
248 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal - Brazil

U sing Compile-Time Granularity Information to
Support Dynamic Work Distribution in Parallel

Logic Programming Systems
Inês de Castro Dutra 1, Vítor Santos Costa2, Jorge L. V. Barbosa3, and Claudio F. R. Geyer4

1 COPPEJSystems Engincering and Computer Scicnce
Federal University of Rio de Janeiro

Rio de Janeiro. RJ, Brazil
ines@cos.ufrj.br

2 LIACC and DCC-FCUP
4150 Porto, Portugal
vsc@ncc.up.pt

3 Computer Science Department
Catholic University of Pelotas

Pelotas. RS. Brazil
barbosa@atlas.ucpel.tche.br

4 lnformatics lnstitute
Federal University of Rio Grande do Sul

Porto Alegre, RS, Brazil
geyer@inf.ufrgs.br

Absrracr-

A very importanl component of a parallel system that generates ir·
regular computalional pattems is its work distribution srratell>'· Schedul·
ing strategies for these kinds of systems must be smart enough in order
to dynamically balance workload while not incurring a very high over
head.

Logic programs running on parallel logic programming systems are
examples of irregular parallel computations. The two main forms of
parallclism exploitcd by parallcl logic programming systcms are: and·
parallelism, that arises when severalliterals in the body of a clause can
execute in parallel, and or-parallclism, that arises whcn severa! alterna
tive clauses in thc data base program can bc selected in parallel.

In this work we show that scheduling strategies for distributing and
work and or-work in parallellogic programming systcms must combine
information obtained at compile-time with runtimc information when
evcr possible, in order to obtain better performance.

The information obtained at compile-time has two advantages over
current implemented systems that use only runtime information: (1)
the user does not nced to adjust parameters in arder to estimate sizes
of and-work and or-work for the programs; (2) the schedulcrs can use
more accuratc estimates of sizes of and-work and or-work to make bel
ter decisions at runtime.

We did our experiments with Andorra-I, a parallel logic program
ming system that exploits both determinare and-parallelism and or·
parallelism. In order to obtain compile-time granularity information
we used the ORCA tool.

Our benchmark set ranges from programs containing and·
parallelism only, or-parallelism only and a combination of both and-,
and or-parallelism. Our results show that, when well designed, schedul
ing strategies can actually benefit from compile-time granularity infor·
mation.

Keywords- logic programming, parallelism, granularity analysis.

I. INTRODUCTION

A very important component o f a parallel system that gen
erates irregular computational patterns is its work distribu
tion strategy. Scheduling strategies for these kinds of sys
tems must be smarl cnough in order to dynamically balance
workload while not incurring a very high overhead.

Parallel logic programming systems are examples of par
aliei systems that generate irregular computational patterns.
There are two main sources ofparallelism in logic programs,
namely, and-parallelism (ANDP) and or-parallelism (ORP).
ANDP is exploited when thc system allows for severa! goals
to be executed simultaneously. ORP arises from the parai
lei execution of severa) candidate clauses to a goal. Some
systems exploit o nly or-parallelism [25, I, 7, 28] while some
others exploit only and-parallelism [20, 19, 33]. More so
phisticated systems exploit both kinds of parallelism in the
same framework [43, 27, 26, 18, 8, 24].

The scheduling strategies used in parallel logic program
ming systems concentrate on the problem o f how to distribute
or-parallel work [6), and-parallel work [40] , and in the pres
ence o f both kinds o f work, which kind o f work to choose or
give preference [12, 14].

There are at least three possible approaches to design a
dynamic scheduling strategy for parallel systems. The first
approach consists o f using inforrnation generated at compile
time to guide scheduling decisions. In this case the task as-

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 249

signment is done statically before running the system. The
second approach consists of postponing work distribution
strategy to runtime and relying only on runtime information.
The third approach consists of making decisions at runtime,
but guided by information, not necessarily very precise, gen
erated at compile-time.

The first approach has three main disadvantages:

• A fixed configuration of processors/tasks is set forever
in the beginning o f the computation and neve r changes.
This may lead to loss of parallelism, since the amount
of work in irregular computations varies along the exe
cution time.

• The process of collecting information about the amount
o f parallelism in a program at compile-time is very com
plicated and sometimes does not produce the precise
and expected results. First, because the computation
of a logic program application varies greatly with dif
ferent inputs and different data sizes. Second, because
some variable dependencies in a logic program are only
solved at runtime, which makes the task of generating
precise information (for example, sizes o f parallel tasks)
or even useful information more difficult.

