architectures [7]. which
can be classified as explicit multithreaded architectures, bc­
cause the existence of multiple program counters in the mi­
croarchitec ture is perceptible in the architecture. However,
implicit multithreaded architec tures that spawn and execute
multi pie threads implicitly-not visible to the compiler-can

also take advantage o f a modified version o f 5 3 . Examples o f
such implicit multithreaded architectures are the multiscalar,
the trace processor, and the datascalar approaches (see [24]).

III. SJMULTANEOUS SPECULATION

SCHEDULING-BRANCHES

Instruction scheduling techniques [18] are o f great impor­
lance to expose ILP contained in a program to a wide-issue
processor. The instructions of a givcn program are rear­
ranged to avoid underutilizatio n of thc proccssor resources
caused by dependences between thc various opcrations (e.g.
data dependences, control dependences, and the usage o f the
same execution unit).

Branches seriously prevent a compiler-based instruction
scheduling from moving instructions to unused instruction
slots before the branch instruction. Global scheduling tech­
niques as for instance PDG Scheduling [I) or Selective
Scheduling [I 6) use various approaches to move instructions
across branches to execute these instructions spcculatively.
The increase of performance gaincd by thcse speculative ex­
tensions is limited cither by the rollback overhead o f mispre­
diction or by chosen restrictions to speculativc code motion.

S 3 can be seen as an advancement of global instruction
schcduling techniques. We relax the restrictions to specula­
tive code motion and reduce the penalties for misspeculation
by generating separate threads to be executed in parallel for
alternative program paths.

As with most global instruction schcduling techniques, S 3

attempts to enlarge the hyperblocks. Branches are removed
by the following approach: Each selected branch is replaced
by a fork instruction, that creates a new thread, and by two
conditional sync instructions-one in each thread. The two
threads active after the executio n o f the fork instruction eval­
uate the two program paths corresponding to both branch tar­
gets. The compare instruction attached to the original branch
remains in the program. lt now calculates the conditio n for
the sync instructions. The thread which reaches its sync in­
struction first either terminates, or it cancels the other thread.

After removing one or more branches by generating spec­
ulative threads, the basic scheduling algorithm continues to
process the new hyperblocks. Each thread is considered sep­
arately. The heuristic used by the scheduling algorithm is
modified to keep the speculative code sections small. There­
fore the sync instruc tion is movcd upwards as far as the cor­
responding compare allows. The speculative sections are fur­
ther reduced by combining identical sequences starting at the
beginning of speculative sections and moving them across
the fork instruction.

The program transformation described above is imple­
mented by the following

SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 177

Algorithm

I. Determining basic blocks.
2. Assessing the execution probabilities of the basic

blocks, combined with a confidence estimation.
3. Selection of the hyperblocks by the global instruction

scheduling algorithm.
4. Selection of the conditional branches that cannot be

handled by the basic scheduling technique and that dy­
namically have a low confidence, but can be resolved
by splitting the thread of control; concatenation of the
corresponding hyperblocks.

5. Generation of the required operations for starting and
synchronizing threads; i f necessary, modification of the
existing compare instructions.

6. Further processing o f the new hyperblocks by the global
scheduling algorithm.

7. Scheduling of the operations within the hyperblocks,
using a modified heuristic.

8. Minimizing the speculatively executed program sec­
tions by moving up common code sequences starting
at the beginning o f the sections.

9. Calculating a new register allocation; insertion of move
instructions, i f necessary.

The steps I, 3, 6, and 7 can be performed by a commonly
used global scheduling technique. For our investigations we
use the PDG scheduling technique [I]. A simple way to im­
plement the modifications of the scheduling heuristic (step
7) is to insert a number of artificial edges into the dataflow
graph and to adjust the weights assigned to the operations
by the static scheduling algorithm. This allows to almost di­
rectly use the formerly employed local scheduling technique
(List Scheduling) that arranges the instructions within the hy­
perblocks. Assigning a larger weight causes an instruction to
be scheduled to execute !ater. Therefore the auached val­
ues of the compare and the sync instructions are decreased.
Since these modifications directly influence the size of the
speculative section they must correspond to the implemented
properties of the processor that executes the generated pro­
gram. The exact weights that are assigned are not fixed by
this algorithm but are parameters that have to be determined
for each processor implementation.

