
230 SBAC-PAD'99 1 Jth Symposium on Computer Architecture and High Performance Computing- Natal· Brazil

Sthreads: Multithreading for SCI clusters
Enno Rehling1

1 Operating systems and distributed systems, University o f Paderborn
Fürstenallee 11, 33102 Paderborn, Germany

{ enno@upb.de}

Abstract-
Threads are in widespread use as a model for concurrent

programming. In our effort to supply a broad range of tools
for the SCI platform, we have created Sthreads, a Iibrary that
simplifies the adaptation of programs written for the Pthreads
library to SCI Cluster hardware. This paper presents the
design decisions we made, and a performance evaluation
comparing the Sthreads library to Pthreads.

Keywords-Pthreads, SCI, C1uster computing, Yasmin

I. INTRODUCTION

Threads have becorne a widespread mode1 for
concurrent prograrnrning. The conformance of most UNIX
and DCE imp1ementations to the POSIX standard has made
the POSIX threads standard, commonly known as Pthreads
[NIC 96) , the de facto standard for writing portab1e
mu1tithreadcd applications.

SCI, the Sca1ab1e Coherent Interface, is an IEEE
Standard [SCI 93] and allows shared-memory programming
on Iarge clustcrs of off-the-shelf PCs, thus eliminating the
need for message-passing. Hardware support for shared
memory programming simplifies porting of existing
app1ications to SCI c1usters, but it also creates the need for
new libraries commonly found in conventional SMP
systems, e.g. synchronization primitives.

Traditionally, large computing clusters have used MPI
or PYM. In arder to run an application on such a machine,
one had to adapt the software to the respective message
passing Iibrary, often rewriting major parts of the code,
even i f it had been written with concurrency in mind. On an
SCI cluster, true shared memory programming is possible
and efficient, minimizing the overhead for porting of an
existing application.

This paper describes the implementation of a threading
Iibrary for a network of homogenous computers coupled by
SCI adapters. It defines a subset of the Pthreads library
functions, simplifying the porting of Pthreads-compliant
applications to this platform.

Sthreads is one of a number of building blocks for SCI
applications being deve1oped at the University of
Paderborn. Once completed, the application we are aiming
to port is a Java VM [TRA 98) that will treat the entire
cluster as a sing1e machine [REH 99) rather than having
one YM per node of the cluster.

The paper begins with a brief introduction to the
Yasmin 1ibrary, which offers communication and
synchronization for a static number of processes on an SCI
Cluster. The library is described in more detail in [TAS 98).
In the next sections, the concepts behind the
implementation of the Sthreads library are explained. This
currently covers threads and mutexes, but will be extended
to condition variables in the near future. The final sections
feature a discussion of altemative threading models and
performance data.

11. YASMIN

Yasmin (the acronym stands for Yet Another Shared
Memory INterface) is a library developed at UPB. It's goal
is to simplify SCI programming by providing basic
functionality for concurrent programming. Yasmin offers a
process-based programming model: At startup, a fixed
number of processes per computing node (usually one per
CPU) is created.

Local memory from each of the nodes can be mapped
into the address space of ali processes, providing a uniform
address space. Since the memory is mapped to the same
address for each process, it is even possible to exchange
pointers, something that's altogether impossible in message
passing systems. Yasmin allows dynamic creation and
remova! of shared segments at runtime.

Because these processes have to synchronize access to
the shared segments, Yasmin also offers a number of
synchronization primitives: Severa) different mutex
algorithms are implemented, reader/writer locks, as well as
signaVwait semantics.

These synchronization operations use a number of
algorithms that rely on the number of processes to be fixed.
They make internai use of tree structures or arrays, and
their efficiency is deeply rooted in knowledge of the
number o f participants in a synchronization.

Fig. I shows the process model of Yasmin. Three
processes were created on two hosts. Each has it's own
address space, and a shared memory arca on the left node is
mapped directly into the address spaces of processes I and
2, and from a remate mapping into the address space of
process three. An access by process 3 would be handled by
the SCI hardware, resulting in remate read/write operations
on the node that exports the memory.