• Usually, the process of obtaining precise and useful in
formation through compile-time analysis is very slow,
thercfore the overall gain in running the application in a
parallel system may not be justified.

The second approach has some advantages o ver doing task
assignment at compile-time. First, the system does not waste
much time in the compilation phase. Second, dynamic dis
tribution of work allows processors to react to the runtime
system, and therefore have a chance to take new tasks ac
cording to the workload that varies at runtime. However,
this approach has also some disadvantages. The first one is
that completely dynamic strategies, in general , do not find
global optima results. The second disadvantage is that pro
cessors have the overhead o f re-scheduling at severa) stages
of the computation. The re-scheduling may deteriorate per
formance i f scheduling overhead costs and frequency o f task
switching are very high.

In previous works, we showed that dynamic scheduling
strategies for distributing and-work and or-work in parallel
logic programming systems yielded better performance than
a fixed assignment of processors to exploit and-parallelism
and or-parallelism. We then suggested that a combination of
compile-time granulari.ty information with dynamic schedul
ing strategies could improve the performance of the system
even further [13, 12, I 5].

In this work we show that a combination of compile-time
granularity information with dynamic scheduling strategies

· (the third approach) can in fact improve the performance of
parallel logic programming systems that use completely dy
namic scheduling strategies.

Our target system is Andorra-I [43, 31, 42, 12] , a parai
lei logic programming system that exploits both ORP and
ANDP. ANDP in Andorra-I is exploited detenninately, ie.,
only goals that match at most one clause in the programare
allowed to proceed in parallel.

In order to obtain compile-time granularity information,
we used the ORCA system [4], that generates simplified
granularity information based on Tick's algorithm [36] for
goals and clauses of a Prolog-like program.

We modified the Andorra-I system to understand the
ORCA outputs. Our results show that dynamic scheduling
strategies can actually benefit from compile-time granularity
information .

The paper is organised as follows. Section li describes the
ORCA tool and the information generated at compile-time.
Section III describes the Andorra-I system and its scheduling
algorithms. Section IV describes the applications used in our
experiments. Section V presents our results and compares
ou r experiments with a version o f Andorra-I that does not use
any kind of compile-time information to guide scheduling
decisions. Finally, section VI draws some conclusions and
presents directions for future work.

11. THE ORCA SYSTEM

The ORCA system is responsible for generating an anno
tated Prolog program that is !ater compiled to an abstract
code, the Andorra-I VRAM code [32], and provides gran
ularity information about clauses and goals to the Andorra-I
engine.

The ORCA system consists of three main parts. The first
part reads the Prolog program and creates a table with names
of ali procedures and their respective clauses. It also gener
ates a list of calls to clauses. The table is organised in a way
that each cntry contains complexity of the procedure and of
the clauses belonging to that proccdure. The second part of
the model computes the complexity measures for the clauses
and procedures. The third part annotates the source program
with complexity information.

The algorithm used is based on Tick's algorithm[35] with
some modifications to increase precision. Complexity is
measured in terms of number of resolutions. In that case,
the complexity of a fact in the database is considered as 1.
The complexity of a clause is obtained by the sum of the
complexities of each goal in the clause plus one call (consid
ering the head call). The complexity of a procedure is given
by the sum of the complexities of the clauses belonging to
that procedure. The complexity of a recursive call is com
puted as the complexity of the corresponding procedure by
considering each recursive call as having weight I .

As an example, figure 1 shows the annotation for the
clauses shown in figure 2.

The complexity o f d/ 2 is given by annotation

250 SBAC-PAD'99 11th Symposium on Computer Architecture and High Peiformance Computing- Natal- Brazil

'_c_d/2' (1983,1, [1983) ,0, ()).
'_c_samples/2' (35, 2, [2, 33], 18, [)).

Fig. I . ORCA OUTPUT EXAMPLE FOR PROGRAM scanner

d(Data,Mode) :-
scannerdata(Data,R,C,Dl,D2),
scanner(Mode,R,C,Dl,D2,Image).

sible for executing VRAM code, and (3) the schedulers, that
are responsible for distributing and-work and or-work during
execution.