Step 2 collects information about branches that will be re­
placed by the 53 technique. Selection criteria are a low con­
fidence for the branch prediction and the availability of hard­
ware threads assuming that only a single program is running
on the multithreaded processor. The compiler may use sev­
era! techniques to decide when to apply 5 3 scheduling and
when to use normal branch instructions (assuming the branch
instructions will be executed on a processor with dynamic
single path branch prediction). The compiler may :

• examine the program structure (branches at the end of
loop bodies should be dynamically predicted; branches

resulting from conditional statements may be good can­
didates for S3),

• use profiling (prior runs o f the program), or
• relegate prediction to the programmer by compiler di­

rectives.
To gather the confidence information by profiling, the pro­

gram is instrumented with additional code that collects data
about the outcome of the branch instructions and thus about
the execution probability o f the basic blocks and that second
simulates the branch predictor o f the target processor.

Generating separate threads of control for different pro­
gram paths causes the duplication of a certain number of in­
structions. The number o f redundant instructions grows with
the length of the speculative sections, but remains small in
the presence o f small basic blocks. Since the number o f spec­
ulatively executed threads is already limited by the hardware
resources, only a small increase in the program size is caused
for integer programs.

For a more detailed description see [23).

IV. SIMULTANEOUS SPECULATION

SCHEDULING-LOOPS

We have shown the basic concepts of the S 3 technique in
the previous section. In this section we show an extension
of the S3 technique that allows to speculate on data depen­
dences and that speculatively executes sequences of instruc­
tions in parallel even i f these sequences could not be proven
to be independent during compile time. Sequences under
consideration are especially consecutive iterations of a loop.
The compiler/parallelizer performs a static data dependence
analysis. The information about the data dependence of the
instructions that is found by this analysis can be classified
into three categories:

I . proven dependence or,
2. proven independence or,
3. no information available.
In the first two cases the static analysis could provide suf­

ficient information to generate appropriate code. This means
a sequential program in the first case and a parallel program
in the second case. Unfortunately, there exist numerous sit­
uations in which the techniques applied by a static data de­
pendence analysis cannot provide data dependence informa­
tion or in which dependences are not determined at compile
time. In these si tuations, i.e., the third case in the above enu­
meration, the static analysis returns a conservative approxi­
mation. We assume the analysis tool not only to retum the
' no information' approximation, but also information why it
could not prove dependence or independence. This means
the static analysis transfers a condition to the S 3 technique
that must be proven to ensure independence, for example the
addresses of two pointers that must be tested whether they
alias each other. The 5 3 technique generates code to test the

178 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

condition at runtime o f the program. The consecutive itera­
tions of the loop are speculatively started in paraliel. Then
the condition is calculated, using information available dur­
ing runtime, and depending on the outcome, speculatively
executing threads are stopped or continue to execute.

A program generated for the first case of the above enu­
meration executes using only one thread, a program fitting
into the second case executes using more than one 'safe'
thread. A program generated by the 5 3 technique executes
always one 'safe ' thread and one or more specula tive threads.
In the following we restrict 53 to use only one speculative
thread.

The 5 3 technique works for loops as follows:

I. Static data dependence analysis: Information about data
dependences is calculated. If independence cannot be
proven statically, the conditions to prove independence
during runtime are passed to the 53 code generation.

2. Selecting sequences for speculative exccution: The can­
didate sequenccs found in step I are cxamined by a
heuristic to predict i f speculative execution willlead to
a performance gain.

3. Copying the loop body: A number of loop iterations of
the selected loops are copied in the program code. The
copies of the loop body are not executed consecutively
as in unrolled loops, but in parallel.

4. Calculating a new registe r allocation: Registers that are
written to in the spcculative section are mapped to dif­
fercnt rcgisters.

5. Generation o f the condition to prove independence: The
condition to prove independence is generated using in­
structions o f the target processor's instruction sct.

6. Generation o f thread handling instructions.
7. Scheduling: The instructions of thc new loop bodies are

scheduled to achieve high ILP.

The static data dependence analysis (step I) is performcd
using standard dependence analysis techniques [18].

