
SBAC-PAD'99 I lth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 197

A Proposal for a Parallel Programming Support
for Multi-LAN platforms

Luciana Arantes 1: Bertil Folliot 1, Li ria M. Sato2
, Pierre Sens 1

1 UP6 Laboratory.
University of PARIS VI. Paris. F rance

ema i/: f Luciana.Aranres. Berrii.Follior. Pierre.Semj@lip6fr
2 Escola Politécnica.

University of Sao Paulo. Sao Paulo, Brazil

198 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

LRC multi-LAN DSM.

This paper is organized as follows. Section 2 gives an
overview of the lazy release consistency memory model. In
section 3, we describe our proposal for a multi-LAN DSM,
as well as some preliminary results. Section 4 discusses the
advantagcs o f having the CPAR-DSM on topo f a multi-LAN
DSM. Section 5 briefty describes the current state of our
project. In section 6, some related works are presented while
the last section summarizes the contributions of this work
and exposes some other ideas for the evolution of it.

11. LAZY RELEASE CONSISTENCY

In Lazy Release Consistency memory model [AMZ 96]
[KEL 95], ordinary memory accesses are distinguished from
synchronization ones, i.e., the acquire and release opera
tions. lnforrnation about updates made by a process on its lo
cal page copies are propagated out to a second one only when
the latter perforrns an acquirc operation. This postponement
reduces much o f the communication that is required to make
shared data consistent.

The execution of each proccss is divided into intervals.
A new intcrval begins at each acquire or release operation.
Acquire and release operations set up the causality of shared
memory updates. Usually, two synchronization variablcs are
provided: barriers and locks. A barrier is used to sequence
the execution o f the parallel program while a lock is used to
contrai processes' access to shared variables. Operations on
Jocks and barriers can be mapped onto acquire/release ope
rations: a Jock operation corresponds to an acquire, an unlock
to a release while an arrival at a barrier can be modeled as a
release and the departure from it as an acquire operation.

Partia! ordering of acquire and release operation is con
trolled by assigning a per process vector timestamp to each
interval [FID 9 1] [MAT 89] . Each process Pj keeps a vec
tor clock vi of N entries, where N is the total number of
processes of the systcm. Pi controls the intervals created by
itself using the jth entry of its vector clock. The other entries
store the current knowledge that this process has of thc up
dates made by other processes. Process Pi updates its vector
clock Vj , at each synchronization operation, as follows:

- if it is a remate acquire operation, Pi updates its vector
clock with the maximum of its current value and the
releaser' s Vr , i.e., Vj = max(Vj , Vr);

- Pi adds I to the jth entry o f its vector clock vi [j).
Thereby, process Pi ; at an acquire operation, sends its cur

rent clock valuc to the releaser process Pr . This one sends
back ali the intervals covercd by its local clock but not by Pi
's, including the identification of the pages that have been
modified in each interval. Each identification is stored in
a structure called write-notice. When receiving the write
notices, Pi invalidates the local copies of the corresponding
pages (invalidate protocol). Hence, the first access to an in-

valid page wi ll cause a page fault. The faulting process, Pi
in this case, will, then, ask for the missing updates to ali pro
cesses that last modified the page. It will apply them in thc
order defined by the causality o f the intervals. These updates
come in the forrn of diffs, a word-by-word comparison be
tween a copy of the original page and its last version . There
fore, a diff of a page contains only the data that have been
modified during an interval. It is gcnerated, at the end o f the
interval, by comparing the page to a copy (twin) saved at the
beginning o f the interval.

III. THE LRC MULTI-LAN DSM

Our proposal is to have a modular, hierarchical and scal
able DSM. We consider that these three features are ex
tremely important for severa! reasons: the numbcr of pro
cessors (machines) of a multi-LAN platforrn can be quite
significant; the cost of sending a message between proces
sors belonging to distinct LANs is much higher than between
processors within the same LAN; it might be the case that the
same DSM module is not Joaded on ali LANs; the configura
tion o f the platforrn can dynamically change (e.g., temporary
inaccessibility ofremote LANs machines, network partition
ing).

The scalability, modularity and hicrarchy features are go
ing to be provided by the protocol itself, i.e. , the LRC pro
toco! will be modified. The barrier-Iock clocks will replace
the traditional per process ones in order to deal with the scal
able and modular aspects while the simulation of a LAN
level cache, data pre-fetching and two-level execution of
barriers will be responsible for the hierarchical approach
and, therefore, for the reduction of data transferred between
LANs. These features will be discussed in thc subsections
that follow.