The schedulers are subdivided into three main compo
nents: (I) the or-scheduler [5]. responsible for choosing the
best choicepoint for the worker to move to, (2) the and
scheduler, responsible for choosing the best goal to execute,
and (3) the reconfigurer[12, 14), responsible for choosing be-
tween the two kinds o f work available, and-work or or-work,

samp1es ([) , Samp1es) :- ! , Samp1es = [l . by reconfiguring workers into teams.

samp1es ([SI Spec l ' Samp1es) :- ! ' This work will concentrate on the reconfigurer, since its
scannerdata(S R,C,D1,D2), 1 · h 1 d h ·.. · · ·1 '

1
a gont ms a rea y assume t at some m.onnatiOn 1s ava1 -

Samples = [sample(R,C,D1,D2) !Smp s), bl f .1 · 1 · "' d"d d"f h a e rom comp1 e-lime ana ys1s. vve 1 not mo 1 y t e or-
samples (Spec • Smpls) · scheduler and and-scheduler.

Fig. 2. SOME CLAUSES OF THE scanner PROGRAM

' __ c_d/ 2 ' . This annotation employs the Prolog syntax. The
complexity of samples is given by ' .• c.samples I 2 '.
The first argument of this annotated code corresponds to
the complexity of the procedure, the second represents the
number of clauses of the procedure which determines the
size of the list used as third argument. The third argument
represents a list with the complexity of each clause in the
procedure, the fourth argument corresponds to the recursive
value o f the procedure (i f it h as a recursive call), and, finally,
the last argument corresponds to a list of complexities for
mutually rccursive calls. As no one of the clauses shown in
figure 2 have mutually recursive calls, this last argument is
represented as an empty list.

Obviously, the numbers represented in each argumentare
computed based on the analysis of the whole program that
we do not show here.

III. THE ANDORRA- I SYSTEM

Andorra-I is a parallellogic programming system that ex
ploits ANDP and ORP. A processing element in Andorra-I is
called a worker. ANDP in Andorra-I is exploited according
to the Basic Andorra Model [39) where goals can only be
executed in parallel if they match at most one clause in the
program. ORP is exploited in Andorra-I as in Aurora, where
each worker owns a special structure (the binding array [38])
to allocate and bind conditional variables.

Workers in the system are organised into teams. Each team
has a master with possibly some slaves. Workers inside a
team cooperate to exploit and-work in a or-branch of the ex
ecution tree. In that way, teams exploit or-parallelism while
workers in teams exploit and-parallelism.

Andorra-I is composed o f three ma in sub-systems: (1) the
Andorra-I compiler that generates code to the VRAM ab
stract machine [29), (2) the engine [43, 30], that is respon-

In order to add the information provided by ORCA
to Andorra-I, we had to make some modifications to the
Andorra-I compiler, to the Andorra-I engine and some mi
nor modifications to the reconfigurer.

A. Modifying the Andorra-f compile r

ORCA gives infonnation on clauses and on goal invoca
tions. This infonnation finds a simple match in the process
of Andorra-I compilation:

• The compiler already maintains clause infonnation in
order to support the or-scheduler. Currently, infonna
tion is maintained through the o r .sched_info in
struction, which details how many cuts and commits
exist in a clause, and whether the clause tenninates in a
fail. To insert the ORCA extension we just extended
the infonnation with the fields found in the annotated
code for each procedure.

• Each sub-goal invocation in Andorra-I corresponds to a
crea te instruction. This instruction is generated by
the compiler for each goal in a body clause. At ruo
time, this instruction is responsible for pushing a new
goal onto the goallist used in Andorra-I. It is therefore
natural to associate ORCA's annotation for each call in
the ela use to the crea te instruction.

8. Modifying the Engine

The engine was adapted to access granularity infonnation.
This mainly consisted of adapting the loader and supporting
the new instruction fields.

C. Modifying the existing Andorra-/ schedu/ers

As this work concentrates on the reconfigurer, no modi
fication was made in the and-scheduler and or-scheduler re
lated to the work distribution algorithms. Modifications were
done only to provide information to the reconfigurer.

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 251

D. The Reconfigure r

The reconfigurer was implemented using two different
strategies [13). One, the efficiency-guided strategy, makes
decisions based on past infonnation and on efficiency of
workers in a team [15). The other, work-guided strategy,
makes decisions based on instant infonnation about the sizes
of and-work and or-work available [14).

In this work we will concentrate only on the work-guided
strategy. The infonnation used by the work-guided strategy
assumes some estimates to work sizes. In order to collect
amount of and-work, the reconfigurer takes from the and
scheduler the width of the run queue of goals assuming that
each goal depth has the same value. This depth value is given
by the user as a parameter in the command line. This means
that we keep a very imprecise infonnation about the actual
predicted size of the work below that subtree, which may
Jead to a decision that allocates workers to a team that is
working on a short branch of the execution tree. This may
cause load imbalance, since other sources o f work may need
more workers. In order to collect the amount of or-work
available in the execution tree, the reconfigurer takes from
the or-scheduler, the total number of alternatives available in
the execution tree. The depth o f these choicepoints are given
by the user in the command line. The default value we use in
our Andorra-I version without support to ORCA is I .

