
SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 243 

Concurrent Gang: Towards a Flexible and 
Scalable Gang Scheduler 

Fabricio Alves Barbosa da Silva 1; Isaac D. Scherson 12t 

1 Universite Pierre et Marie Curie. Laboratoire AS IM, LIP6, Paris. France. 
fabricio.silva@asim.lip6.frl 

lnformation and Comp. Science. University o f Califomia. lrvine. CA 92697 U.S.A. 
isaac@ics.uci.edu§ 

AbJtract-
Gang scheduling has been widely used as a practical solution to the 

dynamic parallel job scheduling problem. Parallel tasks of a job are 
scheduled for simultaneous execution on a partition of a parallel com
puter. Gang Scheduling has many advantages, such as responsiveness, 
efficient sharing o f resources and ease o f programming. However, there 
are two major problems associated with gang scheduling: scalability 
and the decision of what to do when a task blocks. In this paper we 
pro pose a class o f scheduling policies, dubbed Concurrent Gang, lha! is 
a generalization of gang-scheduling, and allows for the flexible simulta· 
ncous scheduling ofmultiple paralleljobs with different characteristics. 
Bcsides that, scalability in Concurrent Gang is achievcd through the use 
of a global clock that coordinates the gang scheduler among different 
processors. 

Keyword.1- Parallel job schcduling, Gang scheduling 

I. lNTRODUCTION 

Parallel job scheduling is an important problem whose so
lution may lead to better utilization of modern multiproces
sors parallel computers. It is defined as: "Given the aggre
gate of ali tasks of multiple jobs in a parallel system, find 
a spatial and temporal allocation to execute ali tasks effi
ciently". Each job in a parallel machine is composed by one 
or more tasks. For the purposes of scheduling, we view a 
compu ter as a queueing system. An arriving job may wait 
for some time, receive the required service, and depart [7). 
The time associated with the waiting and service phases is 
a function of the scheduling algorithm and the workload. 
Some scheduling algorithms may require that a job wait in 
a queue until ali of its required resources become available 
(as in variable partitioning), while in others, like time slic
ing, the arriving job receives service immediately through a 
processor sharing discipline. 

We focus on scheduling based on gang service, namely, 
a paradigm where ali tasks of a job in the service stage are 
grouped into a gang and concurrently scheduled in distinct 
processors. Reasons to consider gang service are respon
siveness (3], efficient sharing of resources[8) and ease of 
programming. In gang service the tasks of a job are sup-

• Supponed by Capes. Brazilian Govemment. grant number 1897195-11 . 
I Supponed in part by the lrvine Research Unit in Advanccd Computing 

and NASA undcr grant #NAGS-3692. 

plied with an environmcnt that is very similar to a dedi
cated machine [8). It is useful to any model of computa
tion and any programming style. The use of time slicino 

"' allows perfonnance to degrade gradually as load increases. 
Applications with fine-grain interactions benefit of large per
fonnance improvements over uncoordinated scheduling[5). 
One main problem related with gang scheduling is the neces
sity o f multi-context switch across the nodes o f the processo r, 
which causes difficulty in scaling[2]. In this paper we pro
pose a class o f scheduling policies, dubbed concurrent gang, 
that is a generalization of gang-scheduling and allows for the 
flexible simultaneous scheduling of multi pie parallel jobs in 
a scalable manner. 

The architectural model we will consider in this paper 
is a distributed memory processor with three main compo
nents: I) Processor/memory modules (Processing Element -
PE), 2) An interconnection network that provides point to 
point communication, and 3) A synchronizer, that synchro
nizes ali components at regular intervals o f L time units. This 
architecture model is very similar to the one defined in the 
BSP model [ 14) . We shall sce that the synchronizer plays a 
important role in the scalability of gang service algorithms. 

Although it can be used with any programming model, 
Concurrent Gang is intended primarily to schedule efficiently 
SPMD jobs. The reason is that the SPMD programming style 
is by far the most used in parallel programming. 

This paper is organized as follows: the Concurrent Gang 
algorithm is described in section Il. Scalability issues in 
Concurrent gang are discussed in section III. Experimen
tal results are in section IV and section V contain our final 
remarks. 

li. CONCURRENT GANG 

In parallel job scheduling, as the number of processors is 
grater than one, the time utilization as well as the spatial uti
lization can be better visualized with the help of a bidimen
sional diagram dubbed trace diagram. One dimension repre
sents processors while the other dimension represents time. 
Through the trace diagram it is possible to visualize the time 



244 SBAC-PAD '99 11th Symposium on Computer Architecture and High Peiformance Computing- Natal- Brazil 

SI ice 
:· · ···: 

1'0 J l 12 14 : ,. : 

Pl J l Jl J4 ; >< ! 
Pl J1 Jl J4 ! JS ! 
Pl Jl Jl H ; JS ! 

