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Abstract-
This paper presents a robust causal order protocol 

implemented for the BCG platform (Reliable Group 
Communication Base) developed at LaSiD/UFBA (Distributed 
System Laboratory at UFBA). It was designed using a 
symmetric message recovery approach in which any process of 
lhe group can detect and retransnút nússing messages 
providing a reliable message recovery mecharúsm. Its 
algorithm, based on certain properties and structures of the 
BCG, makes lhe proposed protocol more flexible than sinúlar 
prolocols published to date. Data collected from experiments 
are also reported. 
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I. INTRODUCTION 

The group communication paradigm has been 
extensivcly used and recommended to provide support for 
reliable distributed applications [BSS91, CV95, CZ85, 
EMS95, Mac94, VRV93]. such as load balance and fault 
tolerance. In such a paradigm processes are organised in 
sets, called groups, and ali messages are multicast to the 
whole group. In order to preserve consistency, the group 
communication protocols have to offer certain services such 
as message ordering, membership and fl ow control which 
providc transparent co-operation among processes in the 
group as well as reduce complexity at the application levei. 

We can divide a group communication protocol into 
thrce main laycrs according to their goals. The lowest is the 
communication layer, called multicast layer, responsible for 
mcssage transmissionlreceiving operations. The highest 
layer is the application layer and between both these layers 
the group communication layer 1 is found. Problems such as 
message ordering, membership agreement, etc. are solved 
in th is middle layer. It is interesting to note that in th is 
layered model if a problem is solved in a lower layer the 
upper ones need not worry about it, simplifying their 
functions. 

If the missing message problem is solved in the 
multicast layer it is called a reliable multicast layer (i.e. it 
guarantees that there is no missing message). Because of 

1 This is a simplified view but it is useful to our objectives. 
Some group communications protocols have their middle 
layer composed by other layers such as in [RBM96]. 

this guarantee we can design weaker group protocols above 
it. In general a reliable multicast protocol works using 
stabil ity of messages defined at the receiving time. In other 
words, if a message is known to be stable by the sender (it 
was reccived by ali receivers) then the sender can discard 
the message. However, as a received message is kept in 
local buffers until delivered to the application, the sender 
does not know if a received message is delivered in reality. 
The majority of multicast protocols assume that received 
messages will always be delivered. 

On the other hand, a situation where more flexibility is 
required may occur. For example, consider that the local 
buffer of a receiver process is full and a message, m', with 
higher priority associated to it arrives. An already lower 
priority received message which sti ll has not been delivered 
could be dropped so that the receiver process is able to get 
m'. In fact, some researchers argue that delivered messages 
must be kept in local buffers until known to be delivered by 
ali members of the group [MES96, EMS95] (stability 
defined at the delivery time). Another situation where a 
flexible protocol is required is when some m1ssmg 
messages are no longer necessary. For instance, in some 
multimedia applications the messages have a lifetime 
associated to them. Thus if the time from sending to the 
delivery operations is greater than its lifetime the messages 
do not actually have to be delivered [BMR94). Such 
messages have to be discarded instead of being considered 
lost. The problem is that there is no necessary information 
to solve this problem in the multicast layer. Consequently if 
the missing message problem is solved in this layer, 
recovery of unnecessary discarded messages will waste 
computation time. 

However, if the missing message problem is solved in 
the middle layer we can use the semantic of group 
communication ordering protocols to recover missing 
messages as well as make the multicast layer simpler and 
faster. In order to do this the stability of messages defined 
at delivery time can be used. Furthermore this approach 
makes the protocols more flexible. We can, for example, 
discard already received messages (if necessary) or not 
worry about expired messages (i f they exist)2

. 

