
SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 205

A Robust Causal Order Protocol
George Marconi de A. Lima, Raimundo 1. de A. Macêdo

Universidade Federal da Bahia
Laboratório de Sistemas Distribuídos - LaSiD

Prédio do CPD-UFBA, Campus de Ondina, 40.170-11 O Salvador, BA, Brasil
{ gmli ma, macedo}@ lasid.ufba.br

Abstract-
This paper presents a robust causal order protocol

implemented for the BCG platform (Reliable Group
Communication Base) developed at LaSiD/UFBA (Distributed
System Laboratory at UFBA). It was designed using a
symmetric message recovery approach in which any process of
lhe group can detect and retransnút nússing messages
providing a reliable message recovery mecharúsm. Its
algorithm, based on certain properties and structures of the
BCG, makes lhe proposed protocol more flexible than sinúlar
prolocols published to date. Data collected from experiments
are also reported.

Keywordr- robust network protocols, message recovering,
group communication protocols, causal ordering.

I. INTRODUCTION

The group communication paradigm has been
extensivcly used and recommended to provide support for
reliable distributed applications [BSS91, CV95, CZ85,
EMS95, Mac94, VRV93]. such as load balance and fault
tolerance. In such a paradigm processes are organised in
sets, called groups, and ali messages are multicast to the
whole group. In order to preserve consistency, the group
communication protocols have to offer certain services such
as message ordering, membership and fl ow control which
providc transparent co-operation among processes in the
group as well as reduce complexity at the application levei.

We can divide a group communication protocol into
thrce main laycrs according to their goals. The lowest is the
communication layer, called multicast layer, responsible for
mcssage transmissionlreceiving operations. The highest
layer is the application layer and between both these layers
the group communication layer 1 is found. Problems such as
message ordering, membership agreement, etc. are solved
in th is middle layer. It is interesting to note that in th is
layered model if a problem is solved in a lower layer the
upper ones need not worry about it, simplifying their
functions.

If the missing message problem is solved in the
multicast layer it is called a reliable multicast layer (i.e. it
guarantees that there is no missing message). Because of

1 This is a simplified view but it is useful to our objectives.
Some group communications protocols have their middle
layer composed by other layers such as in [RBM96].

this guarantee we can design weaker group protocols above
it. In general a reliable multicast protocol works using
stabil ity of messages defined at the receiving time. In other
words, if a message is known to be stable by the sender (it
was reccived by ali receivers) then the sender can discard
the message. However, as a received message is kept in
local buffers until delivered to the application, the sender
does not know if a received message is delivered in reality.
The majority of multicast protocols assume that received
messages will always be delivered.

On the other hand, a situation where more flexibility is
required may occur. For example, consider that the local
buffer of a receiver process is full and a message, m', with
higher priority associated to it arrives. An already lower
priority received message which sti ll has not been delivered
could be dropped so that the receiver process is able to get
m'. In fact, some researchers argue that delivered messages
must be kept in local buffers until known to be delivered by
ali members of the group [MES96, EMS95] (stability
defined at the delivery time). Another situation where a
flexible protocol is required is when some m1ssmg
messages are no longer necessary. For instance, in some
multimedia applications the messages have a lifetime
associated to them. Thus if the time from sending to the
delivery operations is greater than its lifetime the messages
do not actually have to be delivered [BMR94). Such
messages have to be discarded instead of being considered
lost. The problem is that there is no necessary information
to solve this problem in the multicast layer. Consequently if
the missing message problem is solved in this layer,
recovery of unnecessary discarded messages will waste
computation time.

However, if the missing message problem is solved in
the middle layer we can use the semantic of group
communication ordering protocols to recover missing
messages as well as make the multicast layer simpler and
faster. In order to do this the stability of messages defined
at delivery time can be used. Furthermore this approach
makes the protocols more flexible. We can, for example,
discard already received messages (if necessary) or not
worry about expired messages (i f they exist)2

.