A. The barrier-lock clocks

The traditional per process vector Jogical clock [MAT 89]
[FID 91] keeps an entry for each process (nade) of the sys
tem. This means that in order to be able to connect severa!
per LAN DSM modules we need a Jarger vector clock, whose
size comprises the total number of processors (processes) of
ali LANs, which restricts the scalability and modularity of
the multi-LAN DSM to some extent. The ideal would be
to have a logical clock whose size does not depend on the
number of nodes. This would allow the comparison of the
timestamps of two distinct DSM modules, which is impossi
ble with the tradition per processar vector timestamps.

Considering the above needs, restrictions, and the fact that
our solution is composed of an interconnection of DSM mo
dules, we have conceived a new logical clock. We have
named it the barrier-lock clock [ARA 99a] . As causality in
LRC DSM is induced by locks and barricrs operations, the
barrier-lock clocks have been modeled based on these oper-

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 199

ations.
A barrier-lock clock timestamp i is represented by the tu

pie (b, vl};, where bis a barrier call counter and vl a per lock
vector variable.

At each barrier call, the scalar counter b of ali processes is
incremented while thcir lock vector variable vl is reset.

Process Pj. at each acquire/release operation on lock l,
updatcs its vl vector variable as follows:

- i f it is a remo te acquire operation, v l i = max(vli, vlr),
where v lr is the per lock vector vl o f the release process
Pr;

- Pj always adds I to the entry o f vl j that corresponds to
lock I (Vlj[lj).

If L is the number of locks required by the application,
then the size of a barrier-lock clock timestamp is L + 1. In
other words, the size is proportional to the number o f locks,
independently of the number of processors of the system.

, ••• ()6

1.2• .o6

.....
~ 1100000

õ

i 600000

<000000

200000 ! .. ,

TSP SOR 3DFn

Fig. I . Volume of data at synchroni7.ation operations

The replacement of the traditional logical clocks by the
barrier-lock ones turns feasible the idea of having a global
DSM which is composed of an interconnection of several
DSM systems since a timestamp o f a DSM module does not
depend on the number o f processors o f its LAN. More details
about the barrier-lock clocks can be found in [ARA 99a] and
the proof that they precisely capture causality of synchro
nization operations is presented in [ARA 99b].

Figure I shows the volume of data exchanged at syn
chronization operations by 5 applications running on top of
TreadMarks software DSM, version 0.10.1, and the same
software where the traditional per process vector timestamps
were replaced by the barrier-lock ones. We believe that
these measures are quite representative since a synchroniza
tion message contains only timestamps and write-notices.

The tests have been made on top of 8 Sun-sparc-5 sta
tions linked by a I 00 Mbitls Ethernet backbone with the fol
lowing applications: SOR and TSP (distributed by Tread
Marks); IS and 30 FFf (NAS benchmark [BAI 93]); Barnes-

Hut (SPLASH benchmark [SIN 92]). We have simulated a
platform with 32 processors by increasing the constant that
defines the number of processors of the system. The input
parameters (size and iterations), number of requested locks
and number o f barrier calls are summarized in Table I.

TABLEI

APPLICATION CHARACTERISTICS

Applic. Size, lterat. # #of
of locks barrier calls

TSP 19 cities 2 3
SOR 512x5 12,200 o 401

IS 256x l28, 10 o 82
30-FFf 256x 16x 16,50 o 104

Barnes-Hut 16K,3 o 13

Compared to the original TreadMarks, we can remark a
significant decrease in the amount of data exchanged at syn
chronization operations for ali the applications when running
on top of our barrier-lock-based prototype. The reason for
this is that ali the appl ications employ a small number of
locks (from zero to 2). Hence, the size of the timestamps
is smaller than the traditional per processar ones (32 in this
case). This reduction may result in better performance for
systems whose links have a high per byte transmission cost
(e.g. low bandwidth inter-LAN links of multi-LAN plat
forrns).

