
SBAC-PAD'99 11th Symposium on Computer Architecture and High Peiformance Computing. - Natal- Brazi/ 183

Investigating the Relative Performance of
Static and Dynamic Instruction Scheduling

Daniel Tate1
, Gordon Steven1

, Paul Findlal
1 Infonnation Sciences, University ofHertfordshire

College Lane, Hatfield, Hertfordshire ALlO 9AB, England
{ D.l.Tate@herts.ac.uk}

{ G.B.Steven @herts.ac.uk}
2 Science and Technology Research Centre, University o f Hertfordshire

College Lane, Hatfield, Hertfordshire ALIO 9AB, England
{ P.A.Findlay@herts.ac.uk}

Abstract-
There are two distlnct groups of research into ILP. Those

that strongly favour static instruction schedullng and those
that favour dynamic instruction scheduling. Thls paper
introduces powerful static and dynamic schedullng models
and combines them wlthln the framework of a slngle
slmulation environment.

Both individual models achleve respectable speedups;
dynamic schedullng slgnlflcantly out-performs statlc
scheduling when ao ideallsed processar model wlth perfect
branch prediction is used. However, when a reallstlc branch
predictor is substituted, the roles are reversed, and static
schcdullng achleves the hlgher performance. Similarly, statlc
scheduling performs better in the absence of branch
prediction or when processar resources are restrkted.

Finally, we combine static scheduling with out-of-order
instruction issue. Disappointingly, when an ideal out-of-order
processor is used, scheduled code fails to match the
performance of unscheduled code. Furthermore, wlth reallstlc
branch predictlon, out-of-order issue fails to improve the
performance of scheduled code.

Keywords-- Hlgh Performance Processors, Instructlon
Scheduling, Dynamic Schedullng, Multlple Instruction Issue.

I. lNTRODUCTION

Multiple Instruction Issue can be achieved in high­
perfonnance processors through either static or dynamic
instruction scheduling. Static scheduling traces its roots to
the early 80's [FIS 81] and seeks to exploit a global view of
the code while offering simple instruction issue logic and a
minimal clock period. Dynamic scheduling originated in
the late 60's [TOM 67] and offers massive run-time
flexibility at the cost of additional hardware complexity.

The exponent~ of static instruction scheduling have long
insisted that their technology avoids any requirement for
out-of-order instruction issue. Instruction schedulers
therefore tend to target VLIW processors or, more recently,
in-order superscalar processors. Supporters of dynamic
scheduling dismiss VLIW as overly restrictive and
unworkable. However, with out-of-order instruction issue

beginning to reach its technological limits, there is an
obvious need for something more. Therefore, while
exponents of static instruction scheduling tend to resist any
encroachment by dynamic scheduling, the reverse is not
true. Instruction scheduling is playing an increasing role in
many commercial compilers. This study quantifies the
benefits of static and dynamic scheduling within the
framework of a single simulation environment.

The first set of result~ compares the performance of a
sixteen-issue out-of-order processar with a sixteen-issue in­
order processor. Unscheduled code is tested as well as code
that has been dramatically reordered by an aggressive static
instruction scheduler. Particular attention is paid to the
crucial role of branch prediction; the full spectrum of
branch capabilities is examined by simulating no branch
prediction, a Branch Target Cache and perfect branch
prediction. Finally, the benefit~ of combining statically
scheduled code with out-of-order issue are quantified.

The second set of results examines the effect of
reducing the number of functional units available to each
processor model. Comparisons are made between the
different issue models and the use of static scheduling is
evaluated.

This study is based on the Hatfield Superscalar
Architecture [STG 97]; an aggressive instruction levei
scheduler [STF 98) perfonn~ static scheduling, while the
instruction levei simulator [TAT 99) perfonn~ dynamic
scheduling. Ali the test results are directly comparable
since they are generated by the same simulator [COL 93]
through the use of different instruction issue roles and
retirement methods.

li. PREVIOUS WORK

There have been several previous comparisons of static
and dynamic scheduling [LOV 90) [MEL 91] [CHA 9la]
[LEN 94) [ADV 97]. However, many of these comparisons
are handicapped by the absence of a powerful static
instruction scheduler, or the use of a relatively low
instruction issue rale.