2 In this paper we do not treat these problems. Only the
missing message problem is treated.

206 SBAC-PAD'99 llrh Symposium on Compurer Architecrure and High Performance Computing- Natal - Brazil

This paper presents a new causal arder protocol which
recover missing messages at the group communication
layer. It was designed as a symmetric message recovery
procedure where any process of the group can detect and
retransmit missing messages providing a flexible and
reliable recovery mechanism. Its algorithm was based on
certain properties and structures of BCG protocols and on
mcssage stability information3 exchanged among the
processes by the causal order protocol of BCG (Mac95,
LM97 , LM99] (thc relative causal order protocol). The
BCG is a distributed group communication platform,
implemented in C++ over a network of Unix workstations
at LaSiD/UFBA, with the objective of providing a suitable
environment for the design of reliable distributed
applications.

This text is organised as follows. Section li presents
basic concepts about multicast protocols and the missing
message problem, charac terising them. Section Ili describes
BCG architecture and section IV summarises the BCG
causal order protocol. Our recovery algorithm is presented
in section V. Finally section VI concludes this paper.

li. BACKGROUND.

According to the way messages are recovered, the group
communication protocols can be classified into two main
categories: the sender-initiated and receiver-initiated. In the
first the responsibility for ensuring reliable delivery lies
with the sender who reccives positive acknowledge
mcssagcs (ACK) from the receivers keeping information
about the state of communication up to date. Missing
messages are detected only at the sender through the
absence of ACKs in a timeout pcriod. The principal
disadvantage of this approach is its poor scalability and
throughput because the amount of information kept by the
sender is dependent on the group size. As well as this the
volume of ACK messages can cause ACK implosion. In
contrast, the receiver-initiated approach is based on
negative ack.nowledge messages (NACK) sent by the
receivers when they detect losses of messages. In this case
the sender retransmits any of the reported missing
messages. Although this second type has better scalabi lity
(it is independent of the group size), the sender cannot
know which messages have been received and cannot
discard them for long periods. In a rder to overcome the
limitations of both approaches there are severa) proposed
improvements. [Bar98) classifies them into different groups
according to thcir ch!:lracteristics. See a brief summary
below:

• lmplosion avoidance optimisation. There are four
categories: tree-based, where receivers are organised
according to a tree structure to minimise the number of

3 In this text stabiliry refers to stability at delivery time.

ACKs because each receiver only sends a feedback
message to its parent; period-based scheme, where
periodically receivers send feedback information
related to a block of messages instead of individual
messages; and delay-based, where NACK messages
are multicast to the group when a missing message is
detected by a receiver. In this approach any receiver
can retransmit, however, to avoid rctransmission
implosion, delays are associated with thc processes.
The latter approach is known as polling-based scheme
where only a subset of receivers is responsible for
sending ACKs to the sender, reducing the number of
ACK messages.

• Organisation (or model). The organisation can be
centralised, hierarchic or symmetrically distributed. In
the centralised organisation the sender handles
feedback information (ACK or NACK) from ali
receivers and this can cause implosion problems and
thus scalability problems. Scalability can be increased
in the hierarchic model (tree-based optimisation) given
its characteristics as explained above. In the
symmetrically distributed model, SRM [FJMLZ95], an
example of this, any receivers which have received a
message as well as the sender are able to retransmit it.
After a receiver detects missing messages it multicasts
a NACK and waits for the mcssages. This lattcr
approach uses the many-to-many group communication
paradigm while the others use one-to-many.

Using this classification our recovery protocol was
based on the symmetrically distributed model, providing
decentralised errar recovery as wcll as using the periodic
scheme to avoid the problem of implosion. Periodically
receivers multicast an ACK message to confirm ali received
messages. Based on stability and ordering information any
process in the group is able to detect and retransmit missing
messages. In fact, these periodic messages already exist in
an asynchronous group communication protocol as 1 am
ative · messages to implement membership and failure
detection services [Mac94).

Ill . AN ÜVERVIEW ÜFTHE BCG

BCG provides severa! group communication services,
allowing message exchange through distributed
applications under the group communication paradigm
(Fig.l). In the BCG core, causal [Mac95), total [Mac94,
MS95, EMS95) ordering, membership [EMS95, GM98)
and flow control [MES95) protocols are implemented. The
multicast layer implements the communication system
using as network communication subsystem UDP or
TCP/IP protocols. The UDP protocol is considered only for
causal order protocol over which we have implemented a
message recovery mechanism.