2 In this paper we do not treat these problems. Only the 
missing message problem is treated. 
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This paper presents a new causal arder protocol which 
recover missing messages at the group communication 
layer. It was designed as a symmetric message recovery 
procedure where any process of the group can detect and 
retransmit missing messages providing a flexible and 
reliable recovery mechanism. Its algorithm was based on 
certain properties and structures of BCG protocols and on 
mcssage stability information3 exchanged among the 
processes by the causal order protocol of BCG (Mac95, 
LM97 , LM99] (thc relative causal order protocol). The 
BCG is a distributed group communication platform, 
implemented in C++ over a network of Unix workstations 
at LaSiD/UFBA, with the objective of providing a suitable 
environment for the design of reliable distributed 
applications. 

This text is organised as follows. Section li presents 
basic concepts about multicast protocols and the missing 
message problem, charac terising them. Section Ili describes 
BCG architecture and section IV summarises the BCG 
causal order protocol. Our recovery algorithm is presented 
in section V. Finally section VI concludes this paper. 

li. BACKGROUND. 

According to the way messages are recovered, the group 
communication protocols can be classified into two main 
categories: the sender-initiated and receiver-initiated. In the 
first the responsibility for ensuring reliable delivery lies 
with the sender who reccives positive acknowledge 
mcssagcs (ACK) from the receivers keeping information 
about the state of communication up to date. Missing 
messages are detected only at the sender through the 
absence of ACKs in a timeout pcriod. The principal 
disadvantage of this approach is its poor scalability and 
throughput because the amount of information kept by the 
sender is dependent on the group size. As well as this the 
volume of ACK messages can cause ACK implosion. In 
contrast, the receiver-initiated approach is based on 
negative ack.nowledge messages (NACK) sent by the 
receivers when they detect losses of messages. In this case 
the sender retransmits any of the reported missing 
messages. Although this second type has better scalabi lity 
(it is independent of the group size), the sender cannot 
know which messages have been received and cannot 
discard them for long periods. In a rder to overcome the 
limitations of both approaches there are severa) proposed 
improvements. [Bar98) classifies them into different groups 
according to thcir ch!:lracteristics. See a brief summary 
below: 

• lmplosion avoidance optimisation. There are four 
categories: tree-based, where receivers are organised 
according to a tree structure to minimise the number of 

3 In this text stabiliry refers to stability at delivery time. 

ACKs because each receiver only sends a feedback 
message to its parent; period-based scheme, where 
periodically receivers send feedback information 
related to a block of messages instead of individual 
messages; and delay-based, where NACK messages 
are multicast to the group when a missing message is 
detected by a receiver. In this approach any receiver 
can retransmit, however, to avoid rctransmission 
implosion, delays are associated with thc processes. 
The latter approach is known as polling-based scheme 
where only a subset of receivers is responsible for 
sending ACKs to the sender, reducing the number of 
ACK messages. 

• Organisation (or model). The organisation can be 
centralised, hierarchic or symmetrically distributed. In 
the centralised organisation the sender handles 
feedback information (ACK or NACK) from ali 
receivers and this can cause implosion problems and 
thus scalability problems. Scalability can be increased 
in the hierarchic model (tree-based optimisation) given 
its characteristics as explained above. In the 
symmetrically distributed model, SRM [FJMLZ95], an 
example of this, any receivers which have received a 
message as well as the sender are able to retransmit it. 
After a receiver detects missing messages it multicasts 
a NACK and waits for the mcssages. This lattcr 
approach uses the many-to-many group communication 
paradigm while the others use one-to-many. 

Using this classification our recovery protocol was 
based on the symmetrically distributed model, providing 
decentralised errar recovery as wcll as using the periodic 
scheme to avoid the problem of implosion. Periodically 
receivers multicast an ACK message to confirm ali received 
messages. Based on stability and ordering information any 
process in the group is able to detect and retransmit missing 
messages. In fact, these periodic messages already exist in 
an asynchronous group communication protocol as 1 am 
ative · messages to implement membership and failure 
detection services [Mac94). 