184 SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

Chang's paper is the most relevant since it is based on
the powerful IMPACf compiler [CHA 91b]. Chang
compares three main models: restricted static scheduling,
full static scheduling and restricted static scheduling with
out-of-order issue. The results show comparable
performance from the latter two models, with the restricted
static scheduling model giving significantly less speedup.

ill. HATFIELD SUPERSCALAR ARCHITECTURE (HSA)

The long term objective of the HSA project is to achieve
an order of magnitude speedup over a traditional RISC
processar, while minimising the associated increase in code
size.

The first incarnation of a wide-issue processar
architecture to achieve this aim was the HARP [STG 92).
HARP is a four instruction wide VLIW processar that was
designed and fabricated at the University of Hertfordshire.
However, a'i with most VLIW processors, the HARP
processar suffers from excessive code expansion and a
strict issue model that results in cross-family
incompatibilities.

The Hatfield Superscalar Architecture [STG 97) was
therefore developed to maintain the promising results
achieved by HARP, but also to provide a more flexible
model to facil itate further work. The problem'i of code
expansion and the fixed issue rate suffered by HARP were
avoided by using a variable issue rate, therefore making the
HSA a supcrscalar architecture. However, the full
complexities inherent in out-of-order superscalar
architectures were initially avoided by maintaining a strict
in-order issue model. The HSA was therefore termed a
minimal superscalar architecture. Despite the subsequent
addition of both out-of-order instruction issue and dynamic
branch prediction capabilities, the underlying in-order
model has not been altered.

The HSA support'i a basic four-stage in-order pipeline,
or a tive stage out-of-order pipeline:

IF Instruction Fetch
IDIRF Instruction Decode I Register Fetch
EX Execute
WB Write Result
RET RETire instructions in-order

The first three stages of the pipeline are the same for
both in-order and out-of-order instruction issue models. In
the first pipeline stage, instructions are fetched from the
instruction cache into an Instruction Buffer. In the second
stage register operands are requested from either the
integer, floating _.point or Boolean register files.
Alternatively, the operands can be forwarded from other
functional unil'i. Decoded instructions are then issued from
the Instruction Buffer to registers ahead of the functional
unil'i. In the case of out-of-order instruction issue these
registers becomc Reservation Stations and instructions also

have to reserve locations in the Reorder Buffer. In the third
stage, instructions pass through the functional unil'i, this
stage may require multiple cycles. In the fourth stage,
results are written to either the destination registers or the
Reorder Buffer, depending on the issue mode. In either
case, results are also forwarded directly to other functional
units a'i required. In the fifth stage, instructions that have
been issued out-of-order finally return their results to the
destination registers. This retirement takes place in order,
after instructions have received their result'i and reach the
head of the Reorder Buffer.

To help in the remova! of branches during scheduling,
the HSA support'i guarded, or predicated, instruction
execution. The maximum number of guards that may be
assigned to each instruction is determined by a constant in
the scheduler configuration file; throughout this study the
maximum number of guards is two.

To generate code that is executable by the HSA, a Gcc
compiler was targeted for the HSA instruction set. The
HSA code may then be passed through the Hatfield
Superscalar Scheduler [STF 98). Scheduled or unscheduled
code is then executed by a highly parameterised simulator
[COL 93). An equally flexible cache simulator and out-of­
order instruction issue capability [TAT 99) have been
integrated into the original processar simulator.

IV. HATFIELD SUPERSCALAR SCHEDULER (HSS)

The main force behind the performance achievements of
the in-order instruction issue HSA model is the static
instruction scheduler [STF 98). The HSS receives the HSA
instructions a'i a single sequential stream. It then reorders
the instruction stream into parallel instruction groups,
where each instruction in a group can be issued and
executed in parallel. The instructions are then output a'i a
new sequential stream for processing by the HSA simulator.
Assuming an ideal schedule and fetch unit, the simulator' s
ID stage will then reform the groups identified by the
scheduler and issue them in parallel to the functional units
for processing.