The heuristic in step 2 uses information about the condi­
tions to be solved, the additional effort to solve them, the
length of the sequences executed in parallel, and the num­
bers o f registers to be renamed. From the conditions itself we
derive information on the probability of a successful specu­
lation. The additional effort to solve the condition decreases
the performance gain. The performance gain increases with
the length o f the sequences executed in parallel. Using many
additional registers has the potential o f introducing spill code
and thus to decrease the performance. The heuristic tries to
select code sequences that are likely to be successfully exe­
cuted in parallel and thus to significantly improve execution
speed.

The 53 technique generates a 'safe ' version anda 'spec­
ulative' version of the loop body. This is done by inserting
multiple copies of the loop body in to the program code (step

3) and enriching these copies with the instructions for thread
control (step 6). Generating two versions is necessary for
two reasons. First, one version is needed that executes al­
ways without speculation. Consequently only one thread can
run a 'safe ' version at the same time. The second reason
for generating different versions is that in the original code
the iterations running in parallel work on the same registers.
As we have already discussed in section III the 53 technique
has to perform a static register renaming. Alternatively a dy­
namic register renaming would solve this problem. Here we
assume that the target processor does not support a dynamic
registcr rcnaming, becausc this results in a much higher hard­
ware effort and in a significantly larger time for executing the
thread handling instructions [25].

After the copying o f the loop body and the insertion o f thc
thread handling instructions ali instruc tions in the two ver­
sions o f the loop body are scheduled to improve the amount
of ILP (step 7). Both versions are scheduled independently. th

se s

SBAC-PAD'99 1 lth Symposium on Compute r Architecture and High Performance Computing- Natal- Brazil 179

originalloop save thread speculative thread

Labei:LI Label: LI Label: LI/

some Calculation

compare CON!J Rz

some Calculation

bneRzLI

Label: L1

Jnit Thread Control • I

mvD: ~!-

some Calculation .

forkLp.Rx_

some Ca/cu/ation

compare_ G_OND Rz_

and Rr. ~· fl~
sync ~w. f!x. ~O

some Calculation

sync Rw, RO, ~ _

bne Rz LI

some Calculation

computing condition
to prove co"ecmess
result stored in Ry

some Calculation

c~mpare COND Rz'

"_!!_d Ry, Rz', Rw

sync Rw. Rx. ~

some Calculation

waitRI

"b,;eR.""u-n -- ---

mvRx, RI
Label: Ll

bL2

Fig. 1: Speculation on data depcndences

Figure I demonstrates the application o f the S 3 techniquc
to speculate on potential data dcpendences between the iter­
ations o f a loop. The basic structure o f the originalloop (left
hand si de) and the two versions o f the transfonned loop body
(right hand side) are shown.

The 'safe' thread starts with a sequence of instructions
called lnit Thread Control, that initializes thread interaction .
In the simple version shown here it only sets register Ry to
zero. This register is the destination of the result the condi­
tion to ensure corrcctness evaluates to and it contributes to
the argument of the sync instructions. Setting this register
to zero makes sure that the 'safe ' thread stops the execution
of the speculative thread, i f the speculative thread could not
prove its correctness before the first sync instruction in the
'safe' thread is executed. The init thread control section is
fo llowed by a sequence o f instructions from the originalloop
body. This sequence includes those instructions that have to
be executed before the speculative iteration is started due to
dependences between these instructions and the instructions
within the speculative section. Next the fork instruction fol­
lows, which speculatively starts the next Ioop iteration. The
fork instruction returns the thread descriptor of the newly
started thread. In the example it is stored in register Rx. The
fork instruction is followed again by a block of instructions
from the original loop body including the original compare
instruction. The result of this compare instruction and the

registcr Ry are combined by an and instruction. lf this returns
the value TRUE the speculative execution of the next loop it­
eration was correct. Otherwise the correctness could not be
proven and thus the first sync instruction stops the exccution
o f the speculative thread. The arguments o f this sync instruc­
tion are the condition in register Ry, the thread descriptor of
the speculative thread in register Rx, and register RO, which
always returns the value zero. This value is detected as an in­
valid thread descriptor and therefore the sync instruction has
no effect i f the condition evaluates to TRUE.

