
SBAC-PAD'99 IIth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 223

Using Operand Factorization to Compress DSP
Programs

Ricardo Pannain 1.
2
, Paulo Centoducatte 2 and Guido Araujo2

1 lnformatics Institute-PUC Campinas
Rod. D. Pedro I Km 136- 13020-904, Campinas-SP Brazil

{ pannai n@ zeus. puccamp.br}
2 Compuling Institute-UNICAMP

Cidade Universitária - 13083-970, Campinas-SP Brazil
(pannain,ducatte,guido@dcc. unicamp.br}

Abstract-
We propose a method for compressing programs running

on embedded DSPs. Program expression trees are decomposed
into opcode and operand sequences caUed patterns. We show
that DSP program patterns have exponential frequency
distribution. Based on that, we encode pattems using a mix of
a variable-length and fixed-length codewords. A
decompression engine is proposed, which converts patterns
into uncompressed instruction sequences. The experimental
results reveal an average compression ratio of 67% for typical
DSP programs running on TMS320C25 processor. This ratio
includes an estimate of the size of the decompression engine.

Keywords- Code Compression, DSP architecture.

I. I NTRODUCTION

Embedded systems are computer systems designed to
specific application domains. Because they are aimed at
mass production, minimizing the final cost of such systems
is a major design goal. As a consequcncc, cmbedded system
designs are typically constraincd by stringent area, power
and performance budgcts. In order to reduce the total
system cost, designers are integrating memories,
microprocessor cores and ASIC modules into a single chip,
a methodology known as System-On-a-Chip (SOC).
Microprocessor cores are select based on the target
application. In areas that require intcnse arithmetic
processing, as in telecommunications, Digital Signal
Processors (DSPs) have been the processor of choice.

A considerable part of lhe design effort of an embedded
system is dcvoted to programming the embedded program.
Due to performance constrains, this task is predominantly
done in assembly. Programming and debugging embedded
code is a hard and tim·e-consuming task. Wilh the increase
in the size of applications, assembly programming has
become unpractical and error-prone. Compilers like SPAM
[Sud98]. RECORD [Leu97]. CodeSyn [PLMS94] and
CHESS [LPK+95] have achieved some success in
generating quality code from high-level language programs.
Unfortunately, compilers can reduce lhe program size only
to some extent. On lhe other hand, embedded programs are

growing considerably large, to lhe point where the size of
lhe program mcmory has become the largest share of the
final die area (cost). A way to reduce program size is to
compress its instructions, using a decompression engine to
generate the original code during instruction fetch. This
paper proposes a compression algorithm and a
decompression engine target to DSPs. The experimental
work reveals a 67% average compression ra tio for a set of
typical embedded programs running on TMS320C25
processor [Tex90].

This paper is divided as follows. Section ll describes
related work in the arca of code compression. Section III
details our basic compression algorithm. The
decompression engine is described in Section IV and lhe
experimental results are analyzed in Section V. In section
VI we wrap up lhe work and discuss future research.

11. PREVIOUS WORK

The problem of file compression has been extensively
studied [BCW90]. Almost ali practical dictionary based
compression tools of today are based on the work of
Lempel and Zvi (LZ) and its variation [BCW90].
Unfortunatcly, algorithms derived from LZ are not suitable
for real-time code compression. In LZ, codewords are
decompressed sequentially using as dictionary the string
formed by ali the symbols already decompressed. This is a
major drawback i f the codeword encodes a forward branch
instruction. In the rest of this section we describe only those
compression techniques lhat are suitable to efficient real
time code decompression.

Wolf and Channin [WC92] proposed the Compressed
Code R/SC Processor (CCRP). Programs are compressed
one cache-line at a time using Huffrnan codewords and
byte-long symbols. During a cache miss, compressed
cache-lines are fetched from main memory, uncompressed,
and stored into cache. Instructions in the cache and main
memory have different addresses. The CCRP uses a main
memory table, Line Address Table (LAT), to map
(compressed) main memory addresses to (uncompressed)

224 SBAC-PAD'99 llrh Symposium on Computer Archirecture and High Performance Computing- Natal- Brazil

cache addresses. In order to reduce the number of accesses
to the LA T, a Cache Lookaside Buffer (CLB) is provided to
store the set of most recently used LAT entries. The
advantage of the CCRP approach is that the latency of the
decompression engine is amortized across many caches
hits. On the other hand, the use of a cache makes it very
difficult to estimate the execution time of embedded
program. This is a particularly important for embedded
systems running time criticai applications. Moreover,
embedded programs are usually stored into fast on-chip
memories. The average compression ratio achieved by
CCRP in a MIPS architecture was 73%. This compression
ratio does not consider the size of the decompression
engine.