The HSS achieves high performance by combining an
aggressive software pipelining algorithm with a powerful
set of low-level code motion primitives. The algorithm can
be applied to loops of arbitrary complexity. At the same
time, code expansion is controlled in two ways. Firstly,
instructions are only moved around loop back edges when it
can be shown that the code motion being attempted has the
potential to reduce the execution time of the loop.
Secondly, loop scheduling is terminated a'i soon as a
minimum loop execution time is achieved.

The scheduling process is divided into five main stages.
The first and last stages simply load the unscheduled
benchmark into the scheduler's internai data structures and
output the scheduled benchmark as a sequential strearn of

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 185

instructions. The three internai scheduling stages require
slightly more attention.

The second stage collecto; the information needed by the
subsequent scheduling stages. This stage creates the initial
basic blocks, finds branch targets, detecto; procedures,
detects loops, and computes register live ranges.

The third stage performs optional function in-lining.
Functions that satisfy the scheduler's in-lining heuristics are
copied into the benchmark at the function call site.
Redundant function entry and exit instructions can then be
removed.

The software pipelining algorithm is implemented in the
fourth stage. The code is scheduled one procedure at a
time. In each procedure, innermost loops are scheduled
first. This is because programe; spend a high proportion of
their run-time inside loops. Outer loops are scheduled next,
followed by the straight-Iine code.

The HSS is highly parameterised and able to generate
many different types of schedule, as are ali of the software
projects ao;sociated with the HSA. A global configuration
file contains ali the available switches and parameters.
These fali into two main categories: definition of the target
processar and specification of the type o f schedule required.
An example of the former is the number of arithmetic units
in a processar. An example of lhe latter is whether or not to
allow code to percolate into a bac;ic block ending wilh a
BSR; the switch 'PERCOLATE_INTO_BSR' contrais lhis
decision. Full details are available in [STF 98].

In this study, branch prediction is substituted for the
HSA delayed branch mechanism. This change avoids the
complications of combining a variable branch delay region
with branch misprediction recovery. Scheduling was
therefore performed with a branch delay region of zero and
the branch instructions themselves were forced to the end of
their paraliel groups; the scheduling switch
FORCE_BRANCH_TO_END was therefore asserted.

V. SUPERSCALAR SIMULATION
ENVIRONMENT

The HSA instruction levei simulator is a highly
configurable environment. It incorporates facilities for
creating, configuring and storing processar models. Ali
facets o f the processar may be amended including the cache
hierarchy, fetch unit, branch prediction, branch
misprediction recovery method, issue policy, register
renaming, number and configuration of Reservation
Stations, number and piping of functional units, result
busses, and retirement method.

The simulator models ali processar structures and
passes each instruction through ali the stages it would pass
through in a physical implementation. At each stage of
instruction execution, detailed simulation statistics are
gathered. At the end of each program run, the statistics are
stored in a '.use' file.

Using the in-order instruction issue model an instruction
can arbitrate for a functional unit when ali of its operands
and guards are available. In contrao;t, using the out-of-order
instruction issue model, an instruction can arbitrate for a
Reservation Station ahead of a function unit before its
source operandc; are available. A Reorder Buffer is
provided to allow the out-of-order instruction issue model
to recover from mispredicted branches.

Guarded instructions introduce a further complication.
Ideally, instructions should be issued to Reservation
Stations irrespective of whether their guards are available.
However, when a source operand is not available,
Tomac;ulo's algorithm expectc; the instruction issue Jogic to
furnish a tag that indicates which instruction will ultimately
generate the required operand. If guarded instructions are
used, lhe value of this tag rnay become indeterminate. For
example, consider the foliowing instruction sequence:

TB2 ADD RI, R3, R4
SUB R6, Rl, RI2

The ADD will only deliver RI to lhe SUB if its Boolean
guard evaluates to TRUE at run-time. However, if the
guard evaluates to FALSE, an earlier instruction must now
deliver the required value. In this paper, the simulator
avoids this difficulty by only issuing an instruction to a
Reservation Station if ali its guards have been resolved.
This restriction allows the instruction issue Jogic to
generate unique tags for ali unavailable source operands.