B. Reduction of lnter-LAN Data Transfers

If an application defines a small number of locks, the use
of barrier-lock clocks by the LRC protocol may reduce the
volume of data transferred at synchronization operations, as
shown in the previous subsection. However, this reduction
is not so significant as to improve the application's perfor
mance. The major volume of inter-LAN communication is
due to updated data requests, i.e., the transfers of the data
themselves (diffs). Thus, in arder to have less traffic over the
inter-LAN links, the number and the size of diff messages
must be reduced. We propose, then, the pre-fetching of diffs
at synchronization operations, the simulation of a LAN-level
cache and the execution o f global barriers in a tree-structure
way.

B. l Pre-fetching of Data

In the LRC invalidate protocol, diffs are sent to a process
only when the latter gets a page fault. This laziness in prop
agating the diffs in fact results in an extra message whenever
a process accesses an invalidated page. Thus, instead of in
cluding only the write-notices, (i.e. , the identifications o f the
pages that have been modified) in the synchronization mes-

200 SBAC-PAD'99 llrh Symposium on Compurer Archirecture and High Performance Compuring- Natal- Brazil

sages to a remote-LAN acquiring process, a releasing pro
cessor can also piggyback in this message the diffs that it
believes, based on heuristics, that the acquiring remote LAN
will demand in the near future. This protocol is called lazy
hybrid protocol [KEL 95]. Good prediction of future ac
cesses of remote LAN processors can significantly decrease
the number of access misses and, consequently, the num
ber of messages sent across inter-LAN links. On the other
hand, bad prediction entails useless data sent across inter
LAN links.

Severa) works have proposed some heuristics for data pre
fetching or for the use of update protocol instcad of the in
validate one [AMZ 99] [KEL 95] [MON 98]. For instance,
a good heuristic for programs with lock-protected migra
tory data (i.e., when the same shared data, protected by thc
same lock, are sequentially updated by a set of processors
[AMZ 99]) is to send to an acquiring process those diffs
which the latter does not have and which correspond to pre
vious updates to the shared data, that have been protected by
the lock being acquired [MON 98]. In the case o f the multi
LAN LRC, the releasing LAN should send to the acquiring
LAN alJ the lock-protected diffs which any of the processors
of the releasing LAN possesses. The ideal is to aggregate
alJ diffs in a large message as the overhead of sending small
messages over a slow link can be quite high [LU 97]. For
barrier-like programs, a good heuristic may be the set of diffs
whose pages were modified by the majority of processors of
the remote LAN in the previous barrier call. Both heuristics
can be implemented using the information provided by the
barrier-lock timestamps as their values spccify the type of
synchronization operation that was performed.

B.2 Simulated LAN-level Cache

In our multi-LAN DSM, each LAN behaves like a phys
ically shared-memory SMP node, i.e., any diff previously
requested by any of the processors within a local LAN is
"available" to ali of them. Basically, the idea is to simulate
a LAN-level cache in order to reduce the volume of cross
LAN data.

Using LRC protocol (invalidate mode) when a process gets
a page fault, it needs to obtain the missing diffs and apply
them to the corresponding page. The process knows which
are these diffs since it holds ali the intervals and write-notices
received at previous synchronization operations. In the orig
inal LRC, the faulting process, q, always requests these diffs
to the last processes that have modified the page (if a pro
cess p has modified a page at a timestamp t then p has ali
the diffs, including those from other processes, correspond
ing to timestamps that causally precede t [AMZ 96]). In the
case of the multi-LAN LRC, whenever p belongs to a LAN
different from q' s, the requested list o f causal-related diffs is
split in two. Process q identifies for each list which is the last

process of its local LAN that is included in the list. Thus, q
asks to this process for the diffs that it holds and asks to the
distant-LAN process p for the others, i.e., the oncs not avail
able within its local LAN. In this way, the amount of diffs
sent across the inter-LAN is reduced.

"
U.IJ~\

I .
n.1.U G.!.U .