The sync instruction is foll owcd by a third block from the
originalloop body anda second sync instruction that prevcnts
the 'safe' thread to jump back and re-evaluate the next iter­
ation if the next iteration was started speculatively and has
been proven to be corrcct. The second sync instruction uses
the same condition, but an invalid descriptor as the second
argument and the descriptor of the 'safe' thread as the third
argument. Finally the 'safe' version of the loop body con­
tains the original branch instruction to the begin of the loop
body. This branch is executed i f the speculative execution of
the consecutive iteration was stopped.

Ali these instructions are treated together by the schedul­
ing step and by the transfonnations following the S 3 tech­
nique. This may cause the sequences from the original loop
body to change.

180 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

The speculative version of the loop body has a similar
structure. lt further contains instructions to solve the con­
dition that dynamically ensures the correctness o f the specu­
lative execution. The arguments of the sync instruction are
modified that in case of the result FALSE the speculative
thread stops itself. The speculative version of the loop body
is completed by a wait instruction, that protects a branch to
the beginning of the 'safe' version if the previous iteration
has not finished yet, for instance because of a cache miss.
Thus, no two copies of the 'safe ' version will ever run in
parallel. The wait instruction is followed by a conditional
branch to the beginning of the 'safe' version, which uses the
condition from the originalloop body, and an unconditional
branch to the first instruction following the loop if the spec­
ulative thread was cxecuting the last itcration.

The S 3 technique can be modified to execute more than
one iteration speculatively and to take advantage of dynamic
register renaming.

V. RELATING 53 TO OTHER MULTI PATH EXECUTION

TECHNJQUES

If we compare thc speculative execution o f alternative pro­
gram paths as defined by S3 to a dynamic branch prediction
and speculative single path execution as it is done by con­
temporary superscalar microprocessors, the advantage of our
technique is a smaller misprediction penalty, and the disad­
vantage is the slight overhead introduccd by the execution
of the new instructions that replace the branch instruction.
Dynamic branch prediction and speculative execution forces
a complete reload of the pipeline and possibly suffers from
additional penalty cycles for canceling the mistakenly issued
and executed instructions in case of a misprediction. Mis­
predicted branches incur in the Pentium 11 a penalty of at
least I I cycles, with the average misprediction penalty being
I 5 cycles [5]. Also, for the 6-issue Alpha 2 I 264 an average
misprediction penalty of more than I I cycles is reported [6]
resulting in potentially more than 66 unused instruction issue
slots.

S 3 does not cause any penalty related to a rollback sincc
the correct thread always proceeds while the misspeculating
thread is terminatcd. The only possible slow-down would
be due to instruction slots shared between the threads. In­
vestigations have shown that ILP in real programs is much
smaller than the usually available hardware resources. Fur­
thermore, only part of the instruction slots are Jost, i.e., the
instruction slots occupied by the misspeculating thread mi­
nus the instruction slots that could never be covered by the
correct thread. Finally, S3 controls the number of threads
that are concurrently executed and thus it controls the specu­
lative use o f processor resources.

A number of compiler scheduling techniques employ
purely static methods of branch speculation (18]. This ap-

proach has the advantage of no further hardware require­
ments. For highly irregular programs the drawback o f these
techniques Jies either in restrictions which are too strong
to apply speculation or in a very Jarge penalty in situations
where the predicted path is incorrect. S 3 avoids these prob­
Jems by simultaneously speculating on alternative program
paths and executing the generated threads in parallel on a
muhithreaded architecture.

Predication techniques [9] enhance the ISA of a processor
by predicated instructions and one or more predicate regis­
ters. The boolean result of a condition testing is recorded in
one or two predicate registers. Predicated instructions use
a predicate register as an additional input operand. The ex­
ecution of a predicated instruction depends on the value of
the predicate register. Predication affects the instruction set,
adds a port to the register file, and complicates instruction
execution. Predication is most effective when control depen­
dences can be completely eliminated, such as in an if-then­
statement with a small then-body (a so-called hammock in
dynamic predication [I 3]), and when the condition can be
evaluated early. The use of predicated instructions is limited
when lhe control ftow involves more than a simplc alternative
sequence. Furthermore, predicated instructions are fetched
and decoded but usually not executed before the predicate
is resolved. Alternatively, as envisioned for Intel's IA-64
Merced processor, a prcdicated instruction may be executed,
but commits only i f the predicate is true, otherwise the resuh
is discarded [4].