Ill . AN ÜVERVIEW ÜFTHE BCG 

BCG provides severa! group communication services, 
allowing message exchange through distributed 
applications under the group communication paradigm 
(Fig.l ). In the BCG core, causal [Mac95), total [Mac94, 
MS95, EMS95) ordering, membership [EMS95, GM98) 
and flow control [MES95) protocols are implemented. The 
multicast layer implements the communication system 
using as network communication subsystem UDP or 
TCP/IP protocols. The UDP protocol is considered only for 
causal order protocol over which we have implemented a 
message recovery mechanism. 
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BCGcore 

Fig. l The Architecture o f the BCG. 

The protocols and services of the BCG were designed 
using the distributed asynchronous system model where a 
set of processes may be distributed in distinct processors or 
sites and there are no known bounds for message 
transmission and processing times. Originally the following 
were the assumptions: (I) only process crash faults exist 
(i.e. processes stop functioning); (2) once a message has 
been scnt, eventually it is rcceived at the destination; (3) the 
multicast layer provides FIFO order between any pairs of 
processes. Assumption (I) is related to process fault model 
while the others are related to communication layer. Here 
we have widened assumption (2), assuming message 
omission faults, and climinated assumption (3). Obviously 
in an asynchronous model the concept of omission faults is 
not precise because lost and late message cannot be 
distinguished. Thus, we regard either missed or too late 
messages as communication omission faults (or simply 
omission faults) and use a predefined timeout value to 
detect them. 

We assume the process crashes are dully treated by the 
membership service of BCG. That is, a process crash will 
always be detected and the crashed process removed from 
the group membership. Furthermore, group view changes 
and message delivery will be reported in a mutually 
consistent way to ali functioning group processes (i.e. 
synchronous view semantics). For details refer to [Mac94, 
EMS95 , GM98]. As in this paper we do not directly address 
process crashes (as this is handled by the membership 
protocol mentioned), we assume that a message sent by a 
functioning group member will arrive at its destinations 
after a finite number o f retransmissions. 

We also consider that periodic messages, called null 
messages, are multicast to the group by the timesilence 
mechanism (Fig. l ). Such messages are necessary for the 
failure detection and membership services to work properly 
[EMS95, Mac94]. Our proposed message recovery protocol 
takes advantage of these null messages, used as ACK 
messages, to detect missing messages and minimise the 
implosion of ACKs. 

Before describing our protocol in the following sections 
we will present some concepts of the BCG causal protocol, 

causal blocks, and block matrix [MES93, Mac95). Causal 
blocks and block matrix are structures designed to maintain 
ordering and reliability information for group 
communication [MES93, Mac94]. 

A. An Overview ofthe Causal Blocks Mode/ 

Considcr a group o f processes g = { Pt , P2, ... , Pn}. Each 
process p; has a logical clock BC; (Block Coullter) which is 
initialised with zero by ali processes of g when g is created. 
Transmitted messages are timestamped with block numbers 
(i.e. Block Counter values at sending time), and, as is the 
case in Lamport 's Logical Clock [Lam78], timestamping 
using Block Counters will respect causality [Mac95]. The 
two events under which BC; is incremented is send;(m) and 
deliver;(m): 

(Rl.O) Just before send;(m): BC;= BC;+ I; m.b =BC;. 
(Rl.l) Just before deliver;(m): BC;= max{ BC; ,m.b }. 

According to the rules above, as shown in [Mac94, 
Mac95], any distinct messages m and m' are related such 
as: send(m) ~ send(m') ::) m.b < m'.b 4 . As well as this, 
any distinct messages multicast with the same block 
number are necessarily concurrent and these messages must 
have been multicast by distinct processes. 

Let us consider a bi-dimensional matrix, BM, called 
block matrix, kept by ali processes p; which belong to g. 
Each row p of BM;, called Causal Block BM;[p], represents 
the transmitted or received messages by Pi. such that their 
block numbers are equal to p. The number of columns of 
BM corresponds to lgl (the size of g). Whenever a process p; 
sends or receives a multicast message m with a new block 
number W it sets BM; lP'Hm.s] = '+', where m.s represents 
the sender of m, in order to represent the send/receive 
operations, respectively. 

