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Abstract-
We propose a method for compressing programs running 

on embedded DSPs. Program expression trees are decomposed 
into opcode and operand sequences caUed patterns. We show 
that DSP program patterns have exponential frequency 
distribution. Based on that, we encode pattems using a mix of 
a variable-length and fixed-length codewords. A 
decompression engine is proposed, which converts patterns 
into uncompressed instruction sequences. The experimental 
results reveal an average compression ratio of 67% for typical 
DSP programs running on TMS320C25 processor. This ratio 
includes an estimate of the size of the decompression engine. 
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I. I NTRODUCTION 

Embedded systems are computer systems designed to 
specific application domains. Because they are aimed at 
mass production, minimizing the final cost of such systems 
is a major design goal. As a consequcncc, cmbedded system 
designs are typically constraincd by stringent area, power 
and performance budgcts. In order to reduce the total 
system cost, designers are integrating memories, 
microprocessor cores and ASIC modules into a single chip, 
a methodology known as System-On-a-Chip (SOC). 
Microprocessor cores are select based on the target 
application. In areas that require intcnse arithmetic 
processing, as in telecommunications, Digital Signal 
Processors (DSPs) have been the processor of choice. 

A considerable part of lhe design effort of an embedded 
system is dcvoted to programming the embedded program. 
Due to performance constrains, this task is predominantly 
done in assembly. Programming and debugging embedded 
code is a hard and tim·e-consuming task. Wilh the increase 
in the size of applications, assembly programming has 
become unpractical and error-prone. Compilers like SPAM 
[Sud98]. RECORD [Leu97]. CodeSyn [PLMS94] and 
CHESS [LPK+95] have achieved some success in 
generating quality code from high-level language programs. 
Unfortunately, compilers can reduce lhe program size only 
to some extent. On lhe other hand, embedded programs are 

growing considerably large, to lhe point where the size of 
lhe program mcmory has become the largest share of the 
final die area (cost). A way to reduce program size is to 
compress its instructions, using a decompression engine to 
generate the original code during instruction fetch. This 
paper proposes a compression algorithm and a 
decompression engine target to DSPs. The experimental 
work reveals a 67% average compression ra tio for a set of 
typical embedded programs running on TMS320C25 
processor [Tex90]. 

This paper is divided as follows. Section ll describes 
related work in the arca of code compression. Section III 
details our basic compression algorithm. The 
decompression engine is described in Section IV and lhe 
experimental results are analyzed in Section V. In section 
VI we wrap up lhe work and discuss future research. 

11. PREVIOUS WORK 

The problem of file compression has been extensively 
studied [BCW90]. Almost ali practical dictionary based 
compression tools of today are based on the work of 
Lempel and Zvi (LZ) and its variation [BCW90]. 
Unfortunatcly, algorithms derived from LZ are not suitable 
for real-time code compression. In LZ, codewords are 
decompressed sequentially using as dictionary the string 
formed by ali the symbols already decompressed. This is a 
major drawback i f the codeword encodes a forward branch 
instruction. In the rest of this section we describe only those 
compression techniques lhat are suitable to efficient real
time code decompression. 

Wolf and Channin [WC92] proposed the Compressed 
Code R/SC Processor (CCRP). Programs are compressed 
one cache-line at a time using Huffrnan codewords and 
byte-long symbols. During a cache miss, compressed 
cache-lines are fetched from main memory, uncompressed, 
and stored into cache. Instructions in the cache and main 
memory have different addresses. The CCRP uses a main 
memory table, Line Address Table (LAT), to map 
(compressed) main memory addresses to (uncompressed) 
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cache addresses. In order to reduce the number of accesses 
to the LA T, a Cache Lookaside Buffer (CLB) is provided to 
store the set of most recently used LAT entries. The 
advantage of the CCRP approach is that the latency of the 
decompression engine is amortized across many caches 
hits. On the other hand, the use of a cache makes it very 
difficult to estimate the execution time of embedded 
program. This is a particularly important for embedded 
systems running time criticai applications. Moreover, 
embedded programs are usually stored into fast on-chip 
memories. The average compression ratio achieved by 
CCRP in a MIPS architecture was 73%. This compression 
ratio does not consider the size of the decompression 
engine. 

Wolf and Lekatsas [LW98} studied two different 
methods for code compression. The best compression ratio 
is achieved by their SADC method. In SADC, symbols are 
associated to instruction opcode and operand fields. During 
compression, instruction sequences are selected and a 
stream of bits is derived for each sequence of instruction 
fields. Each stream is then encoded using Huffman 
codewords. The average compression ratio achieved by this 
method in a MIPS architecture was 51 %. Similarly as in the 
CCRP case, the decompression engine size was not taken 
into account. 