SBAC-PAD'99 Jlth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 207

BCGcore

Fig. l The Architecture o f the BCG.

The protocols and services of the BCG were designed
using the distributed asynchronous system model where a
set of processes may be distributed in distinct processors or
sites and there are no known bounds for message
transmission and processing times. Originally the following
were the assumptions: (I) only process crash faults exist
(i.e. processes stop functioning); (2) once a message has
been scnt, eventually it is rcceived at the destination; (3) the
multicast layer provides FIFO order between any pairs of
processes. Assumption (I) is related to process fault model
while the others are related to communication layer. Here
we have widened assumption (2), assuming message
omission faults, and climinated assumption (3). Obviously
in an asynchronous model the concept of omission faults is
not precise because lost and late message cannot be
distinguished. Thus, we regard either missed or too late
messages as communication omission faults (or simply
omission faults) and use a predefined timeout value to
detect them.

We assume the process crashes are dully treated by the
membership service of BCG. That is, a process crash will
always be detected and the crashed process removed from
the group membership. Furthermore, group view changes
and message delivery will be reported in a mutually
consistent way to ali functioning group processes (i.e.
synchronous view semantics). For details refer to [Mac94,
EMS95 , GM98]. As in this paper we do not directly address
process crashes (as this is handled by the membership
protocol mentioned), we assume that a message sent by a
functioning group member will arrive at its destinations
after a finite number o f retransmissions.

We also consider that periodic messages, called null
messages, are multicast to the group by the timesilence
mechanism (Fig. l). Such messages are necessary for the
failure detection and membership services to work properly
[EMS95, Mac94]. Our proposed message recovery protocol
takes advantage of these null messages, used as ACK
messages, to detect missing messages and minimise the
implosion of ACKs.

Before describing our protocol in the following sections
we will present some concepts of the BCG causal protocol,

causal blocks, and block matrix [MES93, Mac95). Causal
blocks and block matrix are structures designed to maintain
ordering and reliability information for group
communication [MES93, Mac94].

A. An Overview ofthe Causal Blocks Mode/

Considcr a group o f processes g = { Pt , P2, ... , Pn}. Each
process p; has a logical clock BC; (Block Coullter) which is
initialised with zero by ali processes of g when g is created.
Transmitted messages are timestamped with block numbers
(i.e. Block Counter values at sending time), and, as is the
case in Lamport 's Logical Clock [Lam78], timestamping
using Block Counters will respect causality [Mac95]. The
two events under which BC; is incremented is send;(m) and
deliver;(m):

(Rl.O) Just before send;(m): BC;= BC;+ I; m.b =BC;.
(Rl.l) Just before deliver;(m): BC;= max{ BC; ,m.b }.

According to the rules above, as shown in [Mac94,
Mac95], any distinct messages m and m' are related such
as: send(m) ~ send(m') ::) m.b < m'.b 4 . As well as this,
any distinct messages multicast with the same block
number are necessarily concurrent and these messages must
have been multicast by distinct processes.

Let us consider a bi-dimensional matrix, BM, called
block matrix, kept by ali processes p; which belong to g.
Each row p of BM;, called Causal Block BM;[p], represents
the transmitted or received messages by Pi. such that their
block numbers are equal to p. The number of columns of
BM corresponds to lgl (the size of g). Whenever a process p;
sends or receives a multicast message m with a new block
number W it sets BM; lP'Hm.s] = '+', where m.s represents
the sender of m, in order to represent the send/receive
operations, respectively.

Fig.2 shows a BM for a group with six processes.
Supposing that this is the BM of p1 it indicates that the last
transmitted message has a block number equal to 5 and the
last received messages from p2, p3, p4, Ps and p6 have,
respectively, 6, 3, 4, 5 and 2 as their block numbers.

BC Pt P2 P3 P4 Ps P6

I + +
2 + + +
3 +
4 + + +
5 + +
6 +

Ftg.2 A BM for a group wuh stx processes.