:'\. :

~
CJ.tl. l I._U-2

.
n.o.J

-"'"o
··· - tn..\.1

'\.'

~~~ 
. 

()..0,4 

0.0,#1 Q.-t).h G-&,fl 

r \ 
I \ 

I \ 
I \ 

J ·~.l U-7~ 

Fig. 2. LAN-level cachc approach 

I.AN L1 

I 

I.A N 1. 1 

Ult,ll 

Figure 2 illustrates better the LAN-level cache approach. 
lt shows tive processors divided into two LANs: P1 and P2 

belonging to LAN1 and ?3, P4, and P5 belonging to LAN2. 
Two Jocks (lock O and lock I) are requested by thc appli
cation. Barrier-lock clocks are used by both LRC DSMs. 
The b - vl[O], vl[l) timestamp (barrier countcr plus per lock 
vector) at each acquire or release operation is indicated. For 
instance, suppose that after acquiring lock O at 0-7 ,6, proces
sar P3 attcmpts to access an invalidated page. It will get a 
page fault and, thus, it will need to request the related diffs. 
If we consider that P1 was the last processor to have modi
fied the page, in the original LRC, P3 would address the diff 
requests to this processor (2 diff requests: one concerning 
lock O and the other Jock 1 paths of causality). However, at 
this point, P3 knows that some local processors of its LAN 
already keep part of these diffs (information received when 
it acquired Jock 0). Thereby, in the case of the multi-LAN 
LRC, ?3 will split each diff request in two: for P5 it asks for 
the diffs until the timestamp 0-0,4 (when P5 lost lock I); for 
P4 the diffs until the timestamp 0-4,2 (when P4 lost lock 0) 
and for P 1 the remaining diffs. 

For validating this approach, we have implemented a pro
totype, modifying the same version o f TreadMarks (0.1 0.1 ), 
where two LANs are simulated. Remote accesses are uni
form, i.e., intra-LAN latency and bandwidth are equal to 
inter-LAN ones. Table II shows some measures obtained 
when the split of diff requests is applied (LAN cache) and 
when it is not for the IS application, using the same 8 Sun
sparc-5 workstations platform. We have chosen the IS appli-



SBAC-PAD'99 IIth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 201 

cation, from NAS benchmark [BAI 93] because the volume 
of data exchanged at each diff request is quite high since this 
appl ication presents the pro blem of diff accumulation. The 
diff accumulation problem occurs in the case of migratory 
data. 

TABLE 11 

COMPARJSON OF IS APPLICATION PERFORMANCE 

TreadMarks LAN caclte 

Inter-LAN vol.of diffs 22.8x10"* 16.lx1Qh 
Diff req. waiting time 32. 1s 23.8s 
Barrier waiting time 27.6s 16.5s 

Overall time 41.1 s 33.7s 
* bytes 

We observe that the volume of data transferred between 
the processors of different LANs was reduced when a LAN
level cache is provided. This decrease plus the overlap of diff 
requests were both responsible for the reduction of the time 
that a processar wai ted for the diffs. Thcrefore, the appli
cation was less unbalanced (i.e. smaller diffrequest waiting 
time) and the maximum time that a process was blocked at 
a barricr was reduced. Thus, the simulation of a LAN-level 
cache resulted in an overall better performance for the IS ap
plication. lt is worth remarking that we have not considered 
a higher latency or lower bandwidth for the inter-LAN links. 
When we have added these parameters, we believe the results 
will be even more promising. 

8 .3 Two-level Hierarchical Execution of Barriers 

The idea of implementing the execution of barriers in a 
tree-structure way, as proposed in [BIL 98] or [HU 99], is 
quite interesting and appropriate for a multi-LAN DSM. 

Usually, in most DSM systems, a single centra lizcd bar
rier manager is responsible for assembling ali causality in
formation from the other processes and propagating them 
back after these ones have reached the barrier. This central
ization may, in the case of a multi-LAN DSM, represent a 
strong bottleneck. In order to minimize this bottleneck, a 
tree-structure approach for the execution o f barriers is partic
ularly adequate. Each LAN wi ll have a local barrier manager 
that gathers the causality information o f the processes within 
its local LAN. After having received ali local information, 
each manager will send the aggregate causality information 
to a global manager. Thus, the execution of the barrier will 
be done in two leveis, increasing the parallelism of a barrier 