The simulator supportc; three branch prediction models:
predict not taken, a conventional Branch Target Cache
(BTC), and perfect branch prediction.

Predict not taken does not require any branch prediction
logic. Instructions are simply fetched sequentially until a
branch is taken. Instructions after the taken branch are then
squashed and instruction fetching is restarted at the branch
target.

The BTC is direct rnapped and has a misprediction rate
between I5% and 20%, partly because a retum address
stack [K.AE 9I] is not provided to predict subroutine retum
addresses. The BTC option therefore provides a one-Jevel
branch predictor with modest prediction capabilities.

Perfect branch prediction is achieved by generating a
program trace for each benchmark. These traces are then
used to drive the instruction fetch mechanism when perfect
branch prediction is modelled.

Branch mispredictions are handled differently by the in­
arder and the out-of-order instruction issue models. The in­
arder instruction issue model has itc; origins in VLIW and
therefore avoids the complexity of out-of-order instruction
issue. This enables a branch to complete in the ID or
second pipeline stage [STF 93]. Branch mispredictions in
an in-order processar can therefore be repaired with only a
single cycle delay.

186 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

In contrast, the out-of-order model sends branch
instructions to Reservation Stations ahead of the branch
execution units in the ID stage. The branch is processed in
the execution stage. A branch misprediction will therefore
incur a two cycle penalty before the new target instructions
enler the Instruction Buffer.

Both models resolve mispredicled branches at the
earliest opporlunily, in lhe ID stage in the case of in-order
instruction issue and in the EX stage with oul-of-order
instruction issue. A more conservative allemalive in the
cac;e of oul-of-order instruction issue would have been to
wait until a branch reaches lhe head of the Reorder Buffer.

VI. TEST MODELS

Resulte; are calculated as a speedup factor over a basic
RISC processar. The RISC processar can fetch and issue a
single instruction in each cycle. ll performs no branch
prediction, contains one functional unit of each type, and
can retire one instruction on any given cycle. On average,
the RISC model retires ao instruction in 90% of i te; cycles.

Ali results presented in this sludy are given ac; an
average across the eight integer programe; from lhe Stanford
benchmark suite. These benchmarks are: Perm, Tower,
Sort, Bubble, Queens, Matrix, Tree and Puzzle. Dynamic
instruction counts vary between 200 000 and 25 000 000
instructions.

Perfect caches with single cycle access times are
assumed lhroughout lhis study. Ali simple integer
instructions have a latency of one cycle, the exceptions
being multiply which takes three cycles and divide which
takes sixteen cycles. There are sixteen integer result busses
that pac;s results to the register files or to the Reorder
Buffer, depending on the issue model.

When out-of-order instruction issue is used, a Reorder
Buffer is provided with sixty-four entries.

Three branch prediction mechanisms are examined.
Firstly, predict not taken continually fetches instructions
sequentially until a branch misprediction is signalled.
Secondly, a 1 K entry Branch Target Cache (BTC) predictc;
whether each fetch contains a taken branch, and alters the
PC accordingly. The size of the BTC ensures that the
number of conflict misses is negligible. Finally, perfect
branch prediction is achieved by using ao instruction trace
to drive the simulator's instruction fetch mechanism.

Ali teste; in Section VIl are performed using the
simulator's 'maximal' model; however, in Section VIII,
resulte; are presented for processar models with restricted
numbers of functional units. Three additional models are
simulated, and will be represented by the letters A-C. The
number of resources allocated to each model is shown in
Table I. When each model is in use, both the scheduler and
the simulator are configured for the number of functional
units given in the table. Ali other parameters are
unaffected.

TABLEI
RESOURCE ALLOCATION FOR TEST MODELS

Fetch Relat-
Model Width ALU Shift Mult i o na! Load Store Branch
RISC 1 1 1 1 1 1 1 1
Max 16 16 16 16 16 16 16 16

A 16 10 4 2 4 6 4 4
B 16 6 2 1 2 4 2 2
c 16 4 1 1 1 2 1 1

As with ali previous models, there is only one
Reservation Station ac;signed to each functional unit. For
example, in model C there are 11 Reservation Stations.