Wolf and Lekatsas [LW98} studied two different
methods for code compression. The best compression ratio
is achieved by their SADC method. In SADC, symbols are
associated to instruction opcode and operand fields. During
compression, instruction sequences are selected and a
stream of bits is derived for each sequence of instruction
fields. Each stream is then encoded using Huffman
codewords. The average compression ratio achieved by this
method in a MIPS architecture was 51 %. Similarly as in the
CCRP case, the decompression engine size was not taken
into account.

Lefurgy et ai [LBCM97] describes a compression
technique based on dictionary. Common sequences of
instructions are assigned to a codeword. A dictionary in the
decompression engine stores the sequence of instruction at
address given by the codeword. The decompression is
performed by retrieving the sequence of instructions from
the dictionary. Because instructions are compressed, the
target address of jump and branch instructions must be
recomputed. In order to deal with that, Lefurgy et ai divide
the target address bits into two parts. The first part stores
the address of the word where the compressed target is
located. The second part corresponds to the target offset
inside the word. The average compression ratio using this
technique for the PowerPC, ARM and i386 processors were
61%, 66% and 74%.

Liao et ai [LDK98] were the first to study the code
compression problem for a DSP processar. Similarly as in
[LBCM97], compresscd instructions are stored into a
dictionary. Liao's idea is to substitute similar instruction
sequences by sub- routine calls. Instructions are represented
by boolean variables, and instruction sequence are encoded.
as minterms. Hence, . the problem of compressing the
program cam be formulated as set-covering problem.
Instruction sequences are then converted into call
instruction to sub-routine in the dictionary. An interesting
mechanism based on a stack is used to minimize the penalty
of the sub-routine return instruction. The average
compression ratio achieved by this in the TMS320C25
processor was 82%. To the best of our knowledge, apart

from the work of Liao et ai [LDK98], no other research has
addressed the problem o f executing DSP code.

In [ACCP98] we proposed a code compression
technique for the MIPS architecture. Program expression
trees are decomposed into sequences of opcode and
operand patterns, a method called operand factorization.
The goal of this paper is to verify the effectivcness of the
operand factorization concept in highly encoded instruction
sets, like those found in DSP architectures. We also propose
a decompression architectue for these processors.

Expression Trees Tree-patterns Operand-patterns

LAC *AR2 LAC
ADDK 7 ADDK *+ 7 *AR2
SACL *+ SACL

LAC *-ARO LAC
ADDK o ADDK * O *-ARO
SACL * SACL

Fig. I Factored expression tree

III. THE COMPRESSION ALGORITHM

Our compression algorithm is based on patternization
concept [Pro95] . Patternization (we call itfactorizarion) has
been used by Fraser et ai [FHRP93] to compress byte-code
for network virtual machines. The basic operation in
factorization is the remova! of operands from an instruction.
First, instruction sequences are selected to correspond to
program cxpression trees. An instruction is the root of an
expression tree if: (a) the instruction stores into memory;
(b) the destinalion operand of the instruction is the source
of more than one instruction inside the basic block; (c) the
dcstination operand of the instruction is the source of at
lcast one instruction outside the basic block. Second,
expression tree instructions are decomposed into a list of
instruction opcodes and a list of operands. We use
expression trees as the basis for compression because
compilers tend to generate similar expression trees during
the translation of source statements, Iike if-then-else and
for. We call each distinct list of opcodes {operands) a tree
pattern (operand-pattenz). Figure 1 shows two expression
trees from program rx being factored into its tree and
operand patterns. Notice that both trees have the same tree
pattern.

The TMS320C25 has 16 bit long instruction that are
encoded using 16 different formats. Instruction formats use
opcodes of different lengths and tree addressing modes
(direct, indirect, and immediate). In the direct addressing

SBAC-PAD '99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 225

mode lhe operand address is encoded into an instruction
filed . In the indirect addressing mode lhe operand format is
<ind,next>, where ind is a side-effect operation with lhe
current address register AR, e.g. auto-increment (*+), and
next is lhe next current address register. In lhe immediate
mode lhe value of lhe operand is encoded into the
instruction field.