ORCA gives to Andorra-I a kind of infonnation that is
very important to guide scheduling decisions: more accurate
sizes of goals and clauses. This way, instead of taking width
of run queues of goals in order to find size of and-parallel
work, the reconfigurer can take estimated sizes of goals in
the run queue of goals and estimated sizes of alternatives in
each choicepoint.

The reconfigurer has two main objectives:
a) to decide when an idle worker will change its type (mas

ter/slave), i.e, what kind of work is preferable: and- or
or-, and

b) to choose the preferred team for a slave. The preferred
team is the one with more and-work per worker, i.e.,
the team that has the greatest sum of run queues for ali
workers in the team.

As regards (a), in order to find the preferred kind of work
currently on the tree, the reconfigurer takes, from the and
scheduler, the total number of goals available in the run
queues of ali teams as ·an estimate of and-work. The recon
figurer also takes, from the or-scheduler, the total number of
alternatives in the execution tree as an estimate of or-work.

From now on, we will refer to two versions of Andorra-I:
(I) one that does not support ORCA, AI) and one that sup
ports ORCA, Al-O. For both versions of Andorra-I, AI and
Al-O, the strategy to choose between and-work and or-work
remains the same. The only difference is that the Al-O deals
with more precise sizes of and-work and or-work. For more

details about the strategy, please refer to [13].
AI takes from the and-scheduler the sum o f the run queues

of goals as amount of and-parallel work. It considers the
depth of each goal as being 1 (this is the value that gives
the best performance overall for ali our applications). AI
O takes the same infonnation from the and-scheduler, but
the sum already contains the predicted depth of each goal.
Regarding collecting amount of or-work, AI already takes
from the or-scheduler the number of alternatives available in
the execution tree (the Andorra-I compiler already supported
this infonnation).

One obvious advantage of using more accurate infonna
tion is that the user does not need to use his/her own esti
mated sizes o f work in the command line as it can be done at
the moment.

IV. BENCHMARKS

Ali programs used as the benchmark set were selected ac
cording to their degree of parallelism. One group of pro
grams has predominantly and-parallelism, another has pre
dominantly or-parallelism, another has both kinds of paral
lelism in different phases of the computation, and another
has both kinds of parallelism appearing at the same compu
tational phase.

A. Benchmarks with predominantly or-parallelism

bqulO
This is a program to solve the Queens problem written
using a Pandora programming technique [3]. The prob
lem is to place queens in a board (NxN) in order that
no queen attacks each other in any column, row or di
agonal. Or-parallelism arises when trying to solve the
c ell predicate. The board size tested was lOxJO. The
program has mainly or-parallelism with a small amount
of and-parallelism.

cypher
This is a simple substitution decoding system developed
by Rong Yang (41] in our Andorra-I group. The sys
tem reads an encrypted text and decodes it (assuming
the original message is in English). According to the
statistics, i f one knows about 100 o f the most common
words, one can respectively understand on average 60%
of most text. Now, instead of having an entire English
dictionary, we can solve a cipher using only a very small
dictionary of common words (about 150 words). With
this dictionary, the Andorra-I preprocessor can gener
ate a reasonably small detenninate tree for each word o f
a set length from the dictionary. Then the program per
fonns a loto f letter matching, first detenninately in and
parallel, then, when only non-detenninate matching is
left, the program creates severa) choices (giving rise to
or-parallelism). An or-branch fails when the number of

252 SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

unmatchable words exceeds a certain limit. The algo
rithm takes advantage of the basic Andorra rnodel to
greatly reduce Lhe search space.
The length of the ciphertext used in the benchmark
is 56 letters, and the maximum number of unmatch
able words is set to 2. This program has mainly or
parallelism with a small amount of and-parallclism.