VII. lNITIAL REsULTS

First we evaluate the impact of static instruction
scheduling in the following sixteen-issue processor models:

• In-order with no branch prediction (predict not taken)
• In-order with perfect branch prediction
• Out-of-order with perfect branch prediction

The results are summarised in Fig. 1.

Effect of Statlc Schedullng

c. 4.00 +----l
:l
] 3 .00 +----l
a.

t/) 2.00

1.00

0 .00

Unscheduled Scheduled

Type of Schedullng

• I n-order -
None

•ln-order­
Perfect

o Out-order -
Perfect

Fig. 1 - Comparison ofUnscheduled and Scheduled Benchmarks

The basic Mil architecture with no scheduling, in-order
instruction issue and no branch prediction achieves a
modest average speedup of 1.6. This figure rises to 2.5
when perfect branch prediction is added. However, both
these figures are completely eclipsed when out-of-order
instruction issue is also added, and ao average speedup of
5.6 is achieved.

Scheduled code in turn significantly outperforms
unscheduled code ac; long ac; in-order instruction issue is
used; a 92% improvement in speedup is recorded with no
branch prediction and 84% with perfect branch prediction.
Nonetheless scheduled code with in-order execution only
achieves a speedup of 4 .6, and is therefore unable to match

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 187

the performance of unscheduled code with out-of-order
instruction issue.

Furthermore, with the added benefit of out-of-order
instruction issue, scheduled code only achieves a speedup
o f 5.0, still 11% slower than unscheduled code. However,
this is not surprising. The HSS has always targeted an in­
order processor model and is therefore unable to take
advantage of out-of-order instruction issue. As a result, the
HSS introduces additional dependencies ac; a side effect of
the scheduling algorithm, the only check is that the in-order
program execution time is not increased. Both register
renaming and the addition of Boolean guards introduce
further data dependencies that may restrict out-of-order
instruction issue. Code expansion is also a factor, although
the HSS restricts code expansion to a modest 50%, the out­
of-order model still hac; to issue 50% more code. Finally,
Tomac;ulo's model can not be eac;ily optimised to support
guarded execution. As noted earlier guarded instructions
are only issued to Reservation Stations after their Boolean
guards have been resolved. In an ideal environment with
perfect branch prediction, the HSS is unable to match the
performance of an out-of-order superscalar running
unscheduled code.

Since the role of the branch predictor is clearly crucial,
further comparisons are made in Fig. 2 using no branch
prediction, a BTC, and perfect branch prediction.

Effect of Branch Predlction

Branch Predlctlon Type

Fig. 2 - lncreasing the Performance o f the Branch Predictor

In the absence of branch prediction, Lhe instruction
scheduler wilh in-order instruction issue delivers a
respectable speedup of 3.1, outperforming the unscheduled
out-of-order instruction issue model by a factor of two.

With perfect branch prediction the roles are reversed
with out-of-order instruction issue outperforming
instruction scheduling by 22%. However, if a one-Ievel
BTC is introduced, the instruction scheduler is once more
the clear winner achieving a speedup of 4.2 compared to the
out-of-order speedup of 3.5. The addition of a BTC hac;
degraded the performance of both scheduled and

unscheduled code. However, while performance of the out­
of-order unscheduled code has been degraded by 38%, the
in-order scheduled code hac; been degraded by a roere 8%.

An out-of-order processor relies on accurate branch
prediction to allow it to assemble parallel instruction groups
across basic block boundaries. In contrast. the HSS
assembles itc; parallel groups at compile time and is
therefore penalised far less by branch rnispredictions.
Furthermore, the in-order model has two additional
advantages. Firstly, the simpler in-order instruction issue
model allows the branch penalty to be reduced, in this study
by one cycle. Secondly, about 33% of dynarnic branches
are removed by the HSS. With fewer branches to predict
there are fewer mispredictions; however, this effect is
partially offset by an increase in the misprediction rate from
16% to 21%.

These results confirm that the HSS is unable to take
advantage of out-of-order instruction issue. Using a BTC,
executing scheduled code on an out-of-order instruction
issue model fails to deliver any additional speedup.

The impact of branch prediction on each individual
processor model is illustrated more clearly in Fig. 3.