In order to measure the contribution of tree and operand
patterns to the program size we use a set of example
programs. These programs are representative of the type of
applications running on embedded processors and DSPs.
Program jpeg is an implementation of JPEG image
compression algorithm, bench is a disk cache controller,
gzip is a compression algorilhm and ser is a set of bit
manipulation routines from DSP application. Programs hill,
gnucrypt are data encryption programs, and rx is an
embedded state machine controlling routine. We first
generate optimized code for lhe example programs using
TI's TMS320C25 compiler wilh optimization fl ag -02.
Second, programs are analyzed such as to identify the set of
tree and operand patterns that covcr ali program trces. The
resulting number of tree and operands patterns for each
program is shown in Table I.

TABLEI

NUMBER OFTREE ANO OPERANOS PATTERNS IN A PROGRAM.

THE NUMBER IN A PARENTHESES ARE PERCENTAGES WITH

RESPECT TO THE TOTAL NUMBER OF EXPRESSION TREES ANO

OPERANO SEQUENCES.

Program Expression Tree-Patterns Operand-
Trces (%) Patterns (%)

aipint2 1043 90 (8.6) 285 (27.3)
bench 9483 572 (6.0) 2263 (23.9)
gnucrypt 3682 263 (7.1) 778 (2 1.1)
gzip 10835 582 (5.4) 2354 (21.7)
hill 920 12 1 (13.2) 279 (30.3)
jpeg 2305 190 (8.2) 563 (24.4)
rx 563 61 (10.8) 114 (20.3)
set 4565 3 19 (7.0) 1084 (23.7)

On avcrage tree (operand) patterns correspond to only
8.3% (24. 1 %) of ali opcode (operand) sequences in lhe
programs. The Iist of tree and operand patterns are then
ordered based on lheir contribution in bits to lhe program.
The cumulative contribution of lhe patterns to the size of
the programs is lhen computed. The results are shown in
Figure 2(a)-(b). Figure 2(a) (Figure 2(b)) shows the
percentage of the program bits that are covered by tree

(operand) patterns. In the horizontal axis of each graph,
patterns are ordered based on their contribution to the
program size.

40

35

o
o lO

60

50

!E 40 ..
:;; 30
~
:;,
o
ct 20

lO

o
o lO

20 30 40 50 60 70

aipint2 -
bench -...

gnucrypt

gzip -

hill - - ·- ·
jpeg

rx

sct -·---

80 90
Trce-pattems (%) - Dccreasing size contribution

gzip·-

hill ·-- - -
jpeg•..

rx ··-··- -·

SCl ·-·--····

20 30 40 50 60 70 80 90
Operand-patterns ('k) • Dccrcasing sizc contribution

100

100

Fig. 2 Percentage of program bits due to: (a) tree-patterns;
(b) operand-patterns.

Notice that the contribution of tree and operand patterns
in DSP programs is non-uniform. Actually, tree and
operand patterns have exponential frequency distributions.
In order words, a small set of patterns covers a large
number of trees in lhe program. Almost 20% of lhe
program bits are covered by only 10% of the tree-patterns.
A similar behavior was also observed for operand-patterns.
In this case, I 0% of the most frequent operand-patterns
account for 19% of the program bits.

A. Expression Tree Compression

The experimental results in lhe previous section show
lhat the contribution of tree and operand patterns to lhe
program size is non-uniform. This suggests lhat patterns
should be encoded using variable-length codewords

226 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

[BCW90]. Patterns which have large (small) contribulions
are encoded using small (large) codewords. The drawback
of this approach is that it can result in very large codewords
for those patterns which do not contribute much. Decoding
very large patterns is a difficult task for the decompression
engine, given that a codeword can spill across many
memory words. In order to avoid that, we use a mixed
encoding method. Patterns are encoded using a mix of
variable-length and fixed-length (lossy) encoding. An
escape bit is appended to the beginning of the codeword to
indicate the encoding method (see Figure 3). We used two
variable length encoding methods: Huffman and an
adaptation of the VLC encoding adopted in MPEG-2
[HPN91]. The main motivation to use VLC is that, unlike
Huffman, it enables codewords to carry size information. In
VLC codewords the number of leading zeroes encodes the
size of the codeword. This makes it easier to design the
decompression engine logic that extracts codeword from a
memory word. A compressed expression trec is constructed
putting together the codewords for the tree and operand
pauerns that form it. The compressed program, is then
assembled into a sequence: Tp10p11Tp20p21...1Tpn0Pno
where Tp; (Op;) is a tree (operand) pattern codeword.

