
SBAC-PAD '99 11th Symposium on Compute r Architecture and High Performance Computing . Natal . Brazil 237

A Static Load Balancing Software for Parallel
Applications

Adriano Joaquim de Oliveira Cruz 1, Cláudia Rita de Franco2
, Leonardo Silva Vidal3

1Department o f Compu ter Science, Núcleo de Computação Eletrônica,
Universidade Federal do Rio de Janeiro

Cx Postal 2324, Rio de Janeiro, RJ, CEP 20001-970
{ adriano@nce.ufrj.br)

2Department o f Compu ter Science, Núcleo de Computação Eletrônica
Cx Postal2324, Rio de Janeiro, RJ, CEP 20001-970

Universidade Federal do Rio de Janeiro
{ crfranco@nce.ufrj.br}

3Department o f Compu ter Science, Núcleo de Computação Eletrônica
Cx Postal 2324, Rio de Janeiro, RJ, CEP 20001-970

Universidade Federal do Rio de Janeiro
{leonardo@nce.ufrj.br}

Abstract-

This work describes the implementation and benchmarks
applied to a 1oad balancing software designed to improve
performance of parallel applications running on networks of
heterogeneous and non-dedicated workstations.

A user levei mechanism to gather workload information
about each node and the policy to treat this information in
order to generate a precise snapshot of the workload of each
node of the parallel machine are described throughout this
work.

An analysis of the main issues concerning workload
evaluation is provided, along with a brief explanation on the
support offered by current operating systems and ways to
overcome their problems.

Finally, results and interpretations of comparative tests
made between BECIPVM applications and PVM applications
are presented.

Keyword- Parallel Processing, Load Balancing.

l. INTRODUCTION

Running parallel applications on computer networks is a
cheaper alternative to expensive parallel computers. These
networks are shared by a great number of users. But along
the day, only some computers are used or remain idle for
large periods o f time. -:fhe ability to identify idle computers
and spawn the processes of a parallel application on them
can give a considerable performance improvement to any
parallel application. Furthermore, most users do not
generate heavy loads to their computers, so their computers
can also host processes of the parallel applications.

A mix of fast and slow computers forms many
networks. By giving preference to the faster computers, the

performance of the parallel applications is further
improved.

PVM (Parallel Virtual Machine) [GEI 94) is a tool that
allows a heterogeneous collection of workstations and
supercomputers to function as a single parallel computer,
which is called a virtual machine. Each node of the virtual
machine is called a host and the processes forming the
parallel application are called tasks. PVM was chosen as
our test bed for its high levei of portability, simple message
passing programming and ability to be installed by any
use r.

11. LOAD BALANCING

The main goal o f load balancing a parallel application is
to distribute work among the nodes of a parallel machine in
order to obtain better performance. It is accomplished by
giving a greater portion of work to the faster and less
loaded nodes.

A balanced parallel application may have other benefits.
Ali tasks will have comparable execution times since each
one will receive a portion of work appropriated to its host
capabilities. As a consequence, the execution time of a
parallel application will not be delayed by the slower task.

We can divide load balancing in two categories. The
simpler one is called static load balancing. This type of
load balancing takes place before new tasks are spawned. It
consists on choosing the best hosts to spawn the tasks that
will work in the same host throughout their execution.
Jackson and Humphres present a extension to PVM that
provides static load balancing [JAC 97, HUM 95) . This
extension requires that users run their own benchmarks in
arder to evaluate hardware performance and the results
must be given to the system and it is implemented as a
modification to the PVM source code.

238 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

Static load balancing cannot deal with changes in the
workload of a host, since the best way to deal with them is
to move the task to a less loaded host. This mechanism is
called task migration and the load balancing that uses it is
called dynamic Joad balancing. The mechanism of task
migration is able to move a task to a faster host, if it
becomes available, even when the workload is stable.

Task migration is a complex mechanism, which
involves a great deal of operating system's work. MPVM
(CAS 95] and CONDOR [LIT 97] are software tools that
provide process migration and dynamic load balancing.

III. BEC

BEC [FRA 98] is a normal PVM application that
accepts requests from other PVM applications in order to
spawn their tasks. BEC neither changes PVM
implementation, nor requires any special privileges within
PVM. It has its own set of functions that replaces some
PVM functions. BEC provides transparent load balancing
to user applications. BEC 's current version is limited to
static load balancing, but future versions may implement
this mechanism.