4 The symbol ~ corresponds to the happen-before relation
[Lam78].

208 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

Based on the rules above and on this representation it is
interesting to note that:

• In a Causal Block only concurrent messages are
represented.

• Consider m and m', represented in BM[p] e BM[p'],
rcspcctivcly, and m ~ m' then P < P'.

For more detailed description see [Mac94).

IV. CAUSAL O R DER PROTOCOL

Consider that any transmitted message m is
timestamped not only with its block number, m.b, but also
with the block number of the last delivered message from
each o f the group members at the time m is sent. When m is
received at a destination process p, it can be delivered
immediately after the messages represented by those block
numbers (messages which causally happened before m)
havc also been delivered. In order to do so each process p;
E g = { p1 ,p2 ·····Pn} maintains a vector o f block numbers o f
last delivercd mcssages (LDV - Last Delivered Vector)
whose size is equal to lgl. Thus the LDV and the block
number are the timestamps of every transmitted message m
(m.ldv and m.b, respectively). Assuming that m.s represents
the identifier of the process which sent m, the following
rules, executed by p;, are responsible for updating LDV;:

(R2.0) J ust before send,(m):
(R2.1) Just after send;(m):
(R2.2) Just after deliver;(m):

m.ldv f-LDV;5
.

LDV;[i) f- m.b.
LDV[m.s) ~ m.b.

As the LDV represents the causal relation among
distributed events, in order to deliver any received message
m, a process p; E g must compare its LDV with m.ldv
according to the following rule:

Delivery Condition Rule: m can be delivered by p; if
m.ldv[j) ~ LDV;[j) for ali Pi E g.

The properties and proofs of the protocol can be seen in
[Mac94, Mac95).

V. ADDING ROBUSTNESS TO THE CAUSAL ÜRDER

PROTOCOL

The causal relation among messages is represented by
the LDV as seen in the section above. In fact, such a vector
brings information about stability and can be used for
adding robustness in the causal a rder protocol. The basic
idea is to maintain the LDV of the last received message. In

5 The symbol ~ represents an attribution operation.

order to do this each process p; E g keeps a matrix of LDV,
termed MLDV6

, updated as follows:

(R3.0) At receive;(m): if m.b > max(m'.b) I m'.s = m.s
then MLDV;[m.s) ~ m.ldv.

(R3.1) At transmitter;(m): MLDV;[i) ~ mi.ldv.
(R3.2) At deliver;(m): MLDV;[i][m.s) ~ m.bn.

It is interesting to note that while LDV; represents
knowledge of p; about the delivered messages in g, MLDV;
represents the 'view' o f p; about the LDV knowledge of
other processes in g. Our recovery algorithm is based on
this 'view'. However, this is insufficient for the design o f a
robust protocol. More information is necessary if we want
to know i f a message has been missed. This can be obtained
through knowledge about received messages.

Definition7
: Considera group g = {P~o P2·····Pnl· Take

the greatest block number, p, called MB (maximum block
number), such that for ali j (PiE g), 1 ~ j ~ n, the j'h entry o f
BM[P] ei ther (1) has , +, or (2) is a blank and therc cxists P'
> P such that t entry o f BM[P'J has a '+ '.

The MB value, calculated by ali processes in the group
g and sent together with any transmitted message, is used to
maintain a MBV (MB Vector) which has one entry for each
process of g. Such a vector is updated at
receiving/ transmission operations as follows:

(R4.0) At receiver;(m): i f m.b > max(m'.b) I m'.s = m.s
then MBV;[m.s) ~ m.mb.

(R4.1) At transmitter;(m): MBV;[i) ~ m.mb.
According to the rules above, MBV; maintains the p;'s

knowledge of the MB values of ali processes in g. Thus,
any process p; E g using its knowledge about delivered
(MLDV) and received messages (MBV) can suspect losses
o f messages.

(P 1.0) Property: I f a message m, sent by a process Pk E g,
was not received by any Pi e g thcn there exist
some processes p; E g (i :F: j) which received m
such that eventually MLDV;[j)[k) < m.b <
min(MBV;).
Proof Considera group g = {P~o P2·····Pnl · The
proof will be in two parts.