Expression Trees Tree-pattems Operand-pattems

LAC *AR2 LAC
ADDK 7 ADDK *+ 7 *AR2
SACL *+ SACL

LAC *·ARO LAC
ADDK o ADDK * O *-ARO
SACL * SACL

Fig. 3 Pattcrn Encoding

IV. THE DECOMPRESSION ENGINE

Figure 4 shows the decompression engine for our
compression algorithm. It consists of a set of state machines
and dictionaries that generate the various fields of the
decompressed instruction. An extraction logic extracts tree
pauern Tp from a memory word and decodes it using state
machine OPGEN. OPGEN generates signals OPSEL and
OPADDR to select the appropriate opcode bank. Opcodes
that have similar lengths are stored into the same bank.
Only opcodes of the instructions in the program are stored.
After operand-pattern Op is extracted, machines ARGEN,
INGEN and IMGEN decode the instruction operands.
ARGEN selects the field of the AR register being used by
the instruction and INGEN generates the 7 bits that encode

instruction fields <ind, next>. Instruction immediates are
generated using the lmmediate Dictionary (IMD).IMD also

r····················· '1 . c.a. l

....
I

I -'--~-..J

..

Fig. 4 The Decompression Engine

stores the compressed and uncompressed forms of the
branch target addresses. Immediates are stored into banks
such that each bank contains immediates of similar sizes.
An extra bit is used to enable automatic sign extension
when immediates are retrieved from IMD. State machine
IMGEN generates the signals (BADDR and BSEL) required
to address the immediate banks. The various fields of the
instructions merge into the lnstruction Assembly Buffer
(IAB), where they are assembled and shipped to the CPU.

Machines OPGEN, ARGEN, INGEN and IMGEM work
in parallel. In each cycle they select the appropriate
instruction fields that are then assembled by IAB into a
decompressed instruction. The process continues until ali
the instructions of the current expression tree are
decompressed (i .e. OPEND = I). The number of state

SBAC-PAD'99 Jlth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 227

variables is bounded by the size of the largest tree. When
smaller trees are decompressed the non-used sate variables
become don ' t cares.

MEMORY-8- EX'TRACilON ADORESS ltAR
BUS LOGtC

I
I

ltE.IIORY
DATABUS

MOR

0 COMPRESSED TREf ROl! tMD

BR

cru
t---- AOORESS

ROI>t
tAB

BUS

cru
DA TABUS

Fig. 5 The Branch Address Generator

A. Branch Addresses

During a branch instruction (see Figure 5) the following
is relrieved from IMD: lhe 1arge1 address of lhe original
uncompressed tree (16 bits) and the address of the
compressed tree (20 bits). Because variable length
codewords are used to encode patterns, the address of a
comprcssed tree can start at any position inside a memory
word. Hence, the engine must keep track of: (a) the
memory address of the word where the current compressed
tree is (16 bits) and (b) the offset, with respect to the
beginning of that word, where the tree starts (4 bits). The
computation of the compressed tree location is performed
by the EXTRACT/ON module. The Memory Data Register
(MDR) is used to store the mcmory word that contains the
currcnt compressed tree (remember that one memory word
can have many compressed trees). The Memory Address
Register (MAR) stores the address of the next word in
memory.

The location of the next compressed tree depends on the
value of TAKEN (see Figure 5). TAKEN = I if the last
decompressed instruction passed to the CPU was a branch
and the branch was taken. Bit BR from OPGEN is active
during the compression of a branch instruction. TAKEN =O
i f the last instruction was not a branch and the branch was
not taken. Signal TAKEN is determined by monitoring the
progression of the CPU address bus. If during the next
(program) memory read cycle thc content of the CPU
address bus equals the last branch target passed to the CPU,
TAKEN =O and next compressed tree is in MDR, or in the
fi rst tree of the next memory word. In the first case, the

EXTRACTION logic removes the tree from MDR and
passes it to the decoding logic (Figure 4). In the second
case, MAR is incremented, the next memory word is
fetched and its first tree is extracted and decoded. This
approach allows the CPU to see the same addresses as those
in the original uncompressed program, while the access to
memory is performed using compressed addresses. Unlike
the approach in [LBCM97] ours do not require a
modification of the processor address generation unit.