SBAC-PAD '99 11th Symposium on Computer Architecture and High Performance Computing . Natal- Brazil 231

Fig. I Tlreprocess model ofYasmin

III. A LA YERED APPROACH

Using one Yasmin process per thread is clearly not an
option. One might postulate a system where a large number
of processes is created at startup, and they are left idle until
we want to create another thread. However, most of
Yasmin's operations require O(log p) time, p being the
number of processes, and it's not a good idea to slow down
e.g. mutex operations because we create a huge pool of
unused processes at runtime.

Thus, Sthreads uses a layered approach. Each node
hosts one or more processes, which interact through the
Yasmin library. Each process spawns a dynamic number of
threads, possibly using the operating system's native thread
library or any other such library, even Pthreads. Threads on
the same node can use local synchronization primitives to
share data between intra-node threads, or use both Yasmin
and local operations for inter-node synchronization.

This approach of mixing Yasmin and the operating
system's functions is used throughout the Sthreads library.
In most cases, functions first synchronize to make sure only
one thread on each node enters Yasmin ata given time, and
in a second phase communicates with ali other nodes
through Yasmin. The benefits of this approach are twofold:
Not only is the complexity of inter-node communication a
function of the number of nodes, as opposed to the number
o f threads in the system. There is also a number o f possible
optimizations. For example, condition variables can choose
to wake up local threads with a higher priority, eliminating
the need for inter-node communication in this special case.
See section VII for a discussion on performance.

IV. THREADS

The Sthreads library contains functions to create threads
either on the local node or on remote nodes. A thread can
access SCI memorv toeether with ali the other threads. or

share the same address space, unmapped memory can
potentially be used by ali threads o f the same node in order
to gain performance. This and other performance
considerations will be detailed in section VII.

~s for the implementation o f the threads, let us begin by
lookmg at what we're given by Yasmin and the OS. In
Yasmin, a static number of processes are created during the
start~p of the program. This could be one process per host
or, gtven that our cluster has SMP nodes, might be one
process per processor. However, the number of processes is
static, and cannot be changed at runtime.

The operating system provides threads of its own. These
can be user-level thread~, kernel threads or any variant of
t?e t~o (see bel_ow for a discussion of different threading
hbrartes). For stmplicity, we're going to call them native
threads, as opposed to Yasmin processes.

Thus, we use the aforementioned layered approach. For
each node, only one Yasmin process is created (in the case
of user-level threads, one process per CPU). This process
acts as a daemon thread for the whole Sthreads system.
Subsequent creation of threads is dane by creating native
threads on the target node.

Of course, ali calls to Yasmin done inside the Sthreads
library have to be protected from access by more than one
native thread on the same nade. A number of local mutexes
are used to ensure this.

A. Creating threads

Threads can be created either on the local node or on a
re~ote node. As of the writing of this paper, intelligent
asstgnment of threads to processors is entirely up to the
user, but see performance considerations in section VII for
a number o f possible options.

The thread's resources need to be accessible from ali
other threads; they must be able to join it, queue it in a
number of wait-queues and so forth. Thus, in Sthreads, the
sthread_t data type, which is the handle given to ali
operations working on threads points to a data structure in
shared memory. It contains a handle for the local thread, the
id of the process that it's running in, as well as scheduling
information.

Creating a thread in the same process as the creator is
straightforward. It's simply a matter of allocating memory
for the thread's resources in a shared segment and creating a
local thread.

Creating a thread on a remote node is somewhat more
difficult. Again, the resources must be allocated, but to
increase performance these resources are allocated in a
memory segment that was exported by the target node.
Parameters for the thread must be accessible from the target
node, thus have to be in mapped remote memory, too. Since
the program is loaded to the same address, copies of every
statically linked function reside at the same address on each

232 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

node, a necessity if we want to execute a function on a
remate node.