W~klt~ c:han&c 

Cyd<,--------ll 

P" 1 Jl J3 M : J6 ~ :-Skll 

1-Pcm'<I-1-P<"''<I-1- Pcri.,.J--1-P<riud--1 
Time 

• h.Uc Slucs 

Fig. I . Definition o f slice. slot, pe riod and cycle 

utilization of the set of processors given a scheduling algo
rithm. A similar representation has already been used, for 
instancc, in [ li] (the trace diagram is also known as Oster
hout matrix in the literature). One such diagram is illustrated 
in figure I 

Gang service algorithms are preemptivc algorithms. We 
will be particularly interested in gang service algorithms 
which are periodic and preemptive. Rclated to periodic prc
emptive algorithms are the concepts of cycle, slice, period 
and slot. A Workload change occurs at the arrival of a new 
job, the tennination of an existing one, or through the vari
ation of the number of cligible tasks of a job to be sched
uled. The time betwcen workload changes is defined as a 
cycle. Between workload changes, we may define a period 
that is a function of the workload and the spatial allocation. 
The period in the minimum interval of time where ali jobs 
are scheduled at least once. A cycle/period is composed of 
slices; a slice corresponds to a time slice in a partition that 
includes ali processors of the machine. A slot is the proces
sors' view of a slice. A Slicc is composed of N slots, for a 
machine with N processors. If a processor has no assigned 
task during its slot in a slice, then we have an idle slot. The 
number of idle slots in a period divided by the total number 
o f slots in the period defines the ldling Ratio. Note that work
load changes are detected between periods. If, for instance, 
a job arrives in the middle o f a period, corresponding action 
o f allocating the job is·only taken by the end o f the period. 

Refcrring to figure 2, for the definition o f Concurrent Gang 
we view the parallel machine as composed o f a general queue 
of jobs to be scheduled and a number of servers, each server 
corresponds to one processor. Each processor may have a 
set of tasks to execute. Scheduling actions are made at two 
leveis: In the case of a workload change, global spatial al
location decisions are made in a front end scheduler, who 

decides in which portion o f the trace diagram the new com
ing job will run. The switching of local tasks in a proccssor 
as defined in the trace diagram is made through local sched
ulers, independently o f the front end. 

A local scheduler in Concurrent Gang is composed o f two 
main parts: the Gang scheduler and the local task sched
uler. The Gang Scheduler schedules the next task indicated 
in the trace diagram at the arrival of a synchronization sig
nal. The local task scheduler is rcsponsible for scheduling 
specific tasks (as described in the next paragraph) allocated 
to a PE that do not need global coordination and it is similar 
to a UNIX scheduler. The Gang Schcdulcr has precedence 
over the local task scheduler. 

We may consider two classes o f tasks in a concurrent gang 
scheduler: Those that should be scheduled as a gang with 
other tasks in other processors and those that gang schedul
ing is not mandatory. Examplcs of the first class are tasks 
that compose a job with fine grain synchronization interac
tions (5] and communication intensive jobs. Second class 
task cxamples are local tasks or tasks that compose an VO 
bound parallel job, for instance. In [9] Lee et ai. proved that 
response time o f VO bound jobs suffers under gang schcdul
ing and that may lead to significant CPU fragmentation. On 
other side a traditional UNIX scheduler does good work in 
scheduling VO bound tasks since it gives high priority to 110 
blocked tasks when the data became available from disk. As 
those tasks typically ruo for a small amount o f time and then 
blocks again, giving them high priority means running the 
task that will take the least amount of time before blocking, 
which is coherent to the theory of uniprocessors scheduling 
where the best scheduling strategy possible under total com
pletion time is Shortest Job First [I 0]. In thc local task sched
uler ofConcurrent Gang, such high priority is preserved. An
other example of jobs where gang scheduling is not manda
tory are embarrassingly parallel jobs. As the number of iter
ations among tasks belonging to this class of jobs are small , 
the basic requirement for scheduling a embarrassingly par
aliei job is give those jobs the larger fraction of CPU time 
possible, even in an uncoordinated manner. 

