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Abstract---
Probing the communication protocol stack in Linux PC­

based clusters to investigate erratic TCP/IP performance has 
led to a new metric, data stream stall, which is analogous to 
instruction stream stall in CPUs. Data stream stalling 
correlates well with unexpected throughput performance dips; 
the dips are usually due to delayed ACKs or questionable 
handling of them. We illustrate the use of this data stream stall 
metric by isolating and correcting the cause of these 
communication throughput dips in our version of Linux 
(2.0.29). The availability of this data stream stall metric would 
provide useful feedback to users by indicating deficient 
communications performance. 
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I. INTRODUCTION 

Whilc cvaluating the performance of MPI based 
applications [IND98] on commodity c lusters [BEC95], 
using both ATM and Fast Ethernet communications, we 
encountered a communications performance anomaly. This 
anomaly manifested itself as a sharp degradation in TCP/IP 
communications throughput for slightly different message 
sizes. To probe the cause of this anomaly, we used the 
NIST developcd low perturbation MultiKron® performance 
data collection instrumentation and NIST time 
synchro nization instrumentation to delve into the Linux 
communication protocol. Using the time synchronized 
MultiKron we were able to measure directly the 
communication latency between nodes and across switches, 
rather than infer latency from average round trip times. We 
were also able to obtain accurate measurements of 
processing ratcs and latcncies within the various 
communication protocbl layers. 

In probing lhe Linux communication protocol stack to 
investigate thc erratic TCP/IP performance we developed a 
new metric, data stream stall. This metric closely tracks the 
observed unexpected throughput performance. Using this 
metric a long with MultiKron performance probes we were 
able to isolate the cause of the throughput dips and correct 
them in our version o f Linux (2.0.29). 

11. MEAS UREMENT INSTRUMENTATION 

Current NIST instrumentation consists of the 
MultiKro n_II [MIN94] custom VSLI chip and its 
associated toolkits [MIN95,MIN97] for standard 110 buses 
(currently VME, SBus, and PCI). The MultiKro n 11 
provides a high-prec ision clock, event tracing and I6 
performance counters. Performance counters can be used 
to count the number of occurrcnccs o f a targe t event or as a 
stopwatch to record the elapsed time between events. 

Operationally the MultiKron is a passive, memory­
mapped dcvice. Programmers interac t with MultiKron via 
reads and writes to the mapped memory region. To 
generate traces, a software measurement event is triggered 
by the exccutio n of a spccific statemcnt, a measurement 
probe, inserted into the appl ication program. A 
measuremcnt probe can be added to the source code 
requiring recompilation, or addcd directly to lhe cxecutabl~ 
code via a binary patch [HOL97]. 

The probe instruction appears as an assignment 
statement to a memory mapped MultiKron address. When 
the measurement probe code is executed, the data value 
from the assignment statement (generally an event ID) is 
written to the MultiKron. The MultiKron then appends its 
~urre~t timestamp (precision on the order of I 00 ns), the 
1dcnuty o f the process, and (in multi-proccssor systems) the 
identity of the CPU, to that data to form an event trace 
sample. The trace sample is then automatically buffered and 
written to the MultiKron data storage interface. Operating 
system support is necessary during context switches to load 
the MultiKron with the current process 10. Thus, 
MultiKron provides a hardware assist to lraditional 
so.ft~a~e.-based instrumentation systems thereby 
n.unn~uz~ng the perlurbation to the executing program by 
s1mphfymg the probe code to a single write operation and 
recording the time-stamped samples into the MultiKron's 
own memory. 

Current software techniques [LEV95,MIL92] can attain 
time synchronization between cooperating computers on 
the order of I ms. This accuracy of time synchronization is 
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insufficient for system levei performance measuremenl in 
cluster computing environments, where time intervals are in 
the range of tens to hundreds of microseconds. NIST has 
developed time synchronization instrumentation that 
integrates with the MultiKron toolkits. A version of this 
instrumentation, which operates in a local cluster 
environment, supplies MultiKron devices on ali the nodes 
of a cluster with a common clock and a common reset 
signal, so that ali MultiKron clocks will advance in lock­
step. Thus the time synchronization achieved is better than 
25 ns. Another version of this instrumentation can operate 
in a global environment by using pulses from the global 
positioning system (GPS) to "train" a local oscillator. These 
pulses occur once per second to within an accuracy of I flS. 
The global version will supply geographically distributed 
MultiKrons with a clock and a reset signal, in the same way 
as the local version, but not in lock step -- only to within I 
JlS accuracy. Both versions o f this time synchronization 
instrumentation are operational, but the local version was 
used in these measurements. 

