
SBAC-PAD'99 11 r h Symposium on Compute r Archirecrure and High Performance Computing - Natal- Brazil 193

A Stall Metric to Track Communication
Performance

Alan Mink, Wayne Salamon and Michael Indovina

lnformation Technology Laboratory
Nationallnstitute o f Standards and Technology

Gaithersburg, MD 20899, USA
(amink@ nist.gov}

Abstract---
Probing the communication protocol stack in Linux PC­

based clusters to investigate erratic TCP/IP performance has
led to a new metric, data stream stall, which is analogous to
instruction stream stall in CPUs. Data stream stalling
correlates well with unexpected throughput performance dips;
the dips are usually due to delayed ACKs or questionable
handling of them. We illustrate the use of this data stream stall
metric by isolating and correcting the cause of these
communication throughput dips in our version of Linux
(2.0.29). The availability of this data stream stall metric would
provide useful feedback to users by indicating deficient
communications performance.

Keywords--- A TM, Communication Protocols, Fast
Ethernet, Linux, Performance Measurement , TCPIIP.

I. INTRODUCTION

Whilc cvaluating the performance of MPI based
applications [IND98] on commodity c lusters [BEC95],
using both ATM and Fast Ethernet communications, we
encountered a communications performance anomaly. This
anomaly manifested itself as a sharp degradation in TCP/IP
communications throughput for slightly different message
sizes. To probe the cause of this anomaly, we used the
NIST developcd low perturbation MultiKron® performance
data collection instrumentation and NIST time
synchro nization instrumentation to delve into the Linux
communication protocol. Using the time synchronized
MultiKron we were able to measure directly the
communication latency between nodes and across switches,
rather than infer latency from average round trip times. We
were also able to obtain accurate measurements of
processing ratcs and latcncies within the various
communication protocbl layers.

In probing lhe Linux communication protocol stack to
investigate thc erratic TCP/IP performance we developed a
new metric, data stream stall. This metric closely tracks the
observed unexpected throughput performance. Using this
metric a long with MultiKron performance probes we were
able to isolate the cause of the throughput dips and correct
them in our version o f Linux (2.0.29).

11. MEAS UREMENT INSTRUMENTATION

Current NIST instrumentation consists of the
MultiKro n_II [MIN94] custom VSLI chip and its
associated toolkits [MIN95,MIN97] for standard 110 buses
(currently VME, SBus, and PCI). The MultiKro n 11
provides a high-prec ision clock, event tracing and I6
performance counters. Performance counters can be used
to count the number of occurrcnccs o f a targe t event or as a
stopwatch to record the elapsed time between events.

Operationally the MultiKron is a passive, memory­
mapped dcvice. Programmers interac t with MultiKron via
reads and writes to the mapped memory region. To
generate traces, a software measurement event is triggered
by the exccutio n of a spccific statemcnt, a measurement
probe, inserted into the appl ication program. A
measuremcnt probe can be added to the source code
requiring recompilation, or addcd directly to lhe cxecutabl~
code via a binary patch [HOL97].

The probe instruction appears as an assignment
statement to a memory mapped MultiKron address. When
the measurement probe code is executed, the data value
from the assignment statement (generally an event ID) is
written to the MultiKron. The MultiKron then appends its
~urre~t timestamp (precision on the order of I 00 ns), the
1dcnuty o f the process, and (in multi-proccssor systems) the
identity of the CPU, to that data to form an event trace
sample. The trace sample is then automatically buffered and
written to the MultiKron data storage interface. Operating
system support is necessary during context switches to load
the MultiKron with the current process 10. Thus,
MultiKron provides a hardware assist to lraditional
so.ft~a~e.-based instrumentation systems thereby
n.unn~uz~ng the perlurbation to the executing program by
s1mphfymg the probe code to a single write operation and
recording the time-stamped samples into the MultiKron's
own memory.