6 Although LDV; and MLDV;[i) have the same meaning,
we wi ll use both to maintain compatibility with the original
causal order protocol [Mac94, Mac95) .
7This definition corresponds to the block completion
definition [Mac94). Howcver, we cannot use the same term
because we have assumed different hypothesis (section lll).

SBAC-PAD'99 Jlth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 209

Part I . MLDVJj)[kJ < m.b: if a message m with block
number m.b sent by Pk was not received by Pi then
LDVj[k] < m.b and k :t:. j. Due to the timesilence
mechanism and as the LDV values timestamp any
transmitted message (by R2.0), p; will eventually
receive a message from Pi (section III) making
MLDV;UJ equal to LDVi (by R3 .0).

Part 2. m.b < min(MBV;): As every process pi always
transmits messag~s (timcsilence mechanism) and
the Causal Block advances during transmission (by
RI.O) MBV;[i] will also advance. As rulc R4.0
advances MBV;[k] (i :t:. k), eventually m.b <
min(MBV;).

Based on the property above a process can compare its
MLDV and min(MBV) values to suspect i f other processes
have missed any message. lf so, the process can retransmit
them. This is the basic idea of the recovery algorithm
described below.

(RS.O) Retransmission Condition Rufe: any message mk
E BM; (m.s = Pk) such that MLDV;[j](k] <
min(mk.bn) < min(MBV;) and i :t:. k =F- j, can bc
retransmitted by p; E g = {p" P2·····Pn l ·

As we can see the detection of missing messages is
dependent on the activity of the group. That is, missing
messages are only detected when processes receive a
message informing thc state of the process which missed
thcm. Thcrcfore, if the group is very active, missing
messages are detected fast otherwise the recovery and
detection can be slow. Thus the null message transmission
procedure has a fundamental role in the performance of the
recovery mechanism. However, if there is a high frequency
of transmissions of null messages it can increase the
network load. It is, therefore, necessary to balance time of
rccovery and timesilence mechanism.

8. The Algorithms

The figures 3 to 6 represent the algorithm of the
proposcd protocol. Each procedurc is an independent thread
which runs concurrently in a process and every process in a
group runs the same algorithms in a symmetric approach.
Fig.3 illustrates the detection and retransmission procedure.
As soon as this thread detects a missing message (line 3) it
sets a random timeout to send such a message (line 4). This
timeout is an optimisation to avoid retransmission
implosion because ali processes in the same group can
detect the same faults. This timeout can be cancelled before
the retransmission (the !ines 7 and 8 of Fig.4). With a
suitable adjustment of this timeout the number of
retransmissions can be decreased.

It is interesting to note that only the message with the
smallest block number is retransmitted. The reason for this

is that such a message happened before the others (causal
relation). Therefore there is no guarantee that these
messages have not been received (MLDV is a view of
delivered messages). Once the first message is recovered a
retransmission procedure will be restarted if another
missing message is detected.

Procedure send_missing_message

I . Do it forcvcr
2. i f min(MBV) has changcd
3 V mk E BM; I R5.0 is valid
4 . after a random timeout send m with minimum

block number
S.cnddo

Fig.3 Message detection and retransmission procedure.

The rcceiving, transmitting and delivery procedures, are
showed in thc figures 4 to 6. Their algorithms, together
with the procedure above implement the rules vicwed in the
earlier sections.

Procedurc recciver

I. Do it forever
2. receive m from the transpor! layer
3. i f thcre is any timeout to re transmit m then

set a new timeout
4. else
5. if m.b > max(m'.b) I m'.s = m.s V received m'

then
6. MLDV;[m.s] f- m.ldv; MBV;[m.s] f- m.mb
7. i f thcre is any timeout for any m' and

R5.0 is not valid then
8. cancel the timeout
9. i f m e BM; then
10. mark BM;[m.b] with a'+'; BM;(m.b] f- m
11 . start delivery procedure.
12.enddo

Fig.4 Recovery procedure.