In practice the operation o f the Concurrent Gang scheduler 
at each processor will proceed as follows : The reception of 
the global clock signal will generate an interruption that will 
make each processing element schedule tasks as defined in 
the trace diagram. If a task blocks, control will be passed to 
the one o f the class 2 tasks defined dynamically by the local 
task scheduler of the PE until the arrival of the next clock 
signal. 

Differentiation among tasks that should be gang sched
uled and those that should not can be made by the user or 
through a heuristic algorithm, using bookkeeping informa
tion gathered by the local scheduler about each task associ
ated with the respective processor. In Concurrent Gang we 



SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 245 

take the non-clairvoyant approach, where the scheduler itself 
has minimum information about the job - In our case pro
cessar count and memory requirements. As an example, in 
Concurrent Gang one possible algorithm for differentiation 
between 110 bound and non 110 bound tasks is the follow
ing heuristic: each local scheduler computes the average of 
slot utilization for each task, that is, if a task blocks due to 
110 and it have used 20% of the time o f its allocated slot, the 
slot utilization for that task on that cycle was 0.20. If slot 
utilization falls bclow 0.50 due to 110 blocking for a 5 cycle 
average, then that task is eligible to be scheduled as a local 
task i f anothcr task blocks or i f there are idle slots. Observe 
that slot utilization is computed for even those paralleltasks 
that are not gang scheduled at the moment - in that case the 
slot duration will correspond to the time quanta of the local 
scheduler. As many jobs proceed in phases, i f a task changes 
from a 110 intensive phase to a computation intensive phase, 
this change should be detected by the local task scheduler. 

In the event of a job arrival, a job termination or a job 
changing its number of eligible tasks (events which define 
effectively a workload change i f we consider moldable jobs) 
the front end Concurrent Gang Scheduler will : 

I - Update Eligible task list 
2- Allocate Tasks ofFirst Job in General Queue. 
3 - While not end of Job Queue 

4- Run 

Allocate alltasks of remaining parallel jobs 
using a defincd spatial sharing stratcgy 

Between Workload Changes 
- If a task blocks or in the case of an idle slot, the local 

task scheduler is activated, and it will decide to schedule a 
new task bascd on: 

• Availability o f the task (task ready) 
• Bookkeeping information o f the task gathered by the lo

cal scheduler. 
For rigidjobs, the relevant events which define a workload 

change are job arrival and job completion. 
Ali processors changc context at same time dueto a global 

clock signal coming from a central synchronizer. The local 
queue positions represents slots in the scheduling trace dia
gram. The local queue length is the same for ali processors 
and is equal to the nurriber o f slices in a period o f the sched
ule. It is worth noting that in the case of a workload change, 
only the PEs concerned by the modification in the trace dia
gram are notified. 

It is clear that once the first job, i f any, in the general queue 
is allocated, the remaining available resources can be allo
cated to other eligible tasks by using a space sharing strat
egy. Some possible strategies are first fit and best fit policies 

----
Global (Arrival) 

Queue 

,. .... ............ . . . 
: : 

Trace Diagram 

Fig. 2. Modeling Concurrent Gang class algorithm 

which are classical bin-packing policies. In first fit, slots are 
scanned in serial order until a set o f slots in a slice with suf
ficient capacity is found . In best fit, the sets of idle slots in 
each slice are sorted according to their capacities. The one 
with the smallest sufficient capacity is chosen. 

In the case of creation of a new task by a parallel task, 
or paralleltask completion, it is up to the local scheduler to 
inform the front end of lhe workload change. The front end 
will then take the appropriate actions depending on the pre
defined space sharing strategy. 

III. SCALABILITY IN CONCURRENT GANG 

Concurrent Gang is a scalable algorithm due to the pres
ence of a synchronizer working as a global clock, which al
lows the scheduler to be distributed among ali processors. 

The front end is only activated in the event of a workload 
change, and decision in lhe front end is made as a function 
of the chosen space sharing strategy. As decisions about 
context switch are made locally, without relying on a cen
tralized controller, concurrent gang schedulers with global 
clocks providc gang service in a scalable manner. This 
differs from typical gang scheduling implementation where 
job-wide context switch relies in a centralizcd controller, 
which limits scalability and efficient utilization o f processors 
when a task blocks. Another algorithm using gang service 
aimed at providing scalability is the Distributed Hierarchical 
Control[4, 6). However authors give no solution for the task 
blocking problem. In Concurrent Gang, the distribution of 
the scheduler among ali processors without any hierarchy al
lows each PE decide for itself to do i f a task blocks, without 
depending on any other PE. 