The PVM's functions substituted are pvm_spawn and
pvm_parent. The former is responsible for the spawning of
new tasks and the later informs a task the identity of its
parent task. The function pvm_spawn is replaced by
bec_spawn and the function pvm_parent is replaced by
bec_parent. The function bec_spawn is the point where
PVM's non-balanced tasks spawning mechanism is
substituted by BEC's load balanced task spawning
mechanism.

BEC is written in C and has been ported to the
following operating systems: Linux, SunOS, Solaris e A/X.

A. Architecture

BEC has three types of daemons: the master daemon,
the probe daemon and the creator daemon. Figure I
shows BEC architecture with PVM acting as a
communication layer between BEC's daemons. pvmd3 is
the pvm daemon, becd is the master daemon, becpd is the
probe daemon and beccd is the creator daemon.

B. Master Daemon

The master daemon is the centre of BEC's architecture.
There is only one instance of it serving requests from tasks
ali over the virtual machine.

The master daemm1 spawns and contrais the .work done
by the other BEC daemons, reacts to changes in the virtual
machine and answers the requests from client applications.

At the start up, the master daemon connects to PVM,
gets the virtual machine configuration, tries to spawn one
probe daemon and one creator daemon in each host and
requests PVM for notification on any change on the virtual
machine. After start up, the master daemon starts listening

to requests from client tasks and communications from the
other BEC's daemons.

Host 1

f
f
f

~------ _j
I '

,' ',
I \

I '
I '

I '

Host 2 toN

Fig. I BEC's architecture

C. Creator Daemons

The creator daemons are responsible for the spawning
of new tasks in response to a call to bec_spawn. The tasks
are spawned by a call to pvm_spawn specifying the local
host as the target host. The creator daemons exist to speed
up the spawning o f new tasks on networks o f any size.

If a creator daemon does not receive any message from
the master daemon within a specified period of time, it
sends a special message to the master daemon in order to
discover if BEC is still running. If there is no answer, it
stops.

D. Probe Daemons

The probe daemons gather information about hardware
capabilities and workload information of each host in the
virtual machine.

Should an attempt to send a message containing these
statistics fails the probe daemon self-destructs.

IV. PERFORMANCE EVALUATION

In order to perform load balancing, BEC must have data
about the performance o f ali hosts and must be able to make
comparisons among them.

The current version of BEC combines ali performance
data from a host into a single number called performance
index.

SBAC-PAD '99 1 lth Symposium on Compurer Architecture and High Performance Computing -Natal- Brazil 239

The range of possible parameters used to evaluate the
performance is very broad. However, the two most
important for BEC are the workload, which shows how
much a host is being used, and the hardware speed, which
prevents BEC from choosing empty but slow hosts.

Ali UNIX versions have some way to probe for the
workload, but the policy to access this information usually
involves some special privileges. The hardware speed is
trickier to obtain from the operating systems. Therefore,
BEC uses time benchmarks to obtain both values.

BEC also considers some other parameters: the number
of users, the number of terminais and the number of
active tasks spawned by BEC on a host. These are
complementary parameters used to modify the performance
index of ali the hosts.

The set of parameters used might be changed in future
versions of BEC. The benchmark, the meaning, and lhe
methods to obtain each parameter are explained below.

E. Benchmark

This benchmark measures the execution time of a set of
tests. The tests are a summation of an integer series, a
floating point summation and the copy of data blocks in
memory. The summation involves ali basic arithmetic
instructions.

These tests represent the most common processing tasks
carried out by parallel applications. The span of the tests is
limited by the hosts' resources consumed during the tests
and the need to exceed the usual Unix timeslice. Long
duration tests would imply greater resource consumption,
affecting other tasks and degrading the host's performance.
Fast tests would not exceed the process' timeslice and the
process would not be preempted, producing a false
workload measure.

The benchmark is carried out by the probe daemons on
their respective hosts and sent to the master daemon. The
benchmark is repeated periodically to give an updated
snapshot o f the host's performance.

The probing interval can be changed by the function
bec_probeinterval allowing the user to define the best
probing interval for his needs.

Workload Index (WI) - it is the measure of how
loaded with active processes a host is. It is proportional to
the time elapsed during the execution of the benchmark.
The time elapsed contains the time the process was
effectively running and the time the process was stopped
while the other active ·processes executed. It is a dynamic
parameter collected periodically by the probe daemons.