execution. Furthermore, the grouping of data, done by each 
local manager, will reduce the number o f messages sent over 
inter-LAN links. Hence, the hierarchical execution of barri
ers will probably result in decrease ofbarriers execution time 

as a whole. 

IV. CPAR LANGUAGE ANO A MULTI -LAN PLATFORM 

The CPAR-DSM system [ARA 98] provides a program
ming language, the CPAR [SAT 94] [SAT 95]. and a pro
cessing supportthat case the development of parallel appli
cations that run on top of distributed shared memory (DSM) 
systems. The first version of CPAR-DSM system was im
plemented on top o f SunOS workstation network, using the 
Quarks DSM [KHA 96). This DSM offers the releasc con
sistency memory model (eager). Basically, in eager relcase 
consistency model, the updates made by a process on its lo
cal sharcd variables' copies are propagated out to other pro
cesses when the former executes a release operation, i.e., not 
at the next acquire operation as in the lazy release consis
tency. 

Pure DSM systems, in general, offer only a small set of 
programming primitives, basically for shared memory allo
cation, task synchronization, and control of criticai sections. 
The CPAR language, an extension of the C language, pro
vides more powerful constructions that simplify the defini
tion and programming o f parallel applications. 

For generating a exccutable c ode, the CPAR programming 
is first parsed by a pre-compiler, the CCPAR, which converts 
the original source program in to a C program, including calls 
to the CPAR library. The generatcd code is then compiled 
and linked to the CPAR-DSM processing support (CPAR li
brary plus the DSM library). 

CPAR-DSM task execution assumes SPMD computation 
model (Single Program Multiple Data), where the samc pro
gram is loaded on ali processors but dueto conditional pro
gramming, they execute different segments of code or work 
on different data-sets. 

What makes CPAR language specially appropriate for a 
multi-LAN platform is the fact that it offers constructions for 
exploring hierarchy in terms of task execution and organiza
tion o f shared memory: 

- A program can be organized into nested logical paralle l 
execution blocks. Macrotasks are logical independent 
unit within the main function of the program. Macro
tasks can execute in parallel. Once a macrotask is ac
tive, it can be subdivided into one or more microtasks, 
which are responsible for the finer grain o f parallelism. 
This one can be of two types: data and control. In 
the former, the same operation is applied over multi
pie e lements o f the same data structures, while the latter 
refers to parallel execution of distinct segments of code. 
Each microtask is executed by a processar. Within a 
macrotask sequential code can be interleaved with par
aliei code. At the end of a macrotask, its microtasks are 
always synchronized. Besides, primitives are offered to 
the application (master process) to ei ther wait for the 



202 SBAC-PAD'99 IIth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 

completion o f ali macrotasks or for the completion of a 
single macrotask; 

- CPAR shared variables can be defined either as global 
or local to a macrotask. The global shared variables 
can be accessed by any microtask of any macrotask 
while local variables are declared within the scope of 
a macrotask, being accessible only by the microtasks of 
the macrotask in queslion. 

The CPAR hierarchical construclions are quite adequate 
for a multi-LAN platform. Each macrotask can be assigned 
to a single LAN. This means that the microtasks of a macro
task are dispatched to the processors of the assigned LAN. 
Local shared variables are accessed only by the microtasks 
(processes) o f this LAN, while the global shared variables by 
any microtask o f any LAN. This hierarchy o f shared memory 
is very important as only the pages related to global vari
ables may cross LAN boundaries. Therefore, latency and 
bandwidth problems of inter-LAN links concern only these 
pages. 

task spcc mtask I ( ); 
task spcc mtask2 ( ); 

shared int vet[NJ; 

task body mtask I l ) 

I shared int a.b; 

parbcgin 

also 

parcnd 
... ] 

task body mtask2 ( ) 
{ .... 