v. EXPERIMENTAL RESULTS

We use the compression algorithm described in Section
III to compress the programs in our program set. Tree and
operand patterns are encoded separately using the encoding
methods discussed in Section III-A. Figure 6 shows the
compression ratio resulting when patterns are encoded
using Huffman (Figure 6(a)-(b)) and VLC (Figure 6(c)-(d))
codewords. In order to limit the size of the codewords , we
encode only part of the patterns using a variable-length
code. The horizontal axes of Figure 6(a)-(d) correspond to
the number of patterns that are encoded using variable
length codewords. Horizontal axis value 0% (1 00%) is an
encoding where ali patterns are encoded using fi xed-length
(HuffmanNLC) codewords and the rest is encoded using
HuffmanNLC (fixed-length). Since pauern distribution is
close to exponential (see Figure 2), the more small
contribution patterns are encoded using variable-length
codewords, the more the size of the variable-Iength
codeword approaches that of a fixed-length codeword
[BCW90] . This is retlected by the saturation behavior of
the compression ratio in Figure 6(a)-(b). Thus, switching
from variable-length to fixed-length encoding does not have
a large impact on the final compression ratio. In fi gure 6(c)
(d) the compression ratio can grow larger than 100% when
VLC encoding is used. This happens because of the
presencc of leading zeroes in the VLC codewords, which
carry only size information. The best split between
variable-length and fixed-length encoding in a program
corresponds to the minimum in the curve of that program
for the selected pattern. For example, when Huffman is
used to encode gzip's operand-patterns, the best
compression ratio (37%) is achieved when approximately
45% of the operand-patterns are encoded using Huffman.
Figure 7 shows the final compression ratio for the programs
in our program set, once the size of the engine is taken in to
consideration. The average compression ratios achieved
using Huffman (VLC) was 60% (67%). The program
compression ratio was determined from the mínima of the
graphs in Figure 6(a)-(d). Figure 7 takes into consideration
an estimate of the engine dictionaries overhead with respect
to the uncompressed program. A precise estimate of the
overhead will only be possible through synthesis of the
state machines. We do not expect these machines will in a

228 SBAC-PAD'99 Jlth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

ro r-----~----~----~---r==~====~
olpln12

~ SS bcnch -·······
~ so (a) snucrypl ..•..•....•

~ JZip --
: 4S hlll --
~ ,.. Jf'CS • • •••
- 40 \ = ~ '-· , rA --··--·

~ 15 ~~....... sei ·······-
~ . , _ , ···- '···~

! : ~;~~~:-~~~~~~~~~~-~::'.~::·:i:i:.::~~:~~:i
lU

" m 40 w w ~
Pcrccni3J:C o(Trcc ·p;~Ucm.s Enc..xicd Usm; Huflm<;an (tjl_)

w,------T------~------~--r=~~====~
;~.ipinl2

hcnch ·········

20L-----~~----~------~------~------~
o 20 40 60 xo 100

Pcrccntagc of Opcr:md-p;aucms Encodcd Uslne Huffm11n (tW)

100r,===~7===~--~----~----~---T----.
airint2 /

~ YO hcnch •••··•·•· //
Eu~ gnucrypl ··· ······· (C) /

KO ~:r íp /
~ hill /
~ 10 ire~•• ,

f,() ,.///~
~ ,;:ca ·-· .. ··• .,'

1 : ~~:~:~,:::.:::·:-:~--.--.-::~:~::<~.~_ · .. _:: _____ ··-~· _··.··.-~.· .. ·.:.·.:_~----~-~-~.-.·.·
ü 30 ~~,::~~:" ... '""'-"-'""'"" .. ~.··-~·='''·-: ~ : · .. :

20
o lO 20 30 40 so 110 70 .

Pcrccnta~c OI Trcc-p:aucm~ Encodcd UsinK VLC (';l)

= 100
!! .,

!lO
~

"' 60
~
5! 40
ü

Perccn1a.gc o f Opcr.md-paucms Encodcd Usine VLC (~)

Fig. 6 Compression ratios for: (a) tree-patterns
(Huffman); (b) operand-patterns (Huffman); (c) tree
patterns (VLC); (d) operand-patterns (VLC);

Jarge overhead though. The reason is that many distinct
patterns have similar parts which will eventually into
shared logic for the state machines. For example, state
machine ARGEN will produce the same dictionary address
for distinct operand-pattems AR3, *+ and AR3, *-, AR4,
since both use the same address register.