Fig.2 shows a BM for a group with six processes. 
Supposing that this is the BM of p1 it indicates that the last 
transmitted message has a block number equal to 5 and the 
last received messages from p2, p3, p4, Ps and p6 have, 
respectively, 6, 3, 4, 5 and 2 as their block numbers. 

BC Pt P2 P3 P4 Ps P6 

I + + 
2 + + + 
3 + 
4 + + + 
5 + + 
6 + 

Ftg.2 A BM for a group wuh stx processes. 

4 The symbol ~ corresponds to the happen-before relation 
[Lam78]. 
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Based on the rules above and on this representation it is 
interesting to note that: 

• In a Causal Block only concurrent messages are 
represented. 

• Consider m and m', represented in BM[p] e BM[p'], 
rcspcctivcly, and m ~ m' then P < P'. 

For more detailed description see [Mac94). 

IV. CAUSAL O R DER PROTOCOL 

Consider that any transmitted message m is 
timestamped not only with its block number, m.b, but also 
with the block number of the last delivered message from 
each o f the group members at the time m is sent. When m is 
received at a destination process p, it can be delivered 
immediately after the messages represented by those block 
numbers (messages which causally happened before m) 
havc also been delivered. In order to do so each process p; 
E g = { p1 ,p2 ·····Pn} maintains a vector o f block numbers o f 
last delivercd mcssages (LDV - Last Delivered Vector) 
whose size is equal to lgl. Thus the LDV and the block 
number are the timestamps of every transmitted message m 
(m.ldv and m.b, respectively). Assuming that m.s represents 
the identifier of the process which sent m, the following 
rules, executed by p;, are responsible for updating LDV;: 

(R2.0) J ust before send,( m): 
(R2.1) Just after send;(m): 
(R2.2) Just after deliver;(m): 

m.ldv f-LDV;5
. 

LDV;[i) f- m.b. 
LDV[m.s) ~ m.b. 

As the LDV represents the causal relation among 
distributed events, in order to deliver any received message 
m, a process p; E g must compare its LDV with m.ldv 
according to the following rule: 

Delivery Condition Rule: m can be delivered by p; if 
m.ldv[j) ~ LDV;[j) for ali Pi E g. 

The properties and proofs of the protocol can be seen in 
[Mac94, Mac95). 

V. ADDING ROBUSTNESS TO THE CAUSAL ÜRDER 

PROTOCOL 

The causal relation among messages is represented by 
the LDV as seen in the section above. In fact, such a vector 
brings information about stability and can be used for 
adding robustness in the causal a rder protocol. The basic 
idea is to maintain the LDV of the last received message. In 

5 The symbol ~ represents an attribution operation. 

order to do this each process p; E g keeps a matrix of LDV, 
termed MLDV6

, updated as follows: 

(R3.0) At receive;(m): if m.b > max(m'.b) I m'.s = m.s 
then MLDV;[m.s) ~ m.ldv. 

(R3.1) At transmitter;(m): MLDV;[i) ~ mi.ldv. 
(R3.2) At deliver;(m): MLDV;[i][m.s) ~ m.bn. 

It is interesting to note that while LDV; represents 
knowledge of p; about the delivered messages in g, MLDV; 
represents the 'view' o f p; about the LDV knowledge of 
other processes in g. Our recovery algorithm is based on 
this 'view'. However, this is insufficient for the design o f a 
robust protocol. More information is necessary if we want 
to know i f a message has been missed. This can be obtained 
through knowledge about received messages. 

Definition7
: Considera group g = {P~o P2·····Pnl· Take 

the greatest block number, p, called MB (maximum block 
number), such that for ali j (PiE g), 1 ~ j ~ n, the j'h entry o f 
BM[P] ei ther ( 1) has , +, or (2) is a blank and therc cxists P' 
> P such that t entry o f BM[P'J has a '+ '. 

The MB value, calculated by ali processes in the group 
g and sent together with any transmitted message, is used to 
maintain a MBV (MB Vector) which has one entry for each 
process of g. Such a vector is updated at 
receiving/ transmission operations as follows: 

(R4.0) At receiver;(m): i f m.b > max(m'.b) I m'.s = m.s 
then MBV;[m.s) ~ m.mb. 