forall i= I to N { 
... ] 

... ] 

I 
mtaskl 

D D 
1'1 PJ 

l.AN L1 

main()l 

printf ("bcgin\n''); 

alloc_proc (5); 

I • mtask I executes on LAN I •f 
c reate 2. mtask I ( ); 

I • mtask 2 executes on LAN 2 •t 
create 3. mtask2 ( ); 

1• synchronization of ali processes •1 
waot_all ( ); 

printf Cendln-); 
I 

begin 

I 
I 

mtask2 

DDD 
PJ N PS 

I 
I l.AN L2 

end 

Fig. 3. CPAR program source and execution diagram 

Figure 3 shows an example o f CPAR program source and 
its parallellogical execution diagram. The program executes 
on a multi-LAN platform (the same one as figure 2). Two 
macrotasks mtaskl and mtask2 are defined. Each one is 
assigned to a different LAN. The shared variable vet is global 
to both macrotasks while variable a and b are only accessible 
to the microtasks of macrotask mtaskl. 

V. WORK-IN-PROGRESS 

We have developed a first prototype with the barrier-lock 
clocks and where the LAN-level cache is provided. We are 
now working in a second prototype where data pre-fetching 
and multi-leve! execution ofbarriers will be implemented. A 
higher inter-LAN latency and lower bandwidth will be simu
lated for validaling the prototype. 

The porting o f CPAR-DSM system to the LRC multi-LAN 
DSM basically consists of adapting its library to Tread
Marks DSM. However, we believe that it will be easely 
done as both Quarks and TreadMarks offer quite the same 
set of API primitives and both of them are based on release 
consistency model (eager and lazy, respectively). Furthcr
more, when the first version of CPAR-DSM was developed, 
its porting to other DSM systems was foreseen [ARA 98]. 
Thus, the current CPAR-DSM library groups ali the prim
itivcs offered by a DSM into a single module, adopting a 
standard interface that can be easily adapted to other DSM 
systems. 

A future work would be to change the CCPAR pre
compiler for providing useful informalion for the DSM sup
port, as in [DWA 99]. Recognition of future shared access 
patterns and parallel support for rcductions [KEL 97] are 
some examples of the features that could be offered by the 
pre-compiler CCPAR. s 

VI. RELATED WORKS 

Bal et ai. [BAL 98] make a performance study o f medium
grain parallel applications running on top of a multi-LAN 
platform. They were written in Orca, a parallel objcct-based 
language. Contrary to our solution, the optimizalions to 
minimize inter-LAN latency and bandwidth restrictions were 
introduced to the applicalion and not to the shared mem
ory support. Their strategy consists in changing the appli
cation algorithms themselves in order to have less traffic 
over the inter-LAN links, taking in to consideration the multi
levei network structure. The oplimizations comprise, for in
stance, the coalescence of messages, the caching of data at 
LAN levei, the replacement of centralized queues by dis
tributed ones or the reduction o f the number o f synchroniza
tion points. Each applicalion has received one or more of 
these optimizalions and mosto f them have presented a better 
performance. 

In [LU 98), the authors present a system that allows 
OpenMP programs to run on top of network of worksta
lions. The OpenMP is an emerging standard for parallel pro
gramming on shared-memory multiprocessors. Their solu
tion consists o f a compiler, based on SUIF, that generates ap
propriate calls for a mulli-threaded version ofThreadMarks 
DSM. 

The evaluation of the use of a DSM as the target for par
allelizing compilers is discussed in [COX 97]. The ARP 



SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing ·Natal- Brazil 203 

shared-memory (SPF) compiler is used to generate programs 
to TreadMarks. The authors conclude that this platform 
is adequate for irregular applications as they have presented 
better performance than their equivalent compiler-generated 
message passing ones. A similar approach is presentcd 
in [KEL 97], where the CVM DSM offers the support for 
SUIF compiler-generated shared-memory parallel programs. 
Some enhancements were added to the CVM DSM as, for in
stance, the piggyback o f updated data at barrier synchroniza
tion messages. In [DWA 99], the Parascope parallel pro
gramming environment was extended in order to provide fu