t
'8
~

-~

~
õ

" ~

100

90

10

10

6()

lO

40

)O

lO

lO

~r.;
~F'

~u
~
=>

a.Jpin12

p:
~ F ~ ~~ ~

~~ r3j ~p ~F
= .= =

i=

I•

~~ ~~ :g~ ~~ ~~ ~~ ~~
::: > = > => => = > = > = >
hcnch gnucryJII g1.ip hill JI"'S rx SCI

O Prorram Co"'"uaon 0 OPCEN Ovcr!w:ad

~ ll"GEN Ovcthc<~d [!!) ARGEN Ovcrtw:ad HIIIJ IMGEN OvcrhcMJ

VI. CONCLUSIONS

This paper proposes a code compression technique for
DSP programs. This approach is based on decomposing the
expression trees into tree and operands patterns. We show
that patterns have exponential distributions. We also
propose a decompression engine that assembles opcode
and operand sequences into uncompressed instructions.

ACKNOWLEDGEMENTS

The authors are grateful to Stan Liao for providing the
test programs. We also thank the anonymous rcferees for
thcir comments. This work was supported by a CNPq
ProTecMCC/NSF collaborative research grant and by
CNPq Rcasearch Fellowship 300156/97-9.

[ACCP98)

[BCW90]

[FHRP93)

REFERENCES

G uido Araujo, Paulo Centoducaue, mario
Cortes and Ricardo Pannain. Code compression
based on operand factorization. In Proceedings
of M/CR0-31 : The 3 / 'h Annual lnternational
Symposium on Microarchitec fllre, December
1998.
Timothy C. Bell, Jhon G. Cleary and lan H.
Witten. Text Compression. Advanced
Referencc Scrics. Prentice Hall, new Jerscy,
1990.
C. W. Fraser, Hanson, D. R. and T. A.
Proebsting. Engineering a simple, eflicient code
generator. Journal o f the ACM, 22(12):248-
262, March 1993.

SBAC-PAD'99 1 lth Symposium on Compute r Architecture and High Performance Computing- Natal- Brazil

[HPN91]

[LBCM97]

[LDK98]

[Leu97]

[LPK+95]

[LW98]

[PLMS94]

[Pro95]

[Sud98)

[Tex90]

[WC92)

Barry G. Haskell, Atul Puri and Arun N.
Netravali. Digital Vídeo: an lntroduction to
MPEG-2. Chapman & Hall , 1991.
Charles Lefurgy, Peter Bird, 1-Cheng Chen and
Trevor Mudge. Improving code density using
compression techniques. In Proceedings of
MICR0-30: The J(jh Annual lnternational
Symposium on Microarchitecture, pages 194-
203, December 1997.
S. Liao, S. Devadas and K. Keutzer. A text
compression-based mcthod for code size
minimization in embedded systems. To appear
in ACM Transactions on Design Automation of
Elecrronic Sysrems, 4(1), 1998.
R. Leupers. Retargetable Code Generationfor

Digital Signal Processors. Kluwer Academic
Publishers, June 1997.
D. Lanneer, J. Van Praet, A. Kifli, K. Schoofs,
W. Geurts. F. Thoen and G. Goossens. CHESS:
Retargetable Code Generation for Embedded
DSP Processors. In P. Marwedel and G.
Groossens, editors, Code Generation for
Embedded Processors, chapter 5, pages 85-102.
Kluwer Academic Publishers, Boston,
Massachusetts, 1995.
H. Lekatsas and W. Wolf. Code compression

for embedded systems. In Proc. of 35'h ACM
Design Automarion Conference, 1998.
P. G. Paulin, C.Liem, T . C. May and S.
Sutarwala. CodeSyn : A Retargetable Code
Synthesis System. In Proceedings of· The 1h
lnternational High-level Synthesis Work.shop,
Spring 1994.
Todd A. Proebsting. Optimizing an ANSI C
intepreter with superoperators. In ACM
Conference on Principies of Programming
Languages, pages 322-332, January 1995.
A. Sudarsanam. Code Optimization Libraries
fo r Retargetable Compilation for Embedded
Digital Signal Processors. PhD thesis,
Princeton University, May 1998.
Texas lnstruments. TMS320C2x Use's Cuide,
1990.
Andrew Wolfe and Alcx Channin. Executing
compressed on an embedded RJSC architccture.
In Proceedings of MICR0-25: The 25'h Annua/
lnternational Symposium on Microarchitecture,
pages 8 I -91. December 1992.

229