B. Benchmarks with predominantly and-parallelism

fibonacci
This program computes the n-th element of the well
known fibonacci series.

flypan2
This is a program to generate naval ftight allocations,
based on a system developed by Software Sciences and
the University o f Leeds for the Royal Navy. It is an ex
amplc of a real lifc resource allocation problcm. The
program allocates airborne resources (such as aircraft)
whilst taking into account a numbcr of constraints. The
problem is solved by using the technique of active
constraints as first implemented for Pandora [2]. In
this technique, the co-routining inherent in the Andorra
modcl is used to activate constraints as soon as possi
ble. The program has both or-parallelism, arising from
the different possible choices, and and-parallelism, aris
ing from the parallel evaluation of different constraints.
We used three input data for testing the program. The
first one consists of li aircraft, 36 crew members and
I O ftights needed to be scheduled. The degree o f and
and or-parallelism in this program varies according to
the queries, but ali the queries give rise to more and
parallelism than to or-parallelism.

bLcluster
This is a clustering algorithm for network management
from British Telecom [9]. The program receives a
set of points in a three dimensional space and groups
these points into clusters. Basically, three points be
long to the same cluster if the distance between them
is smaller than a certain limit. To obtain best perfor
mance, we rewrote the original application to become a
determinate-only computation. And-parallelism only in
this case naturally stems from running the calculations
for each point in parallel. The test program uses a c Jus
ter of 400 points ~s input data. This program has no
or-parallelism.

scanner
This is a scanner program to reveal the contents of a
bitmap. The program is an AKL [21] benchmark de
veloped at SICS. The problem was described in [li].
It reveals the contents of a box (bitmap). The input
is the number of dots on each row, column, left di
agonal, and right diagonal. The bitmap used in the

benchmark is a picture o f a star. The program contains
both or-parallelism corresponding to different choices
for the unknown bits (either a dot ora blank), and and
parallelism corresponding to parallel propagation of de
terminate bits and evaluation of constraints. This pro
gram gives rise to reasonablc amounts o f both and- and
or-parallelism in interleaved phases.

V. RESULTS

Our experiments were done on a Sun SPARCstation-20
with 4 processors. We used only three processors and left one
processor for OS duties. We ran the 2 versions of Andorra-I
mentioned in section III: (I) AI, an original version that does
not use any kind of compile-time information, and (2) AI
O, a version using compile-time inforrnation generated by
ORCA. The benchmarks used are described in section IV.

Table I shows runtime executions (in milliseconds) for the
benchmarks with the two versions o f Andorra-I: (I) the orig
inal one without using ORCA information (AI column) and
(2) the new one using the ORCA inforrnation (AI -0 col
umn), for 3 processors. We ran each application 5 times and
computed the average runtime. Spcedup numbers are shown
to the right of each runtime number. The sequentialtimcs of
Andorra with ORCA and Andorra without ORCA are simi
lar.

TABLE I

R UNTI ME IN MILLISECONDS ANO SPEEDUPS ALL APPLI CATIONS

Seq. time AI AI-O
ftypan2 41305 22321 (1.85) 13701 (3.00)
cypher 15788 15064 (1.05) 5613 (2.81)
scanner 3098 2195 (1.41) 1760 (1.76)
bLcluster 7761 2954 (2.63) 2848 (2.73)
fibonacci 1312 566 (2.32) 652 (2.01)
bqu10 542 220 (2.47) 217 (2.50)

From the results shown we can observe that in ali cases,
but one, the utilisation of granularity inforrnation can help in
improving performance. Our improvement ranges from I%
(bqulO) to 168% (cypher). The program fibonacci
does not have improvement in performance, because it is a
deterrninistic application that contains only and-parallelism.
As we do not use the granularity information in the and
scheduler, we see only the effect o f the overhead o f support
ing ORCA information.

VI. CONCLUSIONS ANO FUTURE WORK

This work presented a methodology for incorporating
compile time information in the Andorra-I system in order

SBAC-PAD'99 1 lth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 253

to improve scheduling decisions. The information is pro
vided by the ORCA system. This information was incorpo
rated to the Andorra-I compiler, and consulted by the sched
ulers. We described the reconfiguring algorithms and ex
plained which parameters and estimates o f sizes of and-work
and or-work are used by the new version of Andorra-I that
supports ORCA information. Our results show thai a com
bination of simple compile-time granularity analysis infor
mation with runtime scheduling decisions can produce better
performance than using only runtime scheduling decisions.
Our modifications introduced very little overhead and the uti
lization o f the compile time information was implemented in
a very simple way.

Our next step is to detail the execution of each application
in order to pinpoint the actual contribution of the informa
tion provided by ORCA. We also would like to repeat our
experiments with other applications. Another step further is
to modify the and-scheduler and the or-scheduler in order
to study the impact o f the ORCA information on their deci
sions. Another step forward is to try other scheduling and re
configuring strategies, and other parallellogic programming
systems.