Lefurgy et ai [LBCM97] describes a compression 
technique based on dictionary. Common sequences of 
instructions are assigned to a codeword. A dictionary in the 
decompression engine stores the sequence of instruction at 
address given by the codeword. The decompression is 
performed by retrieving the sequence of instructions from 
the dictionary. Because instructions are compressed, the 
target address of jump and branch instructions must be 
recomputed. In order to deal with that, Lefurgy et ai divide 
the target address bits into two parts. The first part stores 
the address of the word where the compressed target is 
located. The second part corresponds to the target offset 
inside the word. The average compression ratio using this 
technique for the PowerPC, ARM and i386 processors were 
61%, 66% and 74%. 

Liao et ai [LDK98] were the first to study the code 
compression problem for a DSP processar. Similarly as in 
[LBCM97], compresscd instructions are stored into a 
dictionary. Liao's idea is to substitute similar instruction 
sequences by sub- routine calls. Instructions are represented 
by boolean variables, and instruction sequence are encoded. 
as minterms. Hence, . the problem of compressing the 
program cam be formulated as set-covering problem. 
Instruction sequences are then converted into call 
instruction to sub-routine in the dictionary. An interesting 
mechanism based on a stack is used to minimize the penalty 
of the sub-routine return instruction. The average 
compression ratio achieved by this in the TMS320C25 
processor was 82%. To the best of our knowledge, apart 

from the work of Liao et ai [LDK98], no other research has 
addressed the problem o f executing DSP code. 

In [ACCP98] we proposed a code compression 
technique for the MIPS architecture. Program expression 
trees are decomposed into sequences of opcode and 
operand patterns, a method called operand factorization. 
The goal of this paper is to verify the effectivcness of the 
operand factorization concept in highly encoded instruction 
sets, like those found in DSP architectures. We also propose 
a decompression architectue for these processors. 

Expression Trees Tree-patterns Operand-patterns 
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Fig. I Factored expression tree 

III. THE COMPRESSION ALGORITHM 

Our compression algorithm is based on patternization 
concept [Pro95] . Patternization (we call itfactorizarion) has 
been used by Fraser et ai [FHRP93] to compress byte-code 
for network virtual machines. The basic operation in 
factorization is the remova! of operands from an instruction. 
First, instruction sequences are selected to correspond to 
program cxpression trees. An instruction is the root of an 
expression tree if: (a) the instruction stores into memory; 
(b) the destinalion operand of the instruction is the source 
of more than one instruction inside the basic block; (c) the 
dcstination operand of the instruction is the source of at 
lcast one instruction outside the basic block. Second, 
expression tree instructions are decomposed into a list of 
instruction opcodes and a list of operands. We use 
expression trees as the basis for compression because 
compilers tend to generate similar expression trees during 
the translation of source statements, Iike if-then-else and 
for. We call each distinct list of opcodes {operands) a tree
pattern (operand-pattenz). Figure 1 shows two expression 
trees from program rx being factored into its tree and 
operand patterns. Notice that both trees have the same tree
pattern. 

The TMS320C25 has 16 bit long instruction that are 
encoded using 16 different formats. Instruction formats use 
opcodes of different lengths and tree addressing modes 
(direct, indirect, and immediate). In the direct addressing 
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mode lhe operand address is encoded into an instruction 
filed . In the indirect addressing mode lhe operand format is 
<ind,next>, where ind is a side-effect operation with lhe 
current address register AR, e.g. auto-increment (*+ ), and 
next is lhe next current address register. In lhe immediate 
mode lhe value of lhe operand is encoded into the 
instruction field. 

In order to measure the contribution of tree and operand 
patterns to the program size we use a set of example 
programs. These programs are representative of the type of 
applications running on embedded processors and DSPs. 
Program jpeg is an implementation of JPEG image 
compression algorithm, bench is a disk cache controller, 
gzip is a compression algorilhm and ser is a set of bit 
manipulation routines from DSP application. Programs hill, 
gnucrypt are data encryption programs, and rx is an 
embedded state machine controlling routine. We first 
generate optimized code for lhe example programs using 
TI's TMS320C25 compiler wilh optimization fl ag -02. 
Second, programs are analyzed such as to identify the set of 
tree and operand patterns that covcr ali program trces. The 
resulting number of tree and operands patterns for each 
program is shown in Table I. 

TABLEI 

NUMBER OFTREE ANO OPERANOS PATTERNS IN A PROGRAM. 

THE NUMBER IN A PARENTHESES ARE PERCENTAGES WITH 

RESPECT TO THE TOTAL NUMBER OF EXPRESSION TREES ANO 

OPERANO SEQUENCES. 