(R4.1) At transmitter;(m): MBV;[i) ~ m.mb. 
According to the rules above, MBV; maintains the p;'s 

knowledge of the MB values of ali processes in g. Thus, 
any process p; E g using its knowledge about delivered 
(MLDV) and received messages (MBV) can suspect losses 
o f messages. 

(P 1.0) Property: I f a message m, sent by a process Pk E g, 
was not received by any Pi e g thcn there exist 
some processes p; E g (i :F: j) which received m 
such that eventually MLDV;[j)[k) < m.b < 
min(MBV;). 
Proof Considera group g = {P~o P2·····Pnl · The 
proof will be in two parts. 

6 Although LDV; and MLDV;[i) have the same meaning, 
we wi ll use both to maintain compatibility with the original 
causal order protocol [Mac94, Mac95) . 
7This definition corresponds to the block completion 
definition [Mac94). Howcver, we cannot use the same term 
because we have assumed different hypothesis (section lll). 
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Part I . MLDVJj)[kJ < m.b: if a message m with block 
number m.b sent by Pk was not received by Pi then 
LDVj[k] < m.b and k :t:. j. Due to the timesilence 
mechanism and as the LDV values timestamp any 
transmitted message (by R2.0), p; will eventually 
receive a message from Pi (section III) making 
MLDV;UJ equal to LDVi (by R3 .0). 

Part 2. m.b < min(MBV;): As every process pi always 
transmits messag~s (timcsilence mechanism) and 
the Causal Block advances during transmission (by 
RI.O) MBV;[i] will also advance. As rulc R4.0 
advances MBV;[k] (i :t:. k), eventually m.b < 
min(MBV;). 

Based on the property above a process can compare its 
MLDV and min(MBV) values to suspect i f other processes 
have missed any message. lf so, the process can retransmit 
them. This is the basic idea of the recovery algorithm 
described below. 

(RS.O) Retransmission Condition Rufe: any message mk 
E BM; (m.s = Pk) such that MLDV;[j](k] < 
min(mk.bn) < min(MBV;) and i :t:. k =F- j, can bc 
retransmitted by p; E g = {p" P2·····Pn l · 

As we can see the detection of missing messages is 
dependent on the activity of the group. That is, missing 
messages are only detected when processes receive a 
message informing thc state of the process which missed 
thcm. Thcrcfore, if the group is very active, missing 
messages are detected fast otherwise the recovery and 
detection can be slow. Thus the null message transmission 
procedure has a fundamental role in the performance of the 
recovery mechanism. However, if there is a high frequency 
of transmissions of null messages it can increase the 
network load. It is, therefore, necessary to balance time of 
rccovery and timesilence mechanism. 

8. The Algorithms 

The figures 3 to 6 represent the algorithm of the 
proposcd protocol. Each procedurc is an independent thread 
which runs concurrently in a process and every process in a 
group runs the same algorithms in a symmetric approach. 
Fig.3 illustrates the detection and retransmission procedure. 
As soon as this thread detects a missing message (line 3) it 
sets a random timeout to send such a message (line 4). This 
timeout is an optimisation to avoid retransmission 
implosion because ali processes in the same group can 
detect the same faults. This timeout can be cancelled before 
the retransmission (the !ines 7 and 8 of Fig.4). With a 
suitable adjustment of this timeout the number of 
retransmissions can be decreased. 

It is interesting to note that only the message with the 
smallest block number is retransmitted. The reason for this 

is that such a message happened before the others (causal 
relation). Therefore there is no guarantee that these 
messages have not been received (MLDV is a view of 
delivered messages). Once the first message is recovered a 
retransmission procedure will be restarted if another 
missing message is detected. 

Procedure send_missing_message 

I . Do it forcvcr 
2. i f min(MBV) has changcd 
3 V mk E BM; I R5.0 is valid 
4 . after a random timeout send m with minimum 

block number 
S.cnddo 

Fig.3 Message detection and retransmission procedure. 