Current software techniques [LEV95,MIL92] can attain
time synchronization between cooperating computers on
the order of I ms. This accuracy of time synchronization is

194 SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

insufficient for system levei performance measuremenl in
cluster computing environments, where time intervals are in
the range of tens to hundreds of microseconds. NIST has
developed time synchronization instrumentation that
integrates with the MultiKron toolkits. A version of this
instrumentation, which operates in a local cluster
environment, supplies MultiKron devices on ali the nodes
of a cluster with a common clock and a common reset
signal, so that ali MultiKron clocks will advance in lock­
step. Thus the time synchronization achieved is better than
25 ns. Another version of this instrumentation can operate
in a global environment by using pulses from the global
positioning system (GPS) to "train" a local oscillator. These
pulses occur once per second to within an accuracy of I flS.
The global version will supply geographically distributed
MultiKrons with a clock and a reset signal, in the same way
as the local version, but not in lock step -- only to within I
JlS accuracy. Both versions o f this time synchronization
instrumentation are operational, but the local version was
used in these measurements.

III. ATM ANO FAST ETHERNET PERFORMANCE

The anomalous communication behavior that we
encountered is illustrated by the performance of our micro­
kernel, shown in Figure I . This is a standard plot of the
communication throughput versus the message size for both
ATM and Fast Ethernet in which we see large dips that
degrade throughput by as much as 80% for some message
sizes. In contrast, once the problem was found and
corrected we obtained the curves of Figure 2. Figure I
contains two curves, one for ATM and one for Fast
Ethernet, while Figure 2 contains four curves, two for ATM
and two for Fast Ethernet. The two ATM and two Fast
Ethernet network interface cards (NIC) are ali from
different manufacturers. The two Fast Ethernet curves are
so close they appear as one curve.

To determine the cause of this anomalous behavior we
inserted MultiKron probes into the application, socket,
TCP/IP and device driver layers of the kernel
communications protocol on both the source and
destination nodes. Although this provided us with selec tive
event timing interval information, it didn't provide us with
any overall feedback as to when performance was being
degraded. This desire for an overall indicator was the basis
of the stall metric. We wanted to know when the
communication stack was wai ting, or stalled. What we
needed was a "stopwatch" which would accumulate the
stall time by re-starting when a protocol stack stall occurred
and by pausing when the stack was active or complete. We
used one of the MultiKron performance counters, which is
capable of functioning as a stopwatch, to accumulate the
stall time. Alternatively, we could have built software
routines around the Pentium clock to obtain the abstraction
of a stopwatch, but instead we opted for the more direct,

lower perturbation MultiKron approach. We define stall
time as any period when the device driver is not acti ve and
the protocol software waits for an event to occur, either by
sleeping or enqueueing packets. We consider the device
driver active when its software is executing or the NIC is
active. When the protocol software waits for an event to
occur and the device driver is not active, the stopwatch is
re-started. When the protocol software or the device driver
becomes aclive, the stopwatch is paused. When the protocol
software completes the stopwatch is a lso paused. At any
time during or after program execution we can read the
stopwatch to determine whether a communication stall has
occurred along with the associated performance
degradation.

18
--FEITCP I

18 -+-ATMfTCP

I 14 •
~ 12 - 11"~

10 ,,r

J
8

8
'i ..

4 ~ I 111

'T'j w
2

o
o 20000 40000 60000 60000 100000 120000

...._. Sla (Bytla)

Fig. I Fast Ethernct and ATM Over TCPIIP Throughput Original.

16

14

112
~ 10

i
(:

8

6

4

2

o

.... -
,~ - ... ---

·~
m;l~-

FE-2 ..
""" .úf

o 20000 40000 80000 80000 100000 120000

Message Size {Byles)

Fig. 2 Fast Ethernet and ATM Over TCP/IP Throughput
Corrected.