6.00

5 .00

o. 4 .00
:J
"C 3 .00 a:
c.
til 2.00

1.00

0 .00

Effect on Individual Models

ln-order, ln-order, Out- Out-
Unsched Sched order, order.

Sched Unsched
Processor Model

Fig. 3 -Performance of Processar Models

• Perfect

BBTC

O None

The in-order model is far less effected by decreac;ing the
branch prediction accuracy than the out-of-order model.
The in-order model executing either unscheduled or
scheduled code is only degraded by 34% when perfect
branch prediction is replaced with predict not taken. The
out-of-order model is degraded by 73% and 50% when
executing unscheduled and scheduled code respectively.

VIII. REDUCING PROCESSOR RESOURCES

In this section, we quantify the impact of reducing the
number of functional units available to each processor
model to more realistic leveis. Again three types of branch
prediction are simulated: no branch prediction, a BTC and
perfect branch prediction. Certain models are significantly
more affected by resource lirnitations than others. To

188 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal - Brazil

emphac;ise lhese differences, we record how much the
execution time of each model is degraded by successive
resource restrictions. In ali cac;es lhe reference point is the
overall execution time achieved using lhe maximal model.

Model A reduces the number of functiona1 unitc; from
112 to 34, see Fig. 4. Since only one Reservation Station is
allocated to each functional unit, the number o f Reservation
Stations is also reduced to 34. In spite of this dramatic
reduction, lhe performance degradation never exceeds
8.5%. The least affected is the in-order model with no
branch prediction; lhe most affected is lhe out-of-order
model with perfect branch prediction.

Limlted Resources - Model A

50.0%

40.0%
•ln-order-

c Unscheduled
o •ln-order-.. 30.0%
ftl Scheduled

1J
f! 20.0% O Out-order -
Cl Scheduled Cll c O Out-order-10.0%

~ _.rijl Unscheduled

0.0%
~

None BTC Perfect

Branch Predlctlon

Fig. 4 . Effect o f Limiting Resourccs to Model A

Model B further reduces the number of functional units
to 19 and leads to additional performance losses, see Fig. 5.

Limlted Resources - Model B
50.0%

40.0%
•ln-order •

c Unscheduled
o aln-order • .. 30.0%
111 Scheduled
1J
f 20.0%

o Out-order ·
Cl Scheduled
Cll c O Out-order • 10.0%

Unscheduled

0.0%

None BTC Perfect

Branch Predlctlon

Fig. 5 - Effect o f Limiting Resources to Model B

Significantly, the out-of-order unscheduled code with
perfect branch prediction is now degraded by 29%.
Furthermore, this figure is well over twice the performance
loss suffered by in-order scheduled code wilh perfect
branch prediction.

Finally, Model C reduces lhe number of functional units
from 19 to ll. While there are still four arithmetic units

and two load unitc;, there is now only one instance of each
of the remaining four functional unit types, see Table I.
Wilh Model C lhe performance loss is quite dramatic in
many cases, see Fig. 6. Once again the out-of-order
unscheduled code is particularly badly hit, loosing 50% of
the performance with perfect branch prediction and 35%
with a BTC. In contrac;t, lhe in-order scheduled code is
only degraded by 25% with perfect branch prediction, 22%
wilhaBTC.

Limlted Resources - Model C
50.0% .,....-- ---------.---.....

40.0%
•ln·order •

c Unscheduled
o IBin·order-;:; 30.0%
111 Scheduled
1J
f 20.0%

o Out-order-
Cl Scheduled Cll c O Out-order · 10.0%

Unscheduled

0.0%

None BTC Perfect

Branch Predlctlon

Fig. 6 - Effect o f Limiting Resources to Model C

The significance of this massive loss of performance on
the speedup of a processor with Iimited resources is shown
inFig. 7.