The rcceiving, transmitting and delivery procedures, are 
showed in thc figures 4 to 6. Their algorithms, together 
with the procedure above implement the rules vicwed in the 
earlier sections. 

Procedurc recciver 

I. Do it forever 
2. receive m from the transpor! layer 
3. i f thcre is any timeout to re transmit m then 

set a new timeout 
4. else 
5. if m.b > max(m'.b) I m'.s = m.s V received m' 

then 
6. MLDV;[m.s] f- m.ldv; MBV;[m.s] f- m.mb 
7. i f thcre is any timeout for any m' and 

R5.0 is not valid then 
8. cancel the timeout 
9. i f m e BM; then 
10. mark BM;[m.b] with a'+'; BM;(m.b] f- m 
11 . start delivery procedure. 
12.enddo 

Fig.4 Recovery procedure. 

The receiving procedure receives messages from the 
transpor! layer, executes certain actions and starts the 
delivery procedure. First of ali , in order to minimise the 
number of retransmissions, if thcre is any pending timeout 
for the receivcd message a new timeout is set (line 3) and 
the received message is discardcd. The timeout is only 
cancelled in line 8 i f the retransmission condition rule is no 
longer valid. As messages do not arrive in FIFO order, only 
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receiving of messages with the greatest block number can 
update MLDV (line 5). Finally received messages are put in 
BM and the delivery procedure is started as well. Due to 
message retransmissions, these final actions are performed 
i f received messages are not yet present in BM. 

The transmission and delivery procedures, Fig.5 and 
Fig.6, are simpler and very similar to the original causal 
protocol [Mac95]. 

Proccdurc transmittcr 

I . BC; = BC; + I ; m.b = BC; 
2. m.ldv ~ LDV; 
3. MLDV;[i][i] ~ LDV;[i] ~BC; 
4 . BM;~m 

S. multicast m through the multicast layer 

Fig.5 Transmission procedure. 

As we can see in these algorithms, the protocol can 
easi ly be modified to gain flexibility according to the 
semantic of the application. For instance, considcr a 
distributed multimedia application . If a proccss discovers 
that a message does not make sense (i .e. its lifetime is 
expired) it can advance its LDV without delivering the 
message and the recovery proccdure will not bc started. 

Proccdure detiver 

I. i f 3 m E BM; I m is not delivered A m.ldv ;::: LDV; 
then 
2. 
3. 
4. 
S. 

detiver m to p; 
BC;~ max{BC;, m.b) 
MLDV;[i][m.s] ~ LDV;[m.s] ~ m.b 
signal detiver procedure recursively 

Fig 6. Delivcry procedure. 

C. Correctness 

In order to prove the correctness of the protocol we have 
to prove the theorem below: 

(TI.O) Every missing message is detected, eventually 
recovered and delivered without violating causality. 
Proof: [Mac94] has proved that any sent message 
will be eventually delivered by the original causal 
order protocol. The lemmas below prove the other 
parts o f the theorem. 

The lemmas Ll.O and Ll.l show the livencss property 
of the protocol, i.e., ali missing messages are eventually 
detected and recovered. With regard to the safety property 
we will see that neither the message rctransmission 
procedure nor the multicast layer assumptions have any 
effect on the message delivery order (L1.3). Finally lemma 
Ll.2 shows that any detected missing message is a valid 
message. As stated before we assume that a membership 
and a timesilence services exit in arder to guarantec that 
functioning members always have a mutual consistent vicw 
o f thc group membership. 

(Ll.O) The existcnce of a missing mcssage is eventually 
detected (liveness). 
Proof: The detcction of a missing message m by a 
process p; E g = { p ,, P2· ... , Pn l happens when 
MLDV;[j][k] < min(m.bn) < min(MBV;), 
supposing that m was originally sent by Pk E g and 
was not received by some P; E g. According to 
property P 1.0 the relation above is eventually true, 
and so the detection is also cventually true. In the 
worst case there is only one detecting process, the 
original sender process (pk = p;). 