The global clock works as a support for the operating sys
tem, and its implementation may vary in function of the ar
chitecture o f the machine 



246 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 

IV. EXPERIMENTAL RESULTS 

The performance of Concurrent Gang was simulated and 
compared with the traditional gang scheduling algorithm, us
ing first fit as bin packing strategy in both cases. The reason 
o f using first fit is that it was proven in [ 13) that this strategy 
can bc used with no system degradation if compared with 
other bin-packing policies given the workload model defined 
in [I], besides its smaller complexity. First we describe the 
simulator, then we detail the workload model used, and fi
nally simulation results are presented and analyzed. 

A. Description ofthe Simulator 

To perfonn the actual experiments we used a general pur
pose event driven simulator, first described in [ 12], being de
veloped by ou r research group for studying a variety o f prob
lems (e.g., dynamic scheduling, load balancing, etc). The 
fonnat used for describing jobs (composed by a set of task) 
is a set of parameters used to describe the job characteristics 
such as computation/communication ratio. The actual com
munication type, timing and pattern (with whom a particular 
task from a job will communicate with) are then left unspec
ified and it is up to the simulator to convert this user specifi
cation in to a DAG, using probabilistic distributions, provided 
by the user, for each o f the parameters. Other parameters in
clude the spawning factor for each task, a task life span, syn
chronization pattern, degree of parallelism (maximum num
ber of task that can be executed at any given time), depth of 
criticai path, etc. Please notice that even though probabilistic 
distributions are used to generate the DAG, the DAG itself 
behaves in a completely detenninistic way. 

Once the input is in the fonn of a DAG, and thc module re
sponsible for implementing a particular scheduling algorithm 
is plugged in to the simulator, severa! experiences can be per
fonned using the same input by changing some of the pa
rameters of the simulation such as the number of processing 
elements available, the topology of the network, among oth
ers, and their outputs, in a variety of fonnats, are recorded in 
a file for !ater visualization . The simulator offers a gamut of 
features aimed at simplifying the task o f the algorithm devel
oper. For the case o f dynamic scheduling the simulator offers 
among others methods for manipulating partitions (creation, 
deletion, and resizing), entire job manipulation (suspension, 
execution), as well as task levei selection, message storing 
and forwarding, deadlock free communication and synchro
nization, etc. 

B. Workload Model 

The workload model that we consider in this paper was 
proposed in [1). This is a statistical model of the workload 
observed on a 322-node partition o f the Cornell Theory Cen
ter's IBM SP2 from June 25, 1996 to September 12, 1996, 

and it is intended to model rigid job behavior. During this pe
riod, 17440 jobs were executed. The model is based on find
ing Hyper-Erlang distributions of common order that match 
the first three moments of the observed distributions. Such 
distributions are characterized by 4 parameters: 

- p - the prdbability of selecting the first branch of the 
distribution. The second branch is selected with probability 
I- p. 

- .À 1 - the constant in the exponential distribution that 
fonns each stage o f the first branch. 

• À2 - the constant in the exponential distribution that 
forms each stage o f the second branch. 

• n - the numbcr of stages, which is the same in both 
branches. 

As the characteristics of jobs with different degrees of par
allelism differ, the full range o f degrees o f parallelism is first 
divided into subranges. This is done based on powers of two. 
A separate model of the inter arrival times and the service 
times (runtimes) is found for each range. The detined ranges 
are I, 2, 3-4,5-8,9-16, 17-32, 33-64, 65-128, 129-256 and 
257-322. 

Tables with ali the parameter values are available in [ 1 ]. 

C. Simulation Results 

We simulated a 32-processor machine in a mesh config
uration. Six of the job size ranges described the previous 
section were used. The workload were composed by a mix 
o f synchronization intensive, computing intensive, 1/0 bound 
and communication intensive jobs, with inter-arrival and ex
ecution times of jobs given by Hyper Erlang Distributions. 
For instance, communication intensive jobs have only com
putation and communication instructions, with no 1/0 or syn
chronization. The workload is randomly generated, and then 
the same set o f jobs with their arrival and execution times are 
presented to both a Concurrent gang scheduler and a simple 
Gang Schedulcr. Space sharing strategy in both cases is first 
fit. Simulation results are shown in tables I and 11. 