Speedup when Reducing Resources
6.00

5.00 ~ __._ ln-order -

~ Unscheduled

c. 4.00

~
-ln-order •

::J Scheduled 1J 3.00 Cll

--:::! Cll -out-order -c.
Scheduled (/) 2 .00

1.00 -out-order •
Unscheduled

0.00

Max A 8 c
Resource Model

Fig. 7 - Effect o f Resources using Perfect Branch Prediction

With lhe maximal model, executing unscheduled
benchmarks out-of-order achieves the highest speedup.
Executing scheduled benchmarks out-of-order achieves the
second best speedup. The in-order instruction issue model
executing scheduled benchmarks comes third. However,
wilh lhe most restrictive model, the relationships between
the speedups of lhese lhree models are significantly altered.
The out-of-order instruction issue model executing
unscheduled benchmarks has slumped from lhe best

SBAC-PAD'99 1 lth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 189

speedup to the worst of the three, and is almost as bad as
the in-order instruction issue model executing unscheduled
benchmarks. The remaining two models, both of which
execute scheduled benchmarks, converge; although the out­
of-order instrucúon issue model maintains a slight speedup
advantage of 3.1 to 3.0 when executing on model C.

IX. C ONCLUSIONS AND DISCUSSION

Unúl now most of the research in the arca of static
instruction scheduling has involved VLIW or in-order
superscalar architectures. At lhe same úme olher research
groups have concentrated on refining the hardware of out­
of-order superscalar architectures. This compartmentalisa­
tion of high-performance processar research into separate
hardware and software threads has been quite striking and
ha~ a number of important implications. Firstly, there have
been surprisingly few comprehensive performance
comparisons between statically scheduled processors and
out-of-order superscalar processors. Secondly, there has
been a remarkable lack of research into instruction
scheduling for out-of-order superscalars. Finally, there has
becn a lamentable dearth of cross-fertilisation between the
two major research threads. This paper begins to bridge the
two separate research threads by exploring the performance
of both statically and dynamically scheduled processar
models within the context of a single simulation
environment.

The highest averagc speedup of 5.6 was achieved using
a sixteen-issue out-of-order processar model. In contrast,
the HSS, our staúc instruction scheduler, could only
achieve an average speedup of 4.6 when targeting a sixteen­
issue processar with in-order instruction issue.

However, the above speedups were achieved with
perfect branch prediction and no significant resource
Iimitations. When a BTC was substituted for the ideal
branch predictor, lhe better performance was delivered by
thc HSS. Sirnilarly, when processar resources were
restricted, the out-of-order superscalar rnodel was unable to
maintain iL~ performance advantage. Our study therefore
suggests that out-of-order superscalars are far more
sensitivc to branch mispredictions and resource restricúons
than a statically schcduled processar.

Of course both the out-of-order superscalar model and
lhe HSS can be improved. For example the number of
branch mispredictions could be reduced by adding a stack
to hold subroutine return addresses and by adopúng Two­
Levei-Adapúve Branch Prediction [YEH 92]. While bolh
models would benefit, these changes are likely to favour the
out-of-order modcl. Also perfect caches were assumed
throughout this study. A more realistic cache would also
favour the out-of-order processar models, since they are
likely to tolerate cache misses better lhan lhe HSS .

At the same time the HSS is undergoing continuous
improvemenL~ . In particular, lhis study revealed that the

HSS is opúmised for a processar with branch delay sloL~
ralher than the processors with branch predicúon used here.
In this study the HSS therefore appears to be over­
scheduling, a defect that will be rectified in future versions.

It must also be remembered that the additional
complexity of the out-of-order model is likely to result in
longer processar cycle úmes and mulúple ID pipeline
stages. Even a 10% increase in processar cycle time would
cancel out 50% of the out-of-order model's advantage in
the most favourable ca~e. Similarly, an extra ID stage
would increase the branch mispredicúon penalty and would
further empha~ise the out-of-order processors inability to
tolerate branch rnispredicúons.

The final striking result in this study was the inability of
the HSS to benefit from out-of-order instruction execution.
There are severa) reac;ons for this. Firstly, Toma~ulo's
algorithm does not cope well with guarded execution. This
is clearly an arca requiring further research. Secondly, the
HSS introduces additional data dependencies as a side
effect of the scheduling process. These must be reduced if
an out-of-order processar is to be successfully targeted.
Finally, although the HSS removes branches ac; a side effecl
of the scheduling process, an out-of-order issue processar
would benefit from more aggressive branch removal.