Hardware lndex (HI) - this parameter measures how
fast the combination o f hardware and operating system is, it
is proportional to the processar holding time necessary to
accomplish a task. The faster combinations should need less
time to run, hence they have the Jower values. It is obtained
by the sum of the user time and the system time the process

uses to complete the benchmark. The hardware index is a
constant parameter taken once at the probe daemons start
up.

Number of Users (NUser) - it is the number of users
Jogged in a host. Each logged user consumes part of the
resources of a host, so it is a good policy to avoid hosts
being used by many users. It also prevents the parallel
application from disturbing other users. This parameter is
collected periodically by the probe daemons reading the
system's use r login records.

Number of Terminais (NTty) - it is the total number
of terminais opened by the users of a host, this number
includes terminais used in X sessions. More open terminais
increase the possibility of workload peaks. This parameter
is collected by the probe daemons by periodically reading
the system's user login records.

Number of Tasks Spawned by BEC (NTask) - it is an
important parameter that prevents BEC from spawning
large numbers of tasks through successive calls to
bec_spawn between performance data gathering. It is
updated by the master daemon when task is spawned by a
creator daemon or when a spawned task exits. By
increasing this parameter after a task is spawned, the
performance index gets worse and the host is less likely to
be ehosen again. When the task exits the host returns to its
normal performance index. The updates in the parameter
avoid the need to collect performance data again for the
host.

F. Performance Jndex

The Performance Index for a host is the combination of
the results of the benehmark on that host. The master
daemon receives the results from the probe daemons and
uses the following equation to evaluate the performance
index:

Performance lndex = Scale x HI x WJ x
(1 + wu x NUser + wy x NTty + wt x NTask)

Scale is a range adjustment to the performance index.
The factors wu, wy and wt are weights to the last three
parameters. BEC provides the function bec_weights to
allow the user to fine-tune these weights.

The lower the hardware index and the workload index
are, the better is the performance of the host, therefore the
better hosts are those with lower performance indexes.

V. T ASK SPAWNJNG

The process of task spawning begins with a call to the
function bec_spawn. This function forwards the request to
the master daemon in a message containing ali parameters
passed by the user, some PVM environment variables and
shell environment variables exported with PVM_EXPORT.

240 SBAC-PAD '99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

The master daemon selects the best hosts that match the
user conditions and issue a request for the creator daemons
of the selected hosts to spawn the desired number of tasks.
Ali the request data is stored in a internai list of task
spawning requests in execution, so the master daemon can
continue to listen to other messages while it waits for the
responses from the creator daemons. The algorithm to
choose hosts will be explained latter.

The creator daemons register the requesting task's PVM
environment in its own PVM environment to guarantee that
the spawned tasks will inherit the correct environment, and
then call pvm_spawn to locally spawn the tasks for its host.
The resulting tasks' identifications are sent back to the
master daemon.

When the master daemon receives a response from a
creator daemon, it updates the corresponding entrance on
the list of task spawning requests in execution and updates
the performance index for the host. Once ali the responses
pending for the request arrive, the master daemon sends the
number of spawned tasks and their identifications to the
requesting task.

BEC's heuristics to distribute tasks among the hosts uses
the idea that it is better to create more tasks on a faster host
then adding a slower host to the set of hosts. Therefore, if
host A has a performance index that is half the performance
index of a host B, then host B should get half or less the
number o f tasks assigned to host A.

Task spawning through BEC is slower than task
spawning via PVM, but the gains in performance fully
compensate this disadvantage.

VI. COMPARA TIVE TESTS

This section presents the results of tests comparing the
performance of PVM parallel applications running with or
without BEC's support.

The data for the first and fourth tests were extracted
from a program that generates pi. These tests were designed
to evaluate workstation's global performance avoiding
influences of network load. The second test was a program
that calculates a scalar product and the third a program that
computes the average and the standard deviation of a large
set of points. These tests, besides evaluate the workstation's
global performance, measure the delays caused by large
exchange of data on common networks.

Each test was run 50 times on two different networks
and produced the average execution times shown here. The
first network comprised tive Sun4m workstations running
Solaris and four Sun4c workstations running SunOS. Nine
Pentium PCs of equal configuration running Linux
composed the second one. Both networks remained fully
operational.

During the tests, other researchers and students used an
average of four workstations. The workload probing was
repeated in a 120 seconds interval.

The main goal of the tests on the SUN network was to
prove that BEC is able to choose the faster machines among
a pool of hosts o f different performance. Whereas the main
goal of the tests on the Linux network was to show that
BEC can choose the least Ioaded hosts to improve
performance even when ali machines have the same
hardware characteristics.