From here on, our problem is that of notifying the target
process that it should create the thread. As mentioned in
section IV, the main thread on each node acts as a daemon,
waiting to perform request from remate nodes. One such
request is creation of a thread; a small message stating the
Iocation of the thread resources triggers the daemon and
makes it start a new thread. Again, performance is a criticai
issue, and we make a few observations in section VII
regarding the use of interrupts versus polling.

V. MUTEXES

As mentioned in section 11, mutex operations in Yasmin
rely on knowing the number of processes involved at the
time a mutex is created. The data structures used for
implementing the Iock and unlock operations do not allow
adding or removing of processes. They are also not
threadsafe, making it impossible to share the same mutex
between two threads of the same Yasmin process. Thus, we
are unable to use Yasmin's mutexes directly for
synchronization in the Sthreads library.

Also, since a Yasmin mutex is local data, e.g. the mutex
object cannot be exchanged even among hosts, a different
representation has to be found for the implementation of
Sthreads mutexes.

On the olher hand, native mutexes are only valid in the
context of processes running on the node. where they are
created. A native mutex created on host A cannot be used
on host B. Obviously, native mutexes cannot be used for
synchronization either.

Instead, Sthreads mutexes use a mixed approach: They
rely on native mutexes for synchronization among Sthrcads
running on the same host, and use yasmin's mutexes for
inter-node synchronization.

Locking and unlocking Sthreads mutexes is fairly
simple:

sthread_lock(sthread_mutex_t l ock l
{

native~utex_lock(lock.native_mutex)

yasmin_rnutex_lock(lock .yasrnin_rnutex)

sthread_unlock(sthread_mutex_t lock)
(

native_rnutex_unlock(lock .native_rnutex)
yasrnin_rnutex_unlock(lock.yasrnin_rnutex)

SBAC-PAD '99 11th Symposium on Compu ter Architecture and High Performance Computing -Natal- Brazil 233

and the fact that user-level threads and mutexes might be
coupled closer to the Sthreads library, as explained in
Section VII.

VII. PERFORMANCE

In order to evaluate the performance of Sthreads, a
number of tests were performed. To show the efficiency of
the threads, we present figures for thread creation and
finalization, as well as for a system under heavy load.

Each test was done on one or more Dual-Pentium II/400
nodes running Linux 2.2.6, and figures for Sthreads are
compared to Pthreads performance on a single Node.

B. Thread creation and termination

The time required to create n threads and wait for their
termination is shown in . We found that the predominant
factor in these operations is the efficiency of the memory
management system, and the Sthreads implementation
suffers from Yasmin's rather simple implementation of it.
Improving it will be a priority issue for the next version of
Yasmin. Nonetheless, the performance compared to
Pthreads is already reasonably good.

500,00

•so.oo

400.00

y 350.00
.a i 300,00
+
!! 250.00

e i 200,00

~ 150.00

100,00

so.oo

0.00

~ ?--- ~ v ~

-
L~-- . 44-

\ -·\o·-,.. ... • .. _ y

1-- -- ----
,---- ~

--pthreads. 2 C PUs -e-1ncdo,1CPU I~
1 ncdo. 2 C PUs -'\-- 2nodla, 1 CPU J ""l[

-+-2ncdoi. 2CPUs

32 128 512 2048

Nurnber ot Threadt

Fig. 3: Execution time of sthread_create and
s thread_j o in compared to Pthreads

C. Thread scheduling

In this test, each thread was given the task of sorting a
32 KB array of integers. The time it took ali n threads to
terminate was measured, and it gives an indication of the
overhead introduced through thread scheduling in Sthreads.

The graph below shows the relative execution time
compared to a sequential program. In general, Sthreads do
not perform as well as Pthreads for loads greater than 64,
but the overhead never exceeds I 0%.