(L 1.1 ) Lemma: A missing messagc is eventually received 
and delivered (liveness). 
Proof Recalling our assumptions, any transmitted 
message arrive at its destination after a finite 
number of retransmissions. As a detecting process 
retransmits a given mcssage aftcr it detects the 
missing (Fig.3), at least one of the retransmissions 
will arrive succcssfully, otherwisc the group is not 
a connected one. 

(Ll.2) Lemma: A detected missing message m is a valid 
message (was originally sent by a process 
bclonging to g) (validity) . 
Proof: Consider a group g = { Pto P2·····Pn} and 
suppose that m was detcctcd as a missing message 
by p; E g. Thus, MLDV;[j][k] < m.bn < 
min(MBV;) (by R5 .0) for some P; E g and Pk E g. 
This means that p; has received m from Pk and 
delivered it. As m was delivered by p;, m is a valid 
message. 

(Ll.3) Lemma: A received message is delivered without 
violating causality (safaty). 
Proof Consider a group g = { Pto P2·····Pn ). 
Suppose by absurd that a message m, such that m' 
~ m, was delivered by P; E g and m' was not yet 
delivered by Pi· Now suppose without losing of 
generality that m' was sent by p; E g with i -:1:- j. If 
P; delivered m, LDV; ;::: m.ldv and so LDV;[i] ;::: 
m.ldv[i] . As m' ~ m, m'.ldv[i] ~ m.ldv[i]. By rule 



SBAC-PAD '99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil ill 

R2.2 it is known that LDVj[i) only advances when 
Pi delivers messages sent by p;. Therefore m' must 
have been delivered by Pi before m (contradiction). 

VI. IMPLEMENTAT!ON 

The protocol proposed was implemented in C++ over a 
nctwork of Unix workstations. An experiment with a group 
of three processes was configured where the timesilence 
mcchanism was set to transmit messages at intervals of 
500ms for ali processes. One o f thcse processes was chosen 
as the sender and the others the receivers. The receiver 
processes were also able to retransmit messages when they 
detected loss of messagcs. 

Messages with block numbers between 10 and 15 were 
dropped at one of the receivers. The figure 7 shows when 
these missing messages were received by this receiver. The 
first line of the figure is the BC values of such a receiver8

. 

The line named Rcv represents which mcssages werc 
recovered (indicted by their block numbers). Thus we can 
sce that message I O was recovered when the BC was 17, 
i.e., after receiving message 16. It interesting to note that 
message I O was recovered twice. This is because both the 
transmitter and the other receiver retransmitted it. 

Illustration of the message recovery protocol for a 
group of three processes. 

VII. CONCLUSIONS 

The missing message problem has an important 
intluence on distributed protocol implementation. The 
performance and complexity of distributed protocols 
depend on the decision of where and how to detect and 
recover missing messages. To our best knowledge, the 
protocols developed to date [MRTW97, PSLB97, YGS95, 
BSS91) were designed to recover missing messages based 
on information at the receiving time. As we have discussed 
earlier, recovery based on this kind of information can be 
too restrictive for certain types of applications. We have 
contributed to the area by proposing and implementing a 
new message recovery mechanism based on stability 
defined at the delivery time. According to the semantic of 
application, the protocol can be configured to ignore 
expired messages or discard already received messages by 
properly manipulating· the MLDV vector. This can be very 
useful for soft real-time applications which have lifetimes 
or priorities associated to transmitted messages. 

8 As our objective is only to illustrate the behaviour o f the 
recovery procedure instead of to quantify its performance, 
the measurements are based on logical time. 

Moreover, our protocol was designed as a symmetric 
recovery procedure in which any process of the group can 
detect and retransmit missing messages. This characteristic 
contrasts with the majority of message recovery protocols 
proposed to date where the responsibility of the message 
retransmissions generally lies only with the sender (unique 
point of failure). Although SRM [FJMLZ95) is also 
symmetric, it does not take advantage of message delivery 
information at the group communication service levei (e.g. 
causal order protocol levei). 
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