The receiving procedure receives messages from the
transpor! layer, executes certain actions and starts the
delivery procedure. First of ali , in order to minimise the
number of retransmissions, if thcre is any pending timeout
for the receivcd message a new timeout is set (line 3) and
the received message is discardcd. The timeout is only
cancelled in line 8 i f the retransmission condition rule is no
longer valid. As messages do not arrive in FIFO order, only

210 SBAC-PAD'99 11th Symposium 011 Computer Architecture and High Performance Computing - Natal- Brazil

receiving of messages with the greatest block number can
update MLDV (line 5). Finally received messages are put in
BM and the delivery procedure is started as well. Due to
message retransmissions, these final actions are performed
i f received messages are not yet present in BM.

The transmission and delivery procedures, Fig.5 and
Fig.6, are simpler and very similar to the original causal
protocol [Mac95].

Proccdurc transmittcr

I . BC; = BC; + I ; m.b = BC;
2. m.ldv ~ LDV;
3. MLDV;[i][i] ~ LDV;[i] ~BC;
4 . BM;~m

S. multicast m through the multicast layer

Fig.5 Transmission procedure.

As we can see in these algorithms, the protocol can
easi ly be modified to gain flexibility according to the
semantic of the application. For instance, considcr a
distributed multimedia application . If a proccss discovers
that a message does not make sense (i .e. its lifetime is
expired) it can advance its LDV without delivering the
message and the recovery proccdure will not bc started.

Proccdure detiver

I. i f 3 m E BM; I m is not delivered A m.ldv ;::: LDV;
then
2.
3.
4.
S.

detiver m to p;
BC;~ max{BC;, m.b)
MLDV;[i][m.s] ~ LDV;[m.s] ~ m.b
signal detiver procedure recursively

Fig 6. Delivcry procedure.

C. Correctness

In order to prove the correctness of the protocol we have
to prove the theorem below:

(TI.O) Every missing message is detected, eventually
recovered and delivered without violating causality.
Proof: [Mac94] has proved that any sent message
will be eventually delivered by the original causal
order protocol. The lemmas below prove the other
parts o f the theorem.

The lemmas Ll.O and Ll.l show the livencss property
of the protocol, i.e., ali missing messages are eventually
detected and recovered. With regard to the safety property
we will see that neither the message rctransmission
procedure nor the multicast layer assumptions have any
effect on the message delivery order (L1.3). Finally lemma
Ll.2 shows that any detected missing message is a valid
message. As stated before we assume that a membership
and a timesilence services exit in arder to guarantec that
functioning members always have a mutual consistent vicw
o f thc group membership.

(Ll.O) The existcnce of a missing mcssage is eventually
detected (liveness).
Proof: The detcction of a missing message m by a
process p; E g = { p ,, P2· ... , Pn l happens when
MLDV;[j][k] < min(m.bn) < min(MBV;),
supposing that m was originally sent by Pk E g and
was not received by some P; E g. According to
property P 1.0 the relation above is eventually true,
and so the detection is also cventually true. In the
worst case there is only one detecting process, the
original sender process (pk = p;).

(L 1.1) Lemma: A missing messagc is eventually received
and delivered (liveness).
Proof Recalling our assumptions, any transmitted
message arrive at its destination after a finite
number of retransmissions. As a detecting process
retransmits a given mcssage aftcr it detects the
missing (Fig.3), at least one of the retransmissions
will arrive succcssfully, otherwisc the group is not
a connected one.

(Ll.2) Lemma: A detected missing message m is a valid
message (was originally sent by a process
bclonging to g) (validity) .
Proof: Consider a group g = { Pto P2·····Pn} and
suppose that m was detcctcd as a missing message
by p; E g. Thus, MLDV;[j][k] < m.bn <
min(MBV;) (by R5 .0) for some P; E g and Pk E g.
This means that p; has received m from Pk and
delivered it. As m was delivered by p;, m is a valid
message.