Other scheduling techniques have been proposed that aims
at using compile-time granularity analysis, but either have
not been fully implemented or have only been simulated.
Wai-Keong [17) reports an or-scheduler strategy that uses a
heuristic task distribution by assigning "weights" to the alter
native clauses. His algorithm to assign the weights is similar
to Tick's granularity size algorithm [36]. In this algorithm
each call to a goal is counted as having weight I and each
recursive call has also weight I. These weights are assigned
to the clauses at compile-time by annotating the Prolog pro
gram. The scheduler then uses this information in order to
select tasks to spawn. This technique was originally used
by Tick [36] to control the scheduling of and-parallel goals
in FGHC [37], but it was used by Wai-Keong to control the
spawning of or-parallel alternatives.

Another strategy tcchnique is reported in [23] where a
method to remove structural imbalance of the programs
by g lobal analysis (basically unfolding/flattening recursive
predicates) is proposed. By removing structure imbalance
the author assumes that the or-work is evenly distributed dur
ing the execution. The following rules are applied to dis
tribute work:

• eager-splitting strategy: at each choicepoint where m
processors are present, assume there are n valid choices.
m tasks are created and assigned evenly tom processors.
If n ~ m, each task contains -!* choices, and the re
maining choices are randomly included in some of the
tasks. If n < m, each processar randomly picks one
choice.

• lazy-splitting strategy: at each choicepoint, two tasks

are created and assigned to each of the half of the pro
cessors. In case of choices being not evenly divisible,
remaining choices are treated in a way similar to that in
the eager-splitting rule.

Work by King et ai [34] also try to control granularity
by minimising the number of CGEs (conditional graph ex
pressions) generated in systems that exploit independent and
parallelism.

Ferrari et ai [16] have been doing the same kind o f work
as ours, by applying the ORCA information to the or-parallel
distributed system Plosys [28].

Other kinds of global analysis of Prolog programs to pre
dict the amount o f work to be done in each branch have been
done [10, 36, 22]. These algorithms work at compile time
by calculating inter and intra size arguments of goals and
clauses and generating recurrence equations that would be
utilised by the scheduler at runtime. However these solutions
have not been applied to any known parallel logic program
ming system.

To the best of our knowledge, this is the first work on
applying compile-time granularity analysis to parallel logic
programming systems that exploit both and-parallelism and
or-parallelism, with successful results.

REFERENCES

[I) Khayri A. M. Ali and Roland Karlsson. The Muse Or-parallel Prolog
Model and its Performance. In Proceedings ofthe 1990 North Amer
ican Conferenu un Lnxic Programming. pages 757-776. MIT Press,
October 1990.

[2) Reem Bahgat. Solving Resource Allocation Problems in Pandora.
Technical repon. Imperial College, Department ofComputing. 1990.

[3) Reem Bahgat. Non-Deterministic Concurrent Logic Programming in
Pandora, volume 37. World Scientific, Singapore, 1993. Series in
Computer Science.

(4) J. L. V. Barbosa and C. F. R. Geyer. Análise de Complexidade na
Programação em Lógic:1: Taxonomia. Modelo Granlog e Análise OU.
In XXJJJ Conferência Lntino Americana de Informática. V Encontro
Chileno de Computação da Sociedade Chilena de Computação (CLEI
- PANEL'97). November 1997.

[5) Anthony Beaumont. S . Muthu Raman, and Péter Szeredi. Flexible
Scheduling of Or-Parallelism in Aurora: The Bristol Scheduler. In
Aarts. E. H. L. and van Leeuwen, J. and Rem, M .. editor, PARLE91:
Conference on Parai/e/ Arclritecrures and Lot~guages Europe. vol
ume 2, pages 403-420. Springer Verlag, June 1991. Lecture Notes
in Computer Science 506.

[6) Anthony Beaumont and David H. D. Warren. Scheduling Speculative
Work in Or-Parallel Prolog Systems. In Proceedings of lhe Tenrh ln
ternational Conference on Logic Programming, pages 135-149. MIT
Press, June 1993.

[7) J. Briat, M. Favre, C. Geyer. and J. Chassin. Scheduling of Or-parallel
Prolog on a Scalable. Reconfigurable, Distributed-Memory Multipro
cessar. In Proceedings of Paralld Archirecture and Languages Europe.
Springer Verlag, 199 1.