A discussion of our stall algorithm follows. Upon
entering the protocol software, pause the stopwatch. At any
stall point, before stalling, if the device driver status is not
active re-start the stopwatch. When the stall is completed,
pause the stopwatch before continuing with the protocol
software. When entering the device driver, set its statc as
active and pause the stopwatch. When the NIC interrupts

SBAC-PAD'99 · 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 195

with a transmit complete status signal, if any stall events are
occurring then re-start the stopwatch. Pausing a paused
stopwatch or re-starting a counting stopwatch has no effect.
In the Linux 2.0.29 kernel there are three stall points in the
TCPIIP protocol software. One stall point is when a packet
buffer is allocated which will be used to copy the
segmented user data into the kernel. If there is not enough
available memory to complete the segmentation, the
protocol software will slcep, waiting to be awakened when
memory becomes available. The other two stall points are
when the transmission window is full or a partia) packet is
to be sent , causing these packets to be placed on the
transmission queue, waiting for incoming ACKs to open up
thc window. One complication in obtaining the stall metric
is that it requires information from independently operating
protocol Jayers - TCP/IP and the dcvice driver/NIC. The
TCP/IP software operatcs in parallel with the NIC, whieh is
a separatc hardware devicc managed by a dcvice drivcr.
Thus, it becomes necessary to implement a set of flags,
which are accessible between the two software Jayers
asynchronously. Thesejlags are implemented in thc socket
data structure, thus providing a per-socket metric.

Through a combination o f the timed event traces and the
stall metric we were able to determine the cause of the
anomalous behavior. It seems that the protocol
implementation was erroneously handling the transmission
of partia! packets, although the slow start algorithm did
contribute slightly. Our 2.0.29 Linux implementation
provides for two options in the handling of partia) packets.
One option is trying to conserve network resources by
delaying the transmi ssion of partia) packets, waiting for a
timeout or additional message data to become available
within a short time so a full packet can be sent rathcr than
just a partia! packet. This option is the default. The other
option is to send partia! packcts as soon as possible. This
option can be invoked via 'TCP _NO DELA Y" parameter.
Due to a bug in this code 1, when a partia! packet was
delayed becausc of insufficient space in the transmission
window, instead of it being sent immediately when space
became available it was erroneously being delayed until the
timcout occurred. The sta ll metric is plotted in Figure 3 and
tracks well with the obscrved performance dips. The sta ll
metric has been normalized for display here. The
performance of the corrected version of TCP/IP, shown in
Figure 2, displays nonc of the anomalous dips in
performance that occurred in the original version.

The slow start algorithm and the last partia! segment
delay are mechanisms that optimize network traffic (a
system metric) rather than user throughput (a response
metric). These two classes o f metrics are normally inversely
related, so that enhancing one degrades the other. In

1 For a complete description o f the bug in 2.0.29 refer to
www.cmr.ncsl.nist.govlscalable/misc_info/Linux_TCP.html

switched LAN environments, which are common for most
cluster computing configurations, there should be a means
to over-ride these mechanisms so that specific applications
can realize their full potential of these fast network
technologies. The "TCP _NO DELA Y" parameter provides
the means to disable partia! packct delays, but there is no
way to disable lhe slow start algorithm.

~ 12 t-----------------------~~~~~==~

I 10 t-~~~~~---T-I-_,~+-~-B~-4------­
~

&

!
~

20000 40000 60000 80000 100000 120000

Message Size (9ttes)

Fig. 3 ATM and Fast Ethcmct Throughput, Respectively, Plotted
Along with its Associatcd Normalizcd Stall Metric.

During the course of our measurements we obtained the
application layer send-receive latencies of both ATM and
Fast Ethernct messages. A MultiKron timestamp was
acquired on the sending machine immediately prior to the
"send" and another synchronized timestamp was acquired
on the receiving machine immediately following the
"receive". This provided a direct measurement o f latency
versus one inferred from round-trip time. The results of
these send-reccive latcncy measurements are shown in

196 SBAC-PAD '99 11th Symposium 011 Compute r Architecture a11d High Perjorma11ce Computi11g- Natal- Brazil

TABLE I
APPLJCATION LAYER "SENO-RECEIVE" LATENCIES, IN ~S. OF TCP/JP OVER ATM ANO FAST ETHERNET. WE ARE USING TWO DIFFERENT
INTERFACE CAROS FOR NETWORK TECHNOLOGY ANO TWO CONNECTION METHOOS FOR EACH CARO, SWITCH (A SWITCH CONNECTING THE NOOES)
ANO OIRECT (NO SWITCH, JUSTA WIRE CONNECTING THE TWO NODES).