III. ATM ANO FAST ETHERNET PERFORMANCE 

The anomalous communication behavior that we 
encountered is illustrated by the performance of our micro­
kernel, shown in Figure I . This is a standard plot of the 
communication throughput versus the message size for both 
ATM and Fast Ethernet in which we see large dips that 
degrade throughput by as much as 80% for some message 
sizes. In contrast, once the problem was found and 
corrected we obtained the curves of Figure 2. Figure I 
contains two curves, one for ATM and one for Fast 
Ethernet, while Figure 2 contains four curves, two for ATM 
and two for Fast Ethernet. The two ATM and two Fast 
Ethernet network interface cards (NIC) are ali from 
different manufacturers. The two Fast Ethernet curves are 
so close they appear as one curve. 

To determine the cause of this anomalous behavior we 
inserted MultiKron probes into the application, socket, 
TCP/IP and device driver layers of the kernel 
communications protocol on both the source and 
destination nodes. Although this provided us with selec tive 
event timing interval information, it didn't provide us with 
any overall feedback as to when performance was being 
degraded. This desire for an overall indicator was the basis 
of the stall metric. We wanted to know when the 
communication stack was wai ting, or stalled. What we 
needed was a "stopwatch" which would accumulate the 
stall time by re-starting when a protocol stack stall occurred 
and by pausing when the stack was active or complete. We 
used one of the MultiKron performance counters, which is 
capable of functioning as a stopwatch, to accumulate the 
stall time. Alternatively, we could have built software 
routines around the Pentium clock to obtain the abstraction 
of a stopwatch, but instead we opted for the more direct, 

lower perturbation MultiKron approach. We define stall 
time as any period when the device driver is not acti ve and 
the protocol software waits for an event to occur, either by 
sleeping or enqueueing packets. We consider the device 
driver active when its software is executing or the NIC is 
active. When the protocol software waits for an event to 
occur and the device driver is not active, the stopwatch is 
re-started. When the protocol software or the device driver 
becomes aclive, the stopwatch is paused. When the protocol 
software completes the stopwatch is a lso paused. At any 
time during or after program execution we can read the 
stopwatch to determine whether a communication stall has 
occurred along with the associated performance 
degradation. 
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Fig. I Fast Ethernct and ATM Over TCPIIP Throughput Original. 
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Fig. 2 Fast Ethernet and ATM Over TCP/IP Throughput 
Corrected. 

A discussion of our stall algorithm follows. Upon 
entering the protocol software, pause the stopwatch. At any 
stall point, before stalling, if the device driver status is not 
active re-start the stopwatch. When the stall is completed, 
pause the stopwatch before continuing with the protocol 
software. When entering the device driver, set its statc as 
active and pause the stopwatch. When the NIC interrupts 



SBAC-PAD'99 · 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 195 

with a transmit complete status signal, if any stall events are 
occurring then re-start the stopwatch. Pausing a paused 
stopwatch or re-starting a counting stopwatch has no effect. 
In the Linux 2.0.29 kernel there are three stall points in the 
TCPIIP protocol software. One stall point is when a packet 
buffer is allocated which will be used to copy the 
segmented user data into the kernel. If there is not enough 
available memory to complete the segmentation, the 
protocol software will slcep, waiting to be awakened when 
memory becomes available. The other two stall points are 
when the transmission window is full or a partia) packet is 
to be sent , causing these packets to be placed on the 
transmission queue, waiting for incoming ACKs to open up 
thc window. One complication in obtaining the stall metric 
is that it requires information from independently operating 
protocol Jayers - TCP/IP and the dcvice driver/NIC. The 
TCP/IP software operatcs in parallel with the NIC, whieh is 
a separatc hardware devicc managed by a dcvice drivcr. 
Thus, it becomes necessary to implement a set of flags, 
which are accessible between the two software Jayers 
asynchronously. Thesejlags are implemented in thc socket 
data structure, thus providing a per-socket metric. 