ture shared access information to the DSM support, Tread
Marks. 

Severa! works [COX 99] [STE 97] [SAM 98] present the 
extending of some uniprocessor software DSM to networks 
of SMPs (symmetric multiprocessors). As within a SMP 
node, local shared memory coherence is performed in hard
ware, the performance of the system is supposed to be 
better than the performance of its equivalent uniprocessor 
DSM. Hu et ai. prcsent in [COX 99) a version of Tread
Marks (multi-threaded), adapted for SMP network archi
tectures. Their solution exploits the intra-SMP hardware 
shared memory, using POSIX threads. The Cashemere-2L 
[STE 97] implements a multi-writer, directory-based release 
consistency protocol. HLRC-SMP [SAM 98] implements 
the home-bascd multiple-write LRC protocol (HLRC) across 
SMP nodes. Processes within an SMP share the intra-node 
physical addrcss space and take advantage o f its synchroniza
tion mechanism, but each process has a separate page table. 

In terms of logical clocks, we can find in the literature 
some clocks that present scalability since they can be con
structed with a constant number of entries, independent of 
thc numbcr. o f nades o f the system. On the othcr hand, thcy 
do not precisely capture causality between events. For in
stance, the plausible clocks [TOR 96] provide a high levei 
of ordering accuracy. However, they do not guarantee that 
certain pairs o f concurrent events will not be ordered. Hence, 
they are not appropriate for implementing LRC protocol, as 
this ordering of concurrent events could lead to unnecessary 
consistency operation and remote requests, which wi ll prob
ably give rise to communication overhead. 

VII. CONCLUS IONS 

We havc present in this paper our proposal for a multi
LAN programming support for shared-memory parallel ap
plications. 

The support for the shared memory consists of an inter
connection of LRC DSM systems. Modifications have been 
made to the LRC pro toco I in order to adapt it to the hierarchy 
of the architecture. The use of the barrier-lock clocks pro
vides scalabi lity and modularity for the solution while the 
LAN-Ievel cache, data pre-fetching and multi-levei execu-

tion of barriers approaches take latency and bandwidth gap 
between inter-LAN and intra-LAN processors into account. 
The reduction of inter-LAN communication aims the speed 
up o f applications. 

The CPAR-DSM system will be ported to the multi-LAN 
DSM, as the CPAR language constructions are extremely ap
propriate for the development of parallel applications which 
run on topo f multi-LAN platforms. 

Future works wi ll consider the CCPAR pre-compiler be
ing able to analyze the source code in order to prcdict shared 
access patterns, the problem of network partition and other 
issues related to scalability such as global synchronization 
(barriers, garbage collection support), lock serialization, ini
tial placement o f pages, and consumption o f memory. 

REFERENCES 

[AMZ 96) C. Amza. A. L. Cox. S. Dwarkadas. P. Keleher, H. Lu, R. Raja
mony; W. Yu and W. Zwaenepoel. TreadMarks: shared memory com
puting on nctworks of workstations. IEEE Computer. 29(2): 18-28, 
February 1996. 

[AMZ 99) C. Amza. L. Cox, S. Dwarkadas. J. Jin, K. Rajamani; W. Yu and 
W. Zwacnepoel. Adaptive protocols for software distributed shared 
memory. Pmceedings ofthe IEEE. 87(3):467-475, March 1999. 

[ARA 98) L. Arantes, and L. Sato. CPAR-DSM :a suppon for parallel pro
gramming on top of DSM. In Proceedings of rhe lmemarimral Con
ferellce on Parai/e/ and Distribured Teclmiques and Applicarions, Las 
Vegas, July 1998. 

(ARA 99a] L. Arantes. B. Folliot. and P. Sens. A customized logical cloek 
for timestamp-based relaxed consistency DSM systems. In Pmceed
ings of the 1999 Workslwp on Software Distribured Shared Menwry 
held in conjunction wirh ICS'99 (ACM/SIGARCH) Rhodes. Greccc, 
pages 1-6. J une 1999. 

(ARA 99b] L. Arantes. B. Folliot, and P. Sens. A node-count independant 
logical clock for scaling Lazy Release Consistency Protoeol. To appear 
in the Proceeding.t of Europar'99. Toulousc. F rance, Scptembre 1999. 

[BAI 93) O. Bailey. J. Barton, T. Lansinski, and H. Simon. The NAS parai
lei benchmark. Technical Repon 103863. NASA. July 1993. 