Send ATM-1 ATM-2

Table I for two different A TM NICs and two
diffcrent Fast Ethernet NICs communicating using a switch
as wcll as a direct connection without a switch. There
was approximately a 10% variation in these numbers. We
would like to note two points about Table I. First, there is a
significant performance difference between the ATM NICs,
due to implementation differences, while thc performance
of the Fast Ethernet NICs is about the samc. Second, both
ATM and Fast Ethernct are advertised as "wire speed
forward" capable. A TM cells are too small to incur a
significant overhead duc to buffering. The approximately
20 j..lS A TM switch latency appears to be independent o f
message size. The Fast Ethernet switches seem to buffer the
packet before routing it, as indicated by its proportionally
increasing switch latency up to a full packet size which then
becomes constant at approximately 125 j..lS. This Fast
Ethernet behavior is similar for a number of different
manufacturers and most likcly is due to thc use of standard
Ethcrnet receiver chips. lt should be noted that the latency
for ali but the first packet of each burst is hidden due to
pipelining.

IV. CONCLUSION

We have introduccd a new communications
performance metric, the data stream stall time. We have
used this metric to idcntify communication performance
degradation in the TCP/IP protocol stack of the Linux
(2.0.29) kernel. After determining and correcting the cause
of this performance degradation, which was due to
erroneous handling of partia! packets, we demonstrated
significantly improved communication performance. In
addition, we have shown a performance differential
between two differcnt f\TM NICs, which contrasts with the
uniform performance between two different Fast Ethernet
NJCs. We have also shown that many Fast Ethernet
switches buffer, rather than cut-thru route, incoming
packets before routing.

Using an open operating system, such as Linux, yields a
significant benefit by providing source code access. Source
code access allows one to understand the specific

FE-1 FE-2

implementation details, to instrument the code for
performance measurement, and to make modifications to
the kernel to obtain customized performance and/or
functionality.

REFERENCES

[BEC 95] D. Becker. T. Sterling, D. Savarse, U. Ranawake and C.
Packer, BEOWULF: A Parai/e/ Work.station for
Scientijic Computation, Proc. of the lntemational
Conf. on Parallel Proccssing, Urbana-Champaign, JL,
V oi. 1: Architecture, pp 111-114, Aug. 1995.

[HOL 97] J. K. Hollingsworth and B. Buck. DyninstAPI
Programmer's Cuide, CS-TR-3821, University of
Maryland, Aug. 1997.

[IND 98] M. Indovina, A. Mink, R. Snelick and W. Salamon,
Performance Measurement of ATM and Ethemet
Computing Clusters, Proc. of ATM98 Devclopments
Conf., Rennes, France, V oi. 11, pp 43-64, Mar. 1998.

[LEV 95] J. Lcvine, An Algorithm to Synchronize the Time of a
Complller to Universal Time, IEEE Trans. on
Networking, V oi. 3, No. I. pp 42-50, Feb. 1995.

[MIL 92) D. Mills, Network time protoco/ (version 3):
specijication, imp/ementation and analysis, DARPA
Network Working Group Rpt. RFC-I305, Univ. of
Delawarc, 1992.

[MIN 94) A. Mink, Operating Principies of the Mu/tiKron_/1
Performance lnstrumentation for MIMD Computers,
NISTIR 5571 , National Institute of Standards and
Technology, Dec. 1994.

[MIN 95] A. Mink, Operating Principies of the SBus Multikron
Interface Board, NISTIR 5652, National lnstitute of
Standards and Technology, May 1995.

[MIN 97] A. Mink and W Salamon, Operating Principies of the
PC/ Bus MultiKron Interface Board, NISTIR 5993,
National lnstitutc of Standards and Technology, Mar.
1997.

[MIN 98] A. Mink, W. Salamon, J. Hollingsworth and R.
Arunachalam. Performance Measurement Using Low
Perturbation and High Precision Hardware Assists,
Submitted to the 1998 IEEE Real-Time System
Symposium.