1.12

1.08 .
.2
.i
t 1,04
u
!! ...
~
!: 1,00
o

.2 • " 0,96
--ptlvoads. 2 CPUs -e- 1 nodo. 1 CPU

1 nodo. 2 CPUs - - 2 nodos, 1 CPU

0.92 .I!=-+-:::S::::::2::nodos::::::;·=2 C=P=U'=======;::::!'--~----1
32 128 512

Numb.r of Threecb

Fig. 4: Running time under different load relative to
sequential time

D. Mutex operations

The efficiency of Sthreads mutex operations depends
mostly on the underlying mutex functions. Yasmin offers a
range of mutex algorithms. They are discussed in more
detail in [TAS 98] and we include Fig. 5 from this paper to
give a brief overview o f their relative performance.

700r---~---~-------~----,

~o~rn••Lynch u . R&n)I;J-+-

600 rn••Lynch Cn. llank)-M-

300

10 12

Fig. 5: Performance of the three optional semaphore
algorithms in Yasmin

E. Future 1mprovements

There are severa! options for increasing the performance
of Sthreads. As mentioned before, placement of threads is
currently in the hands of the application, and there is no
support from the library to help in the decision. By keeping
track of the load on each node, intelligent placement of
threads might considerably improve application
performance.

Another possible improvement would be the
exploitation of thread locality. A thread that releases a
mutex object or signals a condition variable might decide to
hand it to a waiting thread which is on the same node. In

234 SBAC-PAD'99 IIth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

this case, only local operations would be required, where
currently Yasmin locks are used. Furthermore, by relaxing
the scheduling model, local threads could always be
preferred to threads on remote nodes, requiring some
strategy to prevent starvation.

Finally, recent discussions in the SCI community have
shown that there is no clear-cut answer to the question of
whether to use polling or SCI interrupts to notify processes.
Clearly, polling is a bad option to use for the guardian
thread mentioned in section IV, but other problems might
be solved more efficiently by polling or mixed strategies.

VIII. REFERENCES

[DOL 96) Dolphin: The Dolplzin SCI lmerconnect. White Paper,
Dolphin lnterconnect Solutions, Olaf Helsets Vei 6,
0621 Oslo, Norway, http://www.dolphinics.com/.

[NIC 96] B. Nichols, D. Buttlar: Ptlzreads Programming,
O'Reilly & Associates, Inc, September 1996.

[OMA 98) K. Omang: Performance of a C/uster of PC/ Based
U/traSparc Workstations lnterconnected with SCI. In
Proceedings of Network-Based Parallel Computing,
Communication, Architecture, and Applications,
CANPC'98, Las Vegas, Nevada, Jan/Feb 1998,
Lecture Notes in Computer Science no.I362, pages
232-246.

[PC2 99) PC2 Homepage: The PSC Primergy High Scalable
Server, http://www.upb.de/pc2/systems/psc/

[REH 98) E. Rehling, R. Butenuth, H.-U. Hei3: Project Anninius
Homepage, http://www.upb.de/cs/heiss/arminius/

[REH 99) E. Rehling, R. Butenuth: Project Anninius. In
Proceedings of the 2"d Workshop on Cluster
Computing, Karlsruhe 1999.

[RY A 97) Stein J!ilrgen Ryan: Tire Design and lmplementation of
a Portable Driver for Shared Memory Cluster
Adapters. Research Report no.255, Department of
lnformatics, University of Oslo, December 1997.

[SCA 99) Scali Computer Homepage: http://www.scali.com/
[SCI 93) IEEE: IEEE Standardfor Scalable Coherent Interface

(SCI). IEEE standard 1596-1992, New York, 1993.
[TAS 98) H. Ta~km: Synchronizationsoperationen für

gemeinsamen Speiclrer in SCI-Clustem, Diploma
Thesis at the University o f Paderbom, 1998

(TRA 98) Transvirtual Technologies: The Kaffe Open Source
VM, http://www.transvirtual.com/