G. Numeric Computation of Pi Varying the Number of
Points

The purpose of this test is to evaluate the behaviour of a
processar intensive parallel application. The network load
has minor influence in the execution times since only the
borders of the intervals assigned to the slave tasks and the
partia! results are exchanged between the tasks.

Fig. 2 Numeric Computation o f Pi on a Heterogeneous Network

4.5 - ·-----·--- ----- --- . - - - -1
'

Fig. 3 Numeric Computation o f Pi on a Homogeneous Network

As Figure 2 shows, BEC's performance gains on the
heterogeneous network increased from 47% to 70% as the
number of points increased. Similarly, Figure 3 shows that
BEC's performance gains on the homogeneous network

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 241

increased from 15% to 44% as the number of points
increased.

The performance gains increased with the number of
points, because the time taken with data exchanging
between tasks is constant, so the total execution time
becomes more dependent on the performance o f the host as
the number of points increase. BEC chose the faster hosts,
thus giving more performance gains.

H. Scalar Product Varying the Size ofthe Vectors

This is a data intensive test, involving sending large
vectors to the slave tasks and receiving a floating point
number as the partia!. result. The processing done by the
slave tasks comprised two products and a sum per point. So
this test measures the behaviour o f BEC with an appl ication
requiring large data exchange and low processing.

Most of the execution time is taken by the time to
transfer data, so this application is highly network
dependent.

BEC 's performance gains on the heterogeneous network
ranged between 20% to 33%, as shown in Figure 4 .

~
~
;:;
,;
~
E
i=
~
,;
;;
t
!!: .
f
<

14

12

lO

Fig. 4 Scalar Product ofTwo Vectors on a Heterogeneous
Network

14 -- --- --- .. -· - -~- -·- -
I

r
12 =-

r
lO -

r-
,r-- -R <

r
-1 6 t-- t-- -

· r

~ 4 t-- t-- 1-- -

ft 2 1-- f- f- - -j

o ~ · ~ lO I 50 I 90 I 130 I 170 I 210 I 2SO

icPVM 0.66115 I 3.01MX I 4.'}9()6 I 7.0723 I 8.5953 I 11.12S} I 12.7391 I
laBEC o.sm 1 2.7RR6 1 4.4925 1 6.2036 I s.om I um I 11.7032 l

Numbor or Polnts (xJOOO)

Fig. 5 Scalar Product o f two Vectors on a Homogeneous Network

Figure 5 refers to the same tests run on a homogeneous
network. BEC's performance gains ranged between 6% and
12%, except for 10,000 points where BEC increased
execution time by 28%. This is explained by the execution
time being too small to overcome the extra time to spawn
tasks required by BEC.

I. Average and Standard Deviation of a Ser Varying the
Number of Points

This is another data intensive test. It consists on sending
parts of a set of points to the slave tasks and receiving back
the partia) sum to compute the average. The average is sent
to the slave tasks to compute the partia! standard deviation.

As Figure 6 shows, the performance gains attained by
BEC, on the heterogeneous network, were between 22%
and 32%.

Figure 7 shows that for I 0,000 points BEC increased the
execution time by 28% on the homogeneous network. For
higher number of points, performance gains were between
5% and 13%.

- --·-·· ----. - - - -· ·- I r-

lO 'I

H r-- J -
6 r-- '--

4 " t-- 1-- r--
I

2 ar- 1-- 1-- t-- t-- f-j

o ["lg
lO I so I 90 I 130 I 170 I 210 I 2SO

IDPVM o.9n5 I 2.5561 I 4. 1991 I b.ORJI I 7.6927 I 9.4281 1 11.295

lc:JBEC 0.66S7 I 1.964 I 3.3241 I 4.S061 I 6.0279 I M275 J 8.6094

Numbcr u(Pulnts (xiOOO)

Fig. 6 Average and Standard Deviation o f a Set o f Points on a
Heterogenous Nctwork

Numlwr uf Polnts (dOOO)

Fig. 7 A verage and Standard Deviation o f a Set o f Points on a
Homogeneous Network

I

242 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

J. Numeric Computation of Pi Varying the Number of
Tasks

This test shows how BEC's performance gains are
affected by increasing the number of tasks, which forces
BEC to choose slower hosts.