A number of research projects survey eager execution.
They extend either superscalar architectures, e.g. Disjoint
Eager Execution [22], Selective Dual Path Execution [8],
Limited Dual Path Execution [2 I] , and lhe PolyPath architec­
ture [12] orSMTarchitectures,e.g. the 'nanothreaded' Dan­
Sofl processor and Threaded Multi pie Path Execution (TME)
[25] .

Ali these proposals-except for the DanSoft proccssor­
use dynamically collected information to decide whether ea­
ger exccution is applied instead of singlc path speculation.
In contrast, S3 statically assigns dual path execution. Ad­
vantages are larger hyperblocks for an optimized compilcr­
performed instruction scheduling, an optimized regislcr map­
ping done at compile time resulting in less rcgister mapping
ovcrhead, and less hardware complexity.

On the other hand, dynamically collected branch confi­
dence information may be more accurale, and a dynamic de­
cision on dual path execution allows load-dependcnl thread
spawning. However, in case of fairly irregular programs the
branch predictor may not be able lo derive any suitablc infor­
mation about branch probabilities, thus speculative execution
supported by hardware will not be able to gain any advantage
over S3 but still has to implement the additional hardware
support.

SBAC-PAD'99 11th Symposium on Computer Architecture and High Perfonnance Computing- Natal- Brazil 181

benchmark compress go (mrglist) go (getefftibs)

number of instructions
in the program code 22 48 40
average number o f
instructions executed 10 12.6 25
number o f branches 4 6 5
number of speculations 3 3 2
nest o f speculation I I I
SBP (average of cycles) 9.6 18.6 37.3
MBP (average of cycles) 8.8 13.3 31.4

performance gain 9% 40% 19%

TABLE I: Performance gain achieved by S3

Memory dependence prediction [17] is a pure hardware
technique that tries to use memory dependence loca1ity to
speculatively execute instruction and to prove semantic cor­
rectness later. If spcculation turns out to bc erroneous the
effects o f the speculatively exccutcd instructions are undone.
Memory dependence prediction collects information about
the history of the program to predict memory dependences.
Compared to S 3 memory dependence prediction will need
fewer functional units, because it does not execute instruc­
tions that are pred icted to be depend on other instructions.
On the other hand it needs additional processor resources to
implement the predictor. S 3 can use information available
during compile time.

Software based run-time parallelization techniques [19)
employ an inspector-executor scheme to test, i f the iterations
of a loop can be executed in parallel and consecutively run a
sequential or a parallel version of the Joop. More advanced
techniques [26] start the parallel version speculatively and
in case of a misspeculation roll back to a 'safe ' state and
restart the loop sequentially. Compared to S 3 , the technique
requires a higher regularity in the program to achieve a per­
formance gain. When applied to irregular programs these
techniques willlead to an increase of the execution time.

VI. PERFORMANCE EVALUATION

In this section, we show a number of experimental results
to examine the performance of S 3 applicd to branches only.
We used benchmarks from the SPECint95 benchmark suite.
Presently, we cannot translate the complete programs but
have to focus on frequently executed functions, for two rea­
sons. First, we currently do not have a compiler implemen­
tation of the algorithm that would allow to translate arbitrary
programs. Second, the architectures under consideration are
subjects of research. For some of them simulators are avail­
able, for others only the documentation of the architectural

concepts is accessible. This means that both the process of
applying our technique to the programs and the calculation
o f the execution time must be partially done by hand.

Since this is a time-consuming process we currently
can present only results for three kernel sections from the
SPECint95 benchmark suíte. The translated program sec­
tions co ver the inner loops o f the functions compress from
the compress benchmark and mrglist and getefflibs
from the go benchmark. The results are shown in Table I.

For the calculation of the cxecution time we use two pro­
cessar models. The first one-the superscalar base pro­
cessar (SBP)-implements a simplified SPARC architecture.
The SBP has the ability to execute up to four instructions per
cycle. We assume Jatencies of three cycles for load instruc­
tions, one cycle for branches, and one cycle for ali arithmetic
operations, except for the multiplication which takes four cy­
cles. The second processor model- the multithreaded base
processar (MBP)-enhances the SBP by the ability to exe­
cute up to four threads concurrently, and by the instructions
fork and sync. Herc we expect these instructions to execute
within a single cycle. Both processor models do not include
any assumptions on caching effects, because of the size of
the used sample code.