Program Expression Tree-Patterns Operand-
Trces (%) Patterns (%) 

aipint2 1043 90 (8.6) 285 (27.3) 
bench 9483 572 (6.0) 2263 (23.9) 
gnucrypt 3682 263 (7.1) 778 (2 1.1) 
gzip 10835 582 (5.4) 2354 (21.7) 
hill 920 12 1 (13.2) 279 (30.3) 
jpeg 2305 190 (8.2) 563 (24.4) 
rx 563 61 (10.8) 114 (20.3) 
set 4565 3 19 (7.0) 1084 (23.7) 

On avcrage tree (operand) patterns correspond to only 
8.3% (24. 1 %) of ali opcode (operand) sequences in lhe 
programs. The Iist of tree and operand patterns are then 
ordered based on lheir contribution in bits to lhe program. 
The cumulative contribution of lhe patterns to the size of 
the programs is lhen computed. The results are shown in 
Figure 2(a)-(b). Figure 2(a) (Figure 2(b)) shows the 
percentage of the program bits that are covered by tree 

(operand) patterns. In the horizontal axis of each graph, 
patterns are ordered based on their contribution to the 
program size. 
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Fig. 2 Percentage of program bits due to: (a) tree-patterns; 
(b) operand-patterns. 

Notice that the contribution of tree and operand patterns 
in DSP programs is non-uniform. Actually, tree and 
operand patterns have exponential frequency distributions. 
In order words, a small set of patterns covers a large 
number of trees in lhe program. Almost 20% of lhe 
program bits are covered by only 10% of the tree-patterns. 
A similar behavior was also observed for operand-patterns. 
In this case, I 0% of the most frequent operand-patterns 
account for 19% of the program bits. 

A. Expression Tree Compression 

The experimental results in lhe previous section show 
lhat the contribution of tree and operand patterns to lhe 
program size is non-uniform. This suggests lhat patterns 
should be encoded using variable-length codewords 
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[BCW90]. Patterns which have large (small) contribulions 
are encoded using small (large) codewords. The drawback 
of this approach is that it can result in very large codewords 
for those patterns which do not contribute much. Decoding 
very large patterns is a difficult task for the decompression 
engine, given that a codeword can spill across many 
memory words. In order to avoid that, we use a mixed 
encoding method. Patterns are encoded using a mix of 
variable-length and fixed-length (lossy) encoding. An 
escape bit is appended to the beginning of the codeword to 
indicate the encoding method (see Figure 3). We used two 
variable length encoding methods: Huffman and an 
adaptation of the VLC encoding adopted in MPEG-2 
[HPN91]. The main motivation to use VLC is that, unlike 
Huffman, it enables codewords to carry size information. In 
VLC codewords the number of leading zeroes encodes the 
size of the codeword. This makes it easier to design the 
decompression engine logic that extracts codeword from a 
memory word. A compressed expression trec is constructed 
putting together the codewords for the tree and operand 
pauerns that form it. The compressed program, is then 
assembled into a sequence: Tp10p11Tp20p21...1Tpn0Pno 
where Tp; (Op;) is a tree (operand) pattern codeword. 

Expression Trees Tree-pattems Operand-pattems 

LAC *AR2 LAC 
ADDK 7 ADDK *+ 7 *AR2 
SACL *+ SACL 

LAC *·ARO LAC 
ADDK o ADDK * O *-ARO 
SACL * SACL 

Fig. 3 Pattcrn Encoding 

IV. THE DECOMPRESSION ENGINE 

Figure 4 shows the decompression engine for our 
compression algorithm. It consists of a set of state machines 
and dictionaries that generate the various fields of the 
decompressed instruction. An extraction logic extracts tree
pauern Tp from a memory word and decodes it using state 
machine OPGEN. OPGEN generates signals OPSEL and 
OPADDR to select the appropriate opcode bank. Opcodes 
that have similar lengths are stored into the same bank. 
Only opcodes of the instructions in the program are stored. 
After operand-pattern Op is extracted, machines ARGEN, 
INGEN and IMGEN decode the instruction operands. 
ARGEN selects the field of the AR register being used by 
the instruction and INGEN generates the 7 bits that encode 

instruction fields <ind, next>. Instruction immediates are 
generated using the lmmediate Dictionary (IMD).IMD also 
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Fig. 4 The Decompression Engine 

stores the compressed and uncompressed forms of the 
branch target addresses. Immediates are stored into banks 
such that each bank contains immediates of similar sizes. 
An extra bit is used to enable automatic sign extension 
when immediates are retrieved from IMD. State machine 
IMGEN generates the signals (BADDR and BSEL) required 
to address the immediate banks. The various fields of the 
instructions merge into the lnstruction Assembly Buffer 
(IAB), where they are assembled and shipped to the CPU. 