Figure 8 shows the test made on the heterogeneous
network. BEC obtained performance gains until the number
o f tasks increased to tive, above this value BEC was forced
to use the hosts with slower hardware. The pure PVM's
applications could gct performance gains a little further
because of BEC's task spawning time. BEC attained the
best result with five tasks distributed over the tive Solaris
workstations.

-· -- -· ------ -·-----1
r i 2

I ~

I
I.S I--

l
I f- 1- I-- I-- - ~ ~--- -

O.S ~ 1- 1- - f- 1- -

o
2 I 3 I 4 I s I 6 I 7 I g T 9

IDPVM 2.23R2 I 1.7306 I 1.4741 I 1.32YI I 1.2R52 I 1.2602 I 1.4894 I I.R079

IDBEC 1.3739 I 1.0496 I O.K5) I O.KZ04 I O.K'J4Z I 1.1)39 I 1.3361 I 1.8ShY

Nulll.bcr ufTasks (JdOOO)

Fig. 8 Numeric Computation o f Pi on a Heterogeneous Network

Figure 9 shows the test made on the homogeneous
network. Pure PVM applications gained performance as the
number of tasks increased because the amount of work per
task decreased. BEC also gained performance while there
were free hosts. As the loaded hosts were added, the
performance was reduced because the task spawning time
on these hosts is longer.

2S -- -... l
I

2 .
I

- I I.S 1--
I
I

I - f- ;-- 1-- -
I

0.5 - 1-- .--- - '-- .--- - J
I

o T J 2 I) I 4 I s I 6 I 7 I g 9

IDPVM 2.0389 I 1.6647 I 1.3401 I 1.2011 I I.OIS6 I 0.9411 I 0.9037 I 0.8218 J
I:IBEC a.nn I 1.0424 I o.Y638 I 0.9145 I 1.1828 I 1.1874 I 1.0321 I 1.0016 I

NumboroCTuks(xiOOO)

Fig. 9 Numeric Computation o f Pi on a Homogeneous Network

VII. CONCLUS IONS

The results obtained show the va\ue of load balancing to
squeeze even more performance from computational
resources. These performance gains can be used to solve
even more complex problems.

BEC is completely functional and has been successfully
used in undergraduate classes learning parallel
programming and research activities.

The main advantage of BEC is the reduction of the
execution time for parallel applications. Another result is
the ability of BEC to avoid busy workstations, dccreasing
the impact of parallel applications to other users.

Work results also showed that the standard deviation of
the cxecution times was reduced by 80% by comparison to
pure PVM applications. This allows better prcdiction of the
completion times when parallel applications are executed
repeatedly.

The implementation of BEC allows easy porting of
PVM applications, which can be done by replacing a small
number of function calls, with no changes on programming
methods. BEC does not require special privileges to be
installed and used, allowing any user access to the gains of
performance provided by load balancing.

REFERENCES

[CAS 95] CASAS, Jeremy: CLARK, Dan: KONURU, Ravi;
OITO, Steve; PROUTY, Robert: WALPOLE,
Jonathan. MPVM: A Migration Transparent Version of
PVM, Technical Report CSE-95-002, Dept. of
Computer Science and Engineering, Oregon Graduate
lnstitute of Science & Technology, February 1995.

[FRA 98] FRANCO, Cláudia Rita de: YIDAL, Leonardo Silva.
BEC · Balanceador Estático de Carga para o PVM, B.
Se. Project, Federal University of Rio de Janeiro,
1998.

[GEI 94] GEIST, AI: BEGUELIN, Adam: DONGARRA, Jack;
JIANG, Weicheng: MANCHECK, Robert:
SUNDERAM, Yaidy. PVM: Para/lei Virtual Machine
A Users' Guide and Tutorial for Networked Parai/e/
Computing, MIT Press.

[HUM 95] HUMPHRES. Chris W. A Load Balancing Extension
for the PVM Software System, M. Se. Thesis,
University of Alabama, 1995.

[JAC 97] JACKSON, David J; HUMPHRES, Chris W. A Simple
Yet Effective Load Balancing Extension to the PVM
Software System. Parallel Computing, vol. 22, lssue
12, February 1997, pp 1647-1660, North Holland

[LIT 97] LITZKOW, Michael: TANNENBAUM, Todd;
BASNEY, Jim: LIYNY, Miron. Checkpoint and
Migration of UNIX Processes in the Condor
Distributed Processing System, Technical Report
#1346, University of Wisconsin-Madison Computer
Sciences, April1997.