Through a combination o f the timed event traces and the 
stall metric we were able to determine the cause of the 
anomalous behavior. It seems that the protocol 
implementation was erroneously handling the transmission 
of partia! packets, although the slow start algorithm did 
contribute slightly. Our 2.0.29 Linux implementation 
provides for two options in the handling of partia) packets. 
One option is trying to conserve network resources by 
delaying the transmi ssion of partia) packets, waiting for a 
timeout or additional message data to become available 
within a short time so a full packet can be sent rathcr than 
just a partia! packet. This option is the default. The other 
option is to send partia! packcts as soon as possible. This 
option can be invoked via 'TCP _NO DELA Y" parameter. 
Due to a bug in this code 1, when a partia! packet was 
delayed becausc of insufficient space in the transmission 
window, instead of it being sent immediately when space 
became available it was erroneously being delayed until the 
timcout occurred. The sta ll metric is plotted in Figure 3 and 
tracks well with the obscrved performance dips. The sta ll 
metric has been normalized for display here. The 
performance of the corrected version of TCP/IP, shown in 
Figure 2, displays nonc of the anomalous dips in 
performance that occurred in the original version. 

The slow start algorithm and the last partia! segment 
delay are mechanisms that optimize network traffic (a 
system metric) rather than user throughput (a response 
metric). These two classes o f metrics are normally inversely 
related, so that enhancing one degrades the other. In 

1 For a complete description o f the bug in 2.0.29 refer to 
www.cmr.ncsl.nist.govlscalable/misc_info/Linux_TCP.html 

switched LAN environments, which are common for most 
cluster computing configurations, there should be a means 
to over-ride these mechanisms so that specific applications 
can realize their full potential of these fast network 
technologies. The "TCP _NO DELA Y" parameter provides 
the means to disable partia! packct delays, but there is no 
way to disable lhe slow start algorithm. 
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Fig. 3 ATM and Fast Ethcmct Throughput, Respectively, Plotted 
Along with its Associatcd Normalizcd Stall Metric. 

During the course of our measurements we obtained the 
application layer send-receive latencies of both ATM and 
Fast Ethernct messages. A MultiKron timestamp was 
acquired on the sending machine immediately prior to the 
"send" and another synchronized timestamp was acquired 
on the receiving machine immediately following the 
"receive". This provided a direct measurement o f latency 
versus one inferred from round-trip time. The results of 
these send-reccive latcncy measurements are shown in 
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TABLE I 
APPLJCATION LAYER "SENO-RECEIVE" LATENCIES, IN ~S. OF TCP/JP OVER ATM ANO FAST ETHERNET. WE ARE USING TWO DIFFERENT 
INTERFACE CAROS FOR NETWORK TECHNOLOGY ANO TWO CONNECTION METHOOS FOR EACH CARO, SWITCH (A SWITCH CONNECTING THE NOOES) 
ANO OIRECT (NO SWITCH, JUSTA WIRE CONNECTING THE TWO NODES). 

Send ATM-1 ATM-2 

Table I for two different A TM NICs and two 
diffcrent Fast Ethernet NICs communicating using a switch 
as wcll as a direct connection without a switch. There 
was approximately a 10% variation in these numbers. We 
would like to note two points about Table I. First, there is a 
significant performance difference between the ATM NICs, 
due to implementation differences, while thc performance 
of the Fast Ethernet NICs is about the samc. Second, both 
ATM and Fast Ethernct are advertised as "wire speed 
forward" capable. A TM cells are too small to incur a 
significant overhead duc to buffering. The approximately 
20 j..lS A TM switch latency appears to be independent o f 
message size. The Fast Ethernet switches seem to buffer the 
packet before routing it, as indicated by its proportionally 
increasing switch latency up to a full packet size which then 
becomes constant at approximately 125 j..lS. This Fast 
Ethernet behavior is similar for a number of different 
manufacturers and most likcly is due to thc use of standard 
Ethcrnet receiver chips. lt should be noted that the latency 
for ali but the first packet of each burst is hidden due to 
pipelining. 

IV. CONCLUSION 

We have introduccd a new communications 
performance metric, the data stream stall time. We have 
used this metric to idcntify communication performance 
degradation in the TCP/IP protocol stack of the Linux 
(2.0.29) kernel. After determining and correcting the cause 
of this performance degradation, which was due to 
erroneous handling of partia! packets, we demonstrated 
significantly improved communication performance. In 
addition, we have shown a performance differential 
between two differcnt f\TM NICs, which contrasts with the 
uniform performance between two different Fast Ethernet 
NJCs. We have also shown that many Fast Ethernet 
switches buffer, rather than cut-thru route, incoming 
packets before routing. 

Using an open operating system, such as Linux, yields a 
significant benefit by providing source code access. Source 
code access allows one to understand the specific 

FE-1 FE-2 

implementation details, to instrument the code for 
performance measurement, and to make modifications to 
the kernel to obtain customized performance and/or 
functionality. 
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