(Ll.3) Lemma: A received message is delivered without
violating causality (safaty).
Proof Consider a group g = { Pto P2·····Pn).
Suppose by absurd that a message m, such that m'
~ m, was delivered by P; E g and m' was not yet
delivered by Pi· Now suppose without losing of
generality that m' was sent by p; E g with i -:1:- j. If
P; delivered m, LDV; ;::: m.ldv and so LDV;[i] ;:::
m.ldv[i] . As m' ~ m, m'.ldv[i] ~ m.ldv[i]. By rule

SBAC-PAD '99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil ill

R2.2 it is known that LDVj[i) only advances when
Pi delivers messages sent by p;. Therefore m' must
have been delivered by Pi before m (contradiction).

VI. IMPLEMENTAT!ON

The protocol proposed was implemented in C++ over a
nctwork of Unix workstations. An experiment with a group
of three processes was configured where the timesilence
mcchanism was set to transmit messages at intervals of
500ms for ali processes. One o f thcse processes was chosen
as the sender and the others the receivers. The receiver
processes were also able to retransmit messages when they
detected loss of messagcs.

Messages with block numbers between 10 and 15 were
dropped at one of the receivers. The figure 7 shows when
these missing messages were received by this receiver. The
first line of the figure is the BC values of such a receiver8

.

The line named Rcv represents which mcssages werc
recovered (indicted by their block numbers). Thus we can
sce that message I O was recovered when the BC was 17,
i.e., after receiving message 16. It interesting to note that
message I O was recovered twice. This is because both the
transmitter and the other receiver retransmitted it.

Illustration of the message recovery protocol for a
group of three processes.

VII. CONCLUSIONS

The missing message problem has an important
intluence on distributed protocol implementation. The
performance and complexity of distributed protocols
depend on the decision of where and how to detect and
recover missing messages. To our best knowledge, the
protocols developed to date [MRTW97, PSLB97, YGS95,
BSS91) were designed to recover missing messages based
on information at the receiving time. As we have discussed
earlier, recovery based on this kind of information can be
too restrictive for certain types of applications. We have
contributed to the area by proposing and implementing a
new message recovery mechanism based on stability
defined at the delivery time. According to the semantic of
application, the protocol can be configured to ignore
expired messages or discard already received messages by
properly manipulating· the MLDV vector. This can be very
useful for soft real-time applications which have lifetimes
or priorities associated to transmitted messages.

8 As our objective is only to illustrate the behaviour o f the
recovery procedure instead of to quantify its performance,
the measurements are based on logical time.

Moreover, our protocol was designed as a symmetric
recovery procedure in which any process of the group can
detect and retransmit missing messages. This characteristic
contrasts with the majority of message recovery protocols
proposed to date where the responsibility of the message
retransmissions generally lies only with the sender (unique
point of failure). Although SRM [FJMLZ95) is also
symmetric, it does not take advantage of message delivery
information at the group communication service levei (e.g.
causal order protocol levei).

ACKNOWLEDGEMENTS

This work was partially supported by LOCUS/ProTeM­
CC project (Phase III) and the second author is also
supported by CNPq Grant 300013/87-6 (BCG Research
Project).

REFERENCES

[ACM95] G. A. Alvarez, F. Cristian and S. Mishra. On-Demand
Asynchronous Atomic Broadcast. 5'h IFIP Working
Conf. on Dependable Computing for Criticai
Applications, 1995.

[BJ87) K. Birman, T. A. Joseph. Reliable Communication in
the Presence of Failures. ACM TDCS, (5,1). pp. 47-
76, !987.

[Bar98] Barcellos, A. M. P. PRMP: A Scaleable Polling-based
Reliable Multicast Protocol. Ph. D. Thesis. Newcastle
upon Tyne, September 1998.

[BMR94] R. Baldoni, A. Mostefaoui and M. Raynal, Causal
Deliveries in Unreliable Networks with Real-Time
Delivery Constraints. Technical Report 2427, INRIA.
December 1994.

[BSS9!] K. Birman, A. Schiper and P. Stephenson. Lighweight
Causal and Atomic Group Multicast. ACM
Transaction on Computing Systems, (9,3), pp. 272-
314, August 1991.