Machines OPGEN, ARGEN, INGEN and IMGEM work 
in parallel. In each cycle they select the appropriate 
instruction fields that are then assembled by IAB into a 
decompressed instruction. The process continues until ali 
the instructions of the current expression tree are 
decompressed (i .e. OPEND = I). The number of state 
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variables is bounded by the size of the largest tree. When 
smaller trees are decompressed the non-used sate variables 
become don ' t cares. 
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Fig. 5 The Branch Address Generator 

A. Branch Addresses 

During a branch instruction (see Figure 5) the following 
is relrieved from IMD: lhe 1arge1 address of lhe original 
uncompressed tree (16 bits) and the address of the 
compressed tree (20 bits). Because variable length 
codewords are used to encode patterns, the address of a 
comprcssed tree can start at any position inside a memory 
word. Hence, the engine must keep track of: (a) the 
memory address of the word where the current compressed 
tree is (16 bits) and (b) the offset, with respect to the 
beginning of that word, where the tree starts (4 bits). The 
computation of the compressed tree location is performed 
by the EXTRACT/ON module. The Memory Data Register 
(MDR) is used to store the mcmory word that contains the 
currcnt compressed tree (remember that one memory word 
can have many compressed trees). The Memory Address 
Register (MAR) stores the address of the next word in 
memory. 

The location of the next compressed tree depends on the 
value of TAKEN (see Figure 5). TAKEN = I if the last 
decompressed instruction passed to the CPU was a branch 
and the branch was taken. Bit BR from OPGEN is active 
during the compression of a branch instruction. TAKEN =O 
i f the last instruction was not a branch and the branch was 
not taken. Signal TAKEN is determined by monitoring the 
progression of the CPU address bus. If during the next 
(program) memory read cycle thc content of the CPU 
address bus equals the last branch target passed to the CPU, 
TAKEN =O and next compressed tree is in MDR, or in the 
fi rst tree of the next memory word. In the first case, the 

EXTRACTION logic removes the tree from MDR and 
passes it to the decoding logic (Figure 4). In the second 
case, MAR is incremented, the next memory word is 
fetched and its first tree is extracted and decoded. This 
approach allows the CPU to see the same addresses as those 
in the original uncompressed program, while the access to 
memory is performed using compressed addresses. Unlike 
the approach in [LBCM97] ours do not require a 
modification of the processor address generation unit. 

v. EXPERIMENTAL RESULTS 

We use the compression algorithm described in Section 
III to compress the programs in our program set. Tree and 
operand patterns are encoded separately using the encoding 
methods discussed in Section III-A. Figure 6 shows the 
compression ratio resulting when patterns are encoded 
using Huffman (Figure 6(a)-(b)) and VLC (Figure 6(c)-(d)) 
codewords. In order to limit the size of the codewords , we 
encode only part of the patterns using a variable-length 
code. The horizontal axes of Figure 6(a)-(d) correspond to 
the number of patterns that are encoded using variable
length codewords. Horizontal axis value 0% (1 00%) is an 
encoding where ali patterns are encoded using fi xed-length 
(HuffmanNLC) codewords and the rest is encoded using 
HuffmanNLC (fixed-length). Since pauern distribution is 
close to exponential (see Figure 2), the more small 
contribution patterns are encoded using variable-length 
codewords, the more the size of the variable-Iength 
codeword approaches that of a fixed-length codeword 
[BCW90] . This is retlected by the saturation behavior of 
the compression ratio in Figure 6(a)-(b). Thus, switching 
from variable-length to fixed-length encoding does not have 
a large impact on the final compression ratio. In fi gure 6(c)
(d) the compression ratio can grow larger than 100% when 
VLC encoding is used. This happens because of the 
presencc of leading zeroes in the VLC codewords, which 
carry only size information. The best split between 
variable-length and fixed-length encoding in a program 
corresponds to the minimum in the curve of that program 
for the selected pattern. For example, when Huffman is 
used to encode gzip's operand-patterns, the best 
compression ratio (37%) is achieved when approximately 
45% of the operand-patterns are encoded using Huffman. 
Figure 7 shows the final compression ratio for the programs 
in our program set, once the size of the engine is taken in to 
consideration. The average compression ratios achieved 
using Huffman (VLC) was 60% (67%). The program 
compression ratio was determined from the mínima of the 
graphs in Figure 6(a)-(d). Figure 7 takes into consideration 
an estimate of the engine dictionaries overhead with respect 
to the uncompressed program. A precise estimate of the 
overhead will only be possible through synthesis of the 
state machines. We do not expect these machines will in a 
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Jarge overhead though. The reason is that many distinct 
patterns have similar parts which will eventually into 
shared logic for the state machines. For example, state 
machine ARGEN will produce the same dictionary address 
for distinct operand-pattems AR3, *+ and AR3, *-, AR4, 
since both use the same address register. 
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VI. CONCLUSIONS 

This paper proposes a code compression technique for 
DSP programs. This approach is based on decomposing the 
expression trees into tree and operands patterns. We show 
that patterns have exponential distributions. We also 
propose a decompression engine that assembles opcode 
and operand sequences into uncompressed instructions. 
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