[8) Manuel Eduardo Correia, F. M. A. Silva, . and V. Santos Costa. The
SBA: Exploiting onhogonality in OR-AND Parallcl Systcms. In Pro
cudings of the 1997 lnternariona/ Logic Programming Symposium,
October 1997. also published as Technical Rcpon DCC-97-3, DCC
FC & LIACC, Universidade do Pono, April, 1997.

254 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

[9) Barry Crabtree. A clustering system to network control, British Tele
com. March 1991.

[10) Saumya K. Debray, Nai-Wei Lin, and Manuel Hermenegildo. Task
Granularity Analysis in Logic Prograrns. In Procudings of the ACM
SIGPI.AN'90 Conference on Programming Language Design and lm
p/ementation. pages 174-188. June 1990.

[li I A. K. Dewdney. Mathematical Recreations -A Compendium o f Math
Abuse from around the World. Scientific American, 263(5):142-145,
September 1990.

[12) I. C. Dutra. Str.ltegies for Scheduling And- and Or-Work in Parallel
Logic Prograrnming Systems. In Procudings of the / 994 lnterna
tional Logic Programming Symposium, pages 289-304. MIT Press,
1994. Also available as technical repon CSTR-94-09, from the De
panment of Computer Science, University of Bristol. England.

[13) I. C. Dutra. Dütributing And- and Or-Work in the Andorra-/ Par
aliei Logic Progrumming Sy.flem . PhD thesis, University of Bris
tol. Depanment of Computer Science, February 1995. available at
http://www.cos.ufrj.br/-ines.

[14) I. C. Dutra. Performance Analysis of a Strategy to Distribute And
work and Or-work in Parallel Logic Programming Systems. In Pro
cudings of the VIII Braz.ilian Symposium on Computer Architec
ture and High Performance Proce.uing - SBAC-PAD, pages 449-463,
1995.

[15) I. C. Dutm. Distributing And-Work and Or-Work in Parallel Logic
Programming Systems. In Procudings of the 29th Hawaii lnterna
tional Conference o11 Sy.ttem Sciences, pages 646-655. IEEE, 1996.

[16] FERRAR!, O. N. O uso e implementação de informações de granu
losidadc no plosys. Tmbalho individual, Universidade Federal Do Rio
Grande Do Sul, 1998.

[17] Wai-Keong Foong. Or-Parallel Prolog with Heuristic Task Distribu
tion. In Lecture Notes in Artificial /ntelligence 592, Lagic Program
ming Ru.uian Co11jerence, pages 193-200, 1991.

[18) Gopal Gupta. M. V. Hermencgildo, E. Pontelli, and V. Santos Costa.
ACE: t!_nd/Or-parallcl ~opying-based ~xecution of Logic Programs.
In Procudings ofthe Elevelllh lnternurional Cmrftrence on Lugic Pro
xrammillg, llaly, June 1994.

[19) Gopal Gupta. Enrico Pontelli, and Manuel Hermencgildo. &ACE:
A High Performance Parallel Prolog Systcm. In Proceeding.< of the
Fir.ft lnternational Symposium on Parai/e/ Symbolic Computation,
PASC0 '94, 1994.

[20) Manuel Hcrmenegildo. An Abstract Machine for Restricted And
Parallel Execution of Logic Programs. In Ehud Shapiro, editor, Pro
ceedings of the Third lntemational Collftrellce 1111 Lugic Program
millg, pages 25- 39. Springer-Verlag, 1986.

[21] Sverker Jansson and Sei f Haridi. Programming Paradigms of the An
dorra Kernel Languagc. In Pmceedings of the 1991 /nternational
Logic Programming Symposium, pages 167- 186. MIT Press, October
1991.

[22) Nai-Wei Lin and Saumya K. Oebray. Cost Analysis of Logic Pro
grams. Technical Rcpon, Depanment of Computer Science, The Uni
versity of Arizona, August 1992.

[23] Zheng Lin. Self-Organising Task Scheduling for Parai lei Execution of
Logic Programs. In Proceedings of the 1992/nternationa/ Conference
on Fifth Generation Computer Systems, pages 859-868. ICOT. 1992.

[24) Ricardo Lopes and V. Santos Costa. The BEAM: Towards a first
EAM lmplementation. In Workshop on Parallelism and lmplementa
tion Teclmology f or (Constraint) Logic Programming Longuages, Oc
tober 1997. Pon Jefferson.