The values presented in Table I were derived from count­
ing the machine cycles, processors that match our processor
models would need to execute the generated programs. The
numbers shown are the number o f instructions in the program
code, the average number of instructions executed (instruc­
tions per thread, weighted with the measured cxecution prob­
ability ofthe thread), the numbcr of conditional branches, the
number of speculations performed by S 3 • the nest of specu­
lation, the cycles for the SBP, the cycles for the MBP, and
the performance gain (calculated as (SBP cycles I MBP cy­
cles) -1). The results show that our technique achieves per­
formance gains up to 40% over purely static scheduling tech-

182 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing - Natal- Brazil

niques when generating code for simultaneous multithreaded
processors as well as processors that employ nanothreading
or microthreading.

VII. CONCLUSION

In this paper we proposed a combined compiler/hardware
technique-Simultaneous Speculation Scheduling (53)­

that targets unpredictable branches and loop iterations wilh
Ioop-carried dependences. Such branches are resolved by
dual path execulion; lhe loop ilerations can be executed si­
multancously applying data dependence speculation. Ou r ap­
proaêh eliminates the misprediction penalty of the dynamic
single path branch prediction that is applied in commodity
microprocessors and it allows more speculative parallelism
for loop execution. In the absence of a sufficicnt amount of
parallelism to completely utilize ali execution units of a mul­
tithreaded processar, the S 3 technique speculatively utilizes
coarse grained parallelism. The threads to be executed con­
currently are generated from speculative program paths and
directly mapped on the hardware threads of a multithreaded
processar.

Applied to branches our technique improves the capability
of global instruction scheduling techniques by removing con­
ditional branches. Compared to pure hardware dual path ex­
ecution techniques, S 3 gains in presence of branches with a
high misprediction rate. Furthermore, S 3 can migrate part of
lhe functionality requircd for branch speculation from hard­
ware into the compiler.

Speculating on data dcpendcnces allows to execute itera­
tions of a loop in parallel, even if the compiler cannot prove
that no data dependences will occur. Compared to pure static
techniques S 3 can defer thc dccision i f the execution was cor­
rect until runtime. On the other hand S3 can avoid additional
hardware cost by doing parto f the work during compile time.

We have compared our tcchnique to other techniques that
employ speculation to improve the cxecution time of irregu­
lar programs, and we have evaluated our technique by trans­
lating code from the SPECint95 benchmark suite. Currently,
we are translating additional programs from the SPECint95
benchmarks.

REFERENCES

[I] D. Bemstein and M. Rodeh. Global instruction scheduling for su­
perscalar machines. In B. Hailpem, editor. Proceeding.t nf tire ACM
SIGPLAN '91 Collference 011 Programming l.a11guage Desig11 and lm­
plemelltation, pages 24.1-255, Toronto. ON, Canada. June 199 1.

[2] A. Bolychevsky, C. R. Jesshope, and V. B. Muchnik. Dynamic
scheduling in RISC architectures. IEE Proceedings Computers and
Digital Teclmique.t, 143(5):309-3 17, 1996.

[3] G. Z. Chrysos and J . S . Emer. Memory dependence prediction using
store sets. In Proceedings oftlre ISCA 25, pagcs 142-153. Barcelona.
Spain, 1998.

[4] C. Dulong. The IA-64 architecture at work. IEEE Compurer,
3 1(7):24-3 1. July 1998.

(5] L. Gwennap. lntel's P6 uses decoupled superscalar design. Micropro­
cessor Report, 9(2):9-15, February 1995.

(6) L. Gwennap. Digita121264 sets new standard. Microproces.wr Repor/,
10(14), October 1996.

[7] L. Gwennap. Dansoft develops VLJW design. Microdesign Resources,
pages 18-22. February 1997.

(8) T. Hei! and J. Smith. Selective dual path execu-
tion. Tcchnical report, University of Wisconsin-Madison,
http://www.engr.wisc.edu/ecelfaculty/smith.jamcs. 1996.