X. REFERENCES

(ADV 97) ADVE S V, et ai. Changing /nteraction of Compi/er
and Architecture. Computer Magazine, Vol.30 No.1 2,
December 1997. pp 51 -58.

(CHA 91a] CHANG P P, CHEN W, MAHLKE S, HWU W.
Comparing Static and Dynamic Code Scheduling f oi
Multiple-lnstruction-Jssue Processors. Micro-24,
Albuquerque, New Mexico, November 1991. pp 25-
33.

[CHA 91b] CHANG P P, MAHLKE S, CHEN W, WARTER N J.
HWU W. IMPACT: An Architectural FrameworkfOI

. Multiple-Jnstruction-Jssue Processors. 18111 Annual
lntemational Symposium on Computer Architecture.
Toronto, May 1991. pp 266-275.

[COL 93] COLLINS R DeYeloping a Simulator f or the HatfielG
Superscalar Processar. University of Hertfordshin:
Technical Report No.172, December 1993.

(FIS 81] FISHER J A. Trace Scheduling: A technique f OI
global microcode compaction. IEEE Transactions or
Computers, Vol.C-30 No.7, July 1981. pp 37-47.

[KAE 91) KAELI D R, EMMA P G. Branch History Tablt
Prediction of MoYing Target Branches due te
Subroutine Retums. 181

h Annual Jntemationa
Symposium on Computer Architecture, Toronto, Ma)
1991. pp 34-41.

[LEN 94] LENELL J, BAGHERZADEH N. A Perfonnanct
Comparison of SeYeral Superscalar Processo r Modek
with a VLJW Processar. Microprocessors anc
Microsystems, Vol.l8 No.3, April 1994. pp 131-139.

[LOV 90] LOVE C E, JORDAN H F. An lnYestigation of Statü
Versus Dynamic Scheduling. 17th Annua

190 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

International Symposium on Computer Architecture,
Seattle, Washington, June 1990. pp 192-201.

[MEL91] MELVIN S, PATI Y N. Exploiting Fine-Grained
Parallelism Through a Combination o f Hardware and
Software Techniques. 18th Annual International
Symposium on Computer Architecture, Toronto,
Canada, May 1991. pp 287-296.

[POT 98] POTI'ER R D. Exploring the Limitations o f the Fine
Grained Parallelism in a Superscalar Architecture.
PhD Thesis, University ofHerúordshire, 1999.

[STF 93] STEVEN F L, ADAMS R G, STEVEN G B, WANG
L, WHALE D J. Addressing Mechanisms for VLJW
and Superscalar Processors. Microprocessing and
Microprogramming, Vol.39 Numbers 2-5, December
1993. pp 75-78.

[STF 98] STEVEN F L. An lntroduction to the Hatfield
Superscalar Scheduler. University of Hertfordshire
Technical Report No.316, Spring 1998.

[STG 92] STEVEN G B, ADAMS R G, FINDLA Y P A,
TRAINIS S A. iHARP: A Multiple lnstruction Jssue
Processar. IEE Proceedings, Part E, Computers and
Digital Techniques, Vol.l39 No.5, September 1992.
pp 439-449.

[STG 97) STEVEN G B, CHRISTIANSON D B, COLLINS R,
POTTER R D, STEVEN F L. A Superscalar
Architecture to Exploit lnstruction-Level Parallelism.
Microprocessors and Microsystems, Vol.20 No.7,
March 1997. pp 391-400.

[T AT 99) TA TE D. Out-of-Order Jnstruction Jssue and its
lntegration into the Hatfield Superscalar Architecture.
University of Hertfordshire Technical Report No.330,
April1999.

[TOM 67] TOMASULO R M. An Efficient Algorithm for
Exploiting Multiple Arithmetic Units. ffiM Joumal of
Research and Development, January 1967. pp 25-33.

[YEH 92] YEH T, PATI Y N. Altemative Jmplementations of
Two-Level Adaptive Branch Prediction. 19th Annual
International Symposium on Computer Architecture,
Gold Coast, Australia, May 1992. pp 124-134.