[25) Ewing Lusk, David H. O. Warren, Seif Haridi, et ai. The Aurora Or
parallel Prolog System. In Procudings ofthe 1988 /nttrnationa/ Con
ferenu 011 Fifth Generation Computer Systems, pages 8 19- 830. ICOT,
Tokyo, Japan. November 1988.

[26) Johan Montelius. Penny, A Parai/e/ lmplementation of AKL. PhD
thesis, Swcdish lnstitute for Computer Science, SICS, Sweden, May
1997.

[27] Remco Moolenaar and Bart Demoen. Optimization Techniques for
nondeterministic promotion in the Andorra Kernel Language. In Pro
cudings ofthe Compulog-Net, Madrid, May 1993.

[28] E. Morei, J. Briat, J. Chassin de Kergommeaux. and C. Geyer. Side
Effects in PloSys OR-parallel Prolog on Distributed Memory Ma
chines. In JICSLP'96 Post-Cotrference Workshop on Parallelism and
lmplementation Technology for (Constraint) Logic Programming Lan
guages. Bonn, Germany, September 1996.

[29) V. Santos Costa. Compile-7ime Analy.<is for the Parai/e/ Execution of
Útgic Pmgram.< i11 Andorra-/. PhD thesis. Oepanmcnt of Computer
Science. University of Bristol, August 1993.

[30] V. Santos Costa, O. H. O. Warren, and R. Yang. Andorra-!: A Par
aliei Prolog Sys tem that Transparently Exploits both And- and Or
Parallelism. In Third ACM SIGPLAN Symposium on Principies &
Practiu of Parai/e/ Programming, pages 83-93. ACM press, April
1991. SIGPLAN Notices vol26(7), July 1991.

[31] Vitor Santos Costa, David H. O. Warren, and Rong Yang. The
Andorra-! Preprocessar: Supponing full Prolog on the Basic Andorra
model. In Prouedings of the Eighth lmemational Conferenu on
Logic Programming, pages 443-456. MIT Press, 1991.

[32) Vitor Santos Costa and Rong Yang. Andorra-I User's Guide and ref
erence manual. Tcchnical repon. University of Bristol, Computer Sci
ence Depanment, Sept 1990. Internai Repon, Gigalips Project.

[33) Kish Shen. Overview of DASWAM: Exploitation of Dependent And
parallelism. J. of Logic Prog., 29(1 - 3), 1996.

[34) Kish Shen. Vitor Santos Costa. and Andy King. A New Metric for
Conrrolling Granularity for Parallel Execution. In Joint lntemational
Conference and Symposium 1111 Logic Programming. Manchestcr, UK,
June 1998.

[35) Evan Tick. Compile Time Granularity Analysis for Parai lei Logic Pro
gramming Systems. In Proceedings ofthe 1988 /nternational Confer
t!IICt on Fifth Generation Computer Sysrems. ICOT, 1988.

[36) Evan Tick. Compile Time Granularity Analysis for Parallel Logic
Programming Sys tems. New Generation Computing, 7(2,3):325-337,
1990.

[37) Kazunori Ucda and Masao Morita. A New lmplementation Technique
for A ar GHC. In Procudings of the Seventh lntertuJtional Conference
on Lugic Programming, pages 3- 17. MIT Press, June 1990.

[38) David H. O. Warren. Thc SRI Model fo r Or-Parallel Execution of
Prolog- Abstract Oesign and lmplernentation Issues. In Proceedings
ofthe 1987 /nremariollal Logic Programmi11g Symposium, pages 92-
102. 1987.

[39] David H. O. Warren. Thc Andorra model. Presented ar Gigalips
Project workshop. University of Manchester, March 1988.

[40) Rong Yang. lmplementation Notes on the Andorra Model. Techni
cal repon, University of Bristol. Computer Sciencc Depanment, Sept
1989. Internai Repon, Gigalips Project.

[41] Rong Yang. Solving simple substitution ciphers in Andorra-!. In Pro
ceedings of the Sixth lnternational Conference on Logic Programming,
pages 113- 128. MIT Press, June 1989.

[42) Rong Yang, Tony Beaumont, Inês Dutr.l, Vítor Santos Costa. and
David H. O. Warren. Performance of the Compiler-Bascd Andorra
i System. In Procudings of the Tenth lnternational Conference on
Logic Programming, pages 150-166. MIT Press, June 1993.

(43) Rong Yang, Vítor Santos Costa, and David H. O. Warren. The
Andorra-I Engine : A parallel implementation of the Basic Andorra
model. In Proceedings of the Eighth lnternational Conference on
Logic Programming, pages 825- 839. MIT Press, 1991.