(9] W.-M. Hwu. lntroduction to predicated execution. IEEE Computer,
31(1):49-50, 1998.

[10] Intel. /A-64 Applicarion Developtr'.t Arclritecture Cuide.
hup://developer.intel.com/designlia64/index.htm, 1 une 1999.

[li) Intel. /A -64 Application flwruction Set Arclritecwre Gr1ide Re\'. 1.0.
http://www.hp.com/go/ia64, June 1999.

(12] A. Klauser, P. Abhijit, and D. Grunwald. Sclcctive eager execution
on the PolyPath architecture. In Procuding.t of the 25th Amrual 111-
ternatiollal Sympnsium 1111 Computer Architecture, pages 250-259,
Barcelona. Spain, June 1998.

[1 3] A. Klauser, T. Austin, D. Grunwald, and B. Calder. Dynamic ham­
mock predication for non-predicated instruction set architectures. In
Pmcuding.t nf tire PACT 98. pages 278-285, Paris. October 1998.

[14] M. H. Lipasti and J. P. She n. The performance potcntial of value and
dependence prediction. In úct. Notes Comput. Sei. 1300. pages 1043-
1052, 1997.

(15] M. H. Lipasri. C. B. Wilkerson, and J. P. Shen. Valuc locality and load
value prediction. In Proceedi11g.t of tire 7th /11ternational Conference
on Architectural Support for Programming Languages and Compila­
tioll System.t, pagcs 138-147, Cambridge. MA, October 1996.

[16) S. M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
selective scheduling and software pipelining. ACM Tran.tactions on
Programmi11g úmguage,t and Sy.ttem.f, 19(6):853-898. 1997.

[17] A. I. Moshovos. Memory Depende11ce Predictio11. PhD thesis, Univer­
sily of Wisconsin-Madison, 1998.

(18) S. S. Muchnick. Advanced Compiler De.tign & lmplementatioll. Mor­
gan Kaufmann Publishers, San Francisco. 1997.

(1 9] L. Rauchwerger. Run-timc parallclization: lt's time has come. Jouma/
of Parai/e/ Computi11g, 24(3). Special lssue on Languagcs & Compil­
ers for Parallel Computers, 1998.

(20] D. M. Tullsen. S. J. Eggers, J. S. Emer. H. M. Levy, J. L. Lo, and R. L.
Stamm. Exploiting choice: lnstruction fetch and issue on an imple­
mentable simultaneous multithreading processar. In Proceeditrgs of
the 23rd Annuallmematiollal Symposirmr on Computer Arc/ritecture,
pagcs 191 - 202. Philadelphia. PA. May 1996.

(21) G. Tyson. K. Lick. and M. Farrens. Limited dual path execution. Tcch­
nical Rcpon CSE-TR 346-97, University o f Michigan, 1997.

[22] A. K. Uht and V. Sindagi. Disjoint eagcr cxecution: An optimal
form of speculative cxccution. In Proceedi11gs of the 28th lmema­
tional Symposium 011 Microarchitecture. pages 313-325, Ann Arbor,
Ml, November 1995.

[23) A. Unger. Th. Ungercr. andE. Zehendner. Static speculation, dynamic
resolution. Proceeding.t o f tire 7th Work.thop 011 Compiler.t for Parai/e/
Computers (CPC '98}, Linkiiping. Sweden, June 1998.

(24) J . Silc, B. Robic, and Th. Ungerer. Processor Architecture - Fmm
Datajlow to Superscalar and Beyond. Springer-Verlag, Berlin. Hei­
delberg. New York. 1999.

[25) S . Wallace, B. Calder, and D. Tullsen. Threaded multiple palh execu­
rion. In Proceeding.t of the 25th Annuallnternational Sympo.tium on
Computer Architecture, pages 238-249, Barcelona, Spain, June 1998.

(26) Y. Zhang, L. Rauchwcrger, and 1. Torrellas. Speculative parallel exe­
cution ofloops with cross-iteration dependencies in in DSM multipro­
cessors. In Procudings of High Petformance Computer Arc/ritecture
1999 (HPCA-5}, pagcs 135-14 1. Orlando, FL, 1999.