[CV95] F. J. N. Cosquer and P. Veríssimo. The lmpact of
Group Communication Paradigms on Groupware
Support. Proc. of the 5'h Workshop on Future Trends
o f Distributed Computing Systems. Korea. 1995.

[CZ85] D. Cheriton, W. Zwaenepoel. Distributed Process
Groups in V Kernel. ACM TOCS, (3,2), pp. 97-107,
1985.

[EMS95] P. O. Ezhilchelvan. R. A Macêdo and S. K.
Shrivastava. Newtop: A Fault-Tolerant Group
Communication Protocol. Proc. of the 15th
lntemational Conference on Distributed Computing
Systems, IEEE Computer Society, pp. 296-306,
Canadá , June 1995.

[FJMLZ95]S. Floyd, V. Jacobson. S. McCanne, C. Liu, L. Zhang.
A Reliable Multicast Framework for Light-Weight
Sessions and Application Leve[Framing. ACM
SIGCOMM'95. Cambridge, USA, August 1995.

212 SBA C-PAD '99 11th Symposium on Compute r Architecture and High Performance Computing - Natal - Brazil

(GM98] F. G. P. Greve and R. J. A. Macêdo. The BCG
Membership Service Perfonnance Analysis. In Proc.
of XVI Simpósio Brasileiro de Redes de
Computadores. Rio de Janeiro, May 1998.

(Lam78] L. Lamport. Time, C/ocks and Ordering of Events in a
Distributed System. CACM, (21, 7), pp. 558-265, July
1978,.

[LM97] G. M. de A. Lima and R. J. A. Macêdo. Avaliação de
Desempenho do protocolo BCGcausal Technical
Report, RTI-003/97. November 1997.

[LM99] G. M. de A. Lima and R. J. A. Macêdo. Avaliação de
Desempenho de Protocolos de Ordenação Causal
para Comunicação em Grupo. XXV Conferencia
Lati noamericana de Informática, CLEI99, 1999.

[Mac94] R. J. de A. Macêdo. Fault Toleram Group
Communication Protoco/s for Asynchronous Systems.
Ph.D. Thesis, Computing Science Department ,
University o f Newcastle upon Tyne, UK, 1994.

[Mac95) R. J. de A. Macêdo. Causal Order Protoco/s for
Group Communication. SBRC95, Belo Horizonte­
MG. pp. 265-283, May 1995.

(MES96] R. J. A. Macêdo and P . D. Ezhilchelvan, S. K.
Shri vasta v a. Buffer Overflow A voidance Techniques
for Groups Communication Protocols. SBRC96, pp.
633-652, Fortaleza-CE, May 1996.

[MES93) R. J. A. Macêdo and P. D. Ezhilchelvan, S. K.
Shrivastava. Modeling Group Communication Using
Causal 8/ocks. 5th European Workshop on
Dependable Computing, Lisbon, February, 1993.

[MRTW97]K. Miller, K. Robertson, A. Tweedly and M. White.
Starbus Mulcicasc File Transfer Prococol (MFTP)
Specijication. Internet draft (expired), January 1997.

[PBS89] L. L. Peterson, N. C. Buchholz and R. D. Schlichting.
Preserving and Using Concext lnformacion in
lnterprocess Comunication. ACM Transaction on
Computing Systems. (7 ,3), pp. 2 17-246, August 1989.

[PSLB97] S. Paul, K. Sabnani. J. Lin and S. Bhattacharryya.
Reliable Multicast Transpor/ Protocol (RMTP). IEEE
Journal on Selected Arcas in Communications, Vol.
13, No. 3, April 1997.

[RBM96) R. Renesse, K. Birman and S. Maffeis. HORUS, A
Flexible Gro14p Comm1mication System.
Communication ofthe ACM, Apri11996.

[VRV93] P. Veríssimo, L. Rodrigues and Werner Vogels. Group
Orientarion: a Paradigm for Modem Distributed
Systems. ESPRIT Basic Research Project First Year
Report, volume I , October 1993.

(YGS95) R. Yavatkar, J . Griffioen and M. Sudan. A Reliable
Dissemination for lnteraccive Collaborative
Applications. ACM Multimedia, 1995.