[BAL 98) H. Bal. A. Plaat. M. Bakkcr. P. Dozy and R. Hofman. Optimizing 
parallc l applications for wide-area clusters. In Proceedings ofthe 12th 
lnremarional Parai/e/ Pmcessing SympoJium, Orlando, April 1998. 

[BIL 98) A. Bilas, L. lftode. R. Samanta and J. P. Singh. Supporting a co
herent shared address space across SMP nodes: An application-driven 
investigation /MA Volume-f in Marhemaric.t and ir.t Applicarirm.t (AI
gorithms for Parai/e/ Processing), 105. Springer-Verlag, New York. 
1998. 

[COX 97] A.Cox. S. Dwarkads, H. Lu and W. Zwanenepoel. Evaluating 
the Performance of Distributcd Shared Mcmory as a Target for Paral
lelizing Compilers. In Procuding.t of the IIth lnrernarional Parai/e/ 
Processing Symposium, pages 447-482, April. 1997. 

[COX 99) A.Cox. Y. Hu, H. Lu and W. Zwanenepoel. OpenMP on Net
works ofSMPs. ln Procudings afthe 13th lnremarional Parai/e/ Pro
cessing Sympasium, Aprill999. 

[DWA 99) S . Dwarkadas, H. LU. A. Cox. R. Rajamony and W. 
Zwaenepoel. Combining Compile-Time and Ruo-Time Support for 
Efficient Software Distributed Shared Mcmory. Procudings of rhe 
/EEE.87(3), March 1999. 

[FIO 9 1) C. Fidge Logical Time in Distributcd Computing Systems. IEEE 
Computer, pagcs 28-33. July 1991. 



204 SBAC-PAD'99 Jlth Symposium on Computer Architecture and High Performance Computing- Natal- Brazi/ 

[IFf 96] L. lftode, C. Dubnicki, E. Felten and K. Li. lmproving Release 
Consistency Shared Vinual Memory using Automatic Update. In Pro
ceedings ofthe 2nd IEEE Sympo.fium on High-Petformance Compute r 
Architec/llre, February 1996. 

[HU 99) W. Hu. W. Shi and Z. Tang. Reducing System Overheads in Home
based Software DSMs. In Proceedings ofthe 13th lntemational Par
aliei Processing Symposium. April 1999. 

[KHA 96] D. Khandekar. Quarks: distributed slzared memory as a building 
block for complex parai/e/ and distributed systems. Master's Thesis. 
Dcpanment of Computcr Science, University of Utah. Salt Lake City, 
(EUA).I996. 

[KEL 95] P. Keleher. wzy re/ease ccmsistency for distributed .fhared mem
ory. Ph.D. Thcsis. Ricc University. January 1995. 

[KEL 97) P. Kelcher and C. Tseng. Enhancing Software DSM for 
Compilcr-Paralldized Applications. In Proceedings of the IIth Inter
national Parai/e/ Proce.uing Symposium. April, 1997. 

[LU 97] H. Lu. S. Dwarkadas. A. L. Cox and W. Zwanenepoel. Quantifying 
the Performance Differences Bctween PVM and TreadMarks. Joumal 
of Parai/e/ and Distributed Computation. 43(2}:65-78. June 1997. 

[LU 98) H. Lu. Y.C. Hu. and W. Zwancnepoel. OpenMP on Networks of 
Workstation. In Proceedings of Supercomputing'9R. Orlando, EUA. 
Novcmber 1998. 

[MAT 89) Mattem. Vinual time and global states of distributed systems. 
In Parai/e/ and Di.ttributed Algorithms. Elsevicr Science Publishers, 
1989. 

[MON 98] L. R. Monnerat and R. Bianchini . Efficiently Adapting to Shar
ing Pattems in Software DSMs. In Pmceedings of tlze 4th Symposium 
on High Petformcmce Computer Arclritecture, January. 1998. 

[SAM 98) R. Samanta. A. Bilas. L. lftode and J. Singh. Home-based SVM 
protocols for SMP clusters: Design and Performance. In Proceedings 
of tire 4th Symposium 011 Higlr Performance Computer Arclzitecwre. 
February I 998. 

[SAT 94) L. M. Sato. Programming language for multiprocessor systems 
with memory hierarchy. In: Simposio Nipo-brasileiro de Ciência e 
Tecnologia, pages 227-35. Sao Paulo. Brazil, 1994. 

[SAT 95] L. M. Sato. Ambientes de Programacao para Sistemas Paralelos 
e Distribuídos. Tese de livre docência. Escola Politécnica da Universi
dade de Sao Paulo. Sao Paulo (Brazil). I 995. 

[S IN 92] P. Singh, W. Weber and A. Gupta. SPLASH: Stanford para! lei ap
plications for shared-memory. Tec/mical Repor/. Stanford University. 
April 199 1. 

[STE 97) R. Stcts. S. Dwarkadas. N. Hardavellas. G. Hunt, H. Kon
tothannassis.S. Parhasarathy and M. Scott. Cashmere-2L: Software 
Cohcrent Shared Mcmory on a Clustcrcd Rcmote Write-Network. In 
Proceedit1gs oftlre 16th ACM Symposium on Operating Systems Prin
cipies, Octobrc 1997. 

[TOR 96) F.Torrcs-Rojas and M. Aharnad. Plausible Clocks: Constant Size 
Logical Clocks for Distributed Systems. In Proceedings oftlre JOtlz Jn
ternational Work.slwp on Distributed Algoritlzms. WDAG96, Bologna. 
ltaly, Octobrc 1996. 