TABLE I 

EXPERIMENTAL RESULTS • C ONCU RR ENTGANG 

Simulation time Concurrent Gang 
Seconds Jobs Completed Total ldle Time(%) 

5000 9 27 
10000 26 20 
20000 44 14 
30000 67 li 
40000 87 lO 

It should be noted that the total idle time in the simulations 
is not composed be idle slots only, but also by the time which 
a particular task was waiting for 1/0, synchronization and 



SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 247 

TABLE 11 

EXPERIMENTAL RESULTS- GANG SCHEDULER 

Simulation time Gang 
Seconds Jobs Completed Total ldle Time (%) 

5000 3 43 
10000 15 39 
20000 35 34 
30000 59 32 
40000 72 32 

communication completion. 
It is clear by the figures in tables I and li that Concurrent 

Gang outperforrns the traditional gang scheduling algorithm 
both in utilization and throughput. This is dueto the action 
of the local scheduler on each PE, that tries to schedule a 
eligible task every time the current task blocks. 

V. CONCLUSION 

In this paper we presented a new parallel scheduling al
gori thm dubbed Concurrent Gang. It is a improvement of 
the tradition gang scheduling algorithm, and it provides bet
ter machine utilization and throughput through the use of a 
distributed parallel scheduler, where the local schedulers in 
each processor are coordinated through a global clock. 

The workload considered in the simulations could be con· 
sidered as a non-memory demanding workload: We suppose 
that each PE has sufficient memory to accommodate ali tasks 
allocated for that processor at a time, or a efficient virtual 
memory system minimizes the effects of insufficient mem
ory. Further work will consider the use of Concurrent Gang 
with heavy workloads, where ali tasks have large memory 
requirements. 

REFERENCES 

(I] J. J:mn e I ai. Modcling o f Workloads in MPP. lob Scheduling Srrare
giesfor Parai/e/ Processinl(. LNCS 1291:95-11 6. 1997. 

[2) Patrick G. Solbalvarro et ai. Dynamic Coscheduling on Workstation 
Clusters. l ob Scheduling Srraregies for Parai/ti Processing. LNCS 
1459:231-256. 1998. 

(3] D. Feitelson and M. A.Jette. lmproved Utilization and Responsive
ness with Gang Scheduling. Job Scheduling Srraregies for Parai/e/ 
Processing, LNCS 1291 :238-261.1997. 

[4] D. Feitelson and L. Rudolph. Distributed Hierarchical Control for Par
aliei Processing. IEEE Compu ter, pagcs 65-77. May 1990. 

[5) D. Feitelson and L. Rudolph. Gang Scheduling Performance Bcnefits 
for Fine-Grain Synchronization. lournal of Parai/e/ and Disrribured 
Computing,l6:306-3 18.1992. 

{6] D. Fcitelson and L. Rudolph. Evaluation o f Dcsign Choices for Gang 
Scheduling Using Distributed Hicrarchical Control . lournal of Parai
lei and Disrribured Computing. 35: 18-34, I 996. 

(7) D. Feitelson and L. Rudolph. Mctrics and Bechmarking for Pamllel 
Job Schcduling. Job Scheduling Srraregiesfor Para/lei Processing, 
LNCS 1459:1-24, 1998. 

[8) M. A. Jette. Performance Characteristics o f Gang Scheduling In Mul
tiprogrammed Environments. In Proceedings o f SC'97, 1997. 

[9) W. Lee. M. Frank, V. Lee. K. Mackenzie. and L. Rudolph. lmplica
tions o f 110 for Gang Scheduled Workloads. l ob Scheduling Srraregie.t 
for Parai/e/ Processing, LNCS 1291 :2 15-237. 1997. 

[I O] R. Motwani. S. Phillips. and E. Tomg. Non-clairvoyant scheduling. 
Theoretical Compute r Science. 130( I): 17-47, 1994. 

[li) J.K. Ousterhoul. Scheduling Techniques for Concurrent Systems. In 
Proceedings ofrhe 3rd lmernarinnal Conference on Disrribured Comp. 
Sysrems. pages 22-30. 1982. 

[12] F.A.B. Silva, L.M. Campos. and I.D. Schcrson. A Lower Bound for 
Dynamic Scheduling o f Data Parallel Programs. In Proceedings EU
ROPAR'98, 1998. 

[ 13] F.A.B. Silva and I.D. Scherson. Improvements in Parallel Job Schcdul
ing Using Gang Service. In Proceeding.t /999/nrernarional Sympo
sium on Parai/ti Architecrures. Algorirhms and Nenvorks, 1999. 

[14) L. G. Valianl. A bridging modcl for parallcl computations. Commrmi
carions of rire ACM. 33(8): I 03- 111, 1990. 


