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Ab.ttract-
The hardware evaluation of elementary functions such as exp(x) 

and sin(x) is advantageous dueto the performance that can be reached 
when compared with software solutions. Such evaluations can be done 
by computing simple functions thal approximate the targeted elemen
tary functions. Actua.l microproccssors and specific proccssors like the 
digital signal proccssors include computing capabilities for some ele
mentary functions but they could be inappropriate for some situations. 
Due to the great impact that Field Programmable Gate Arrays (FPGA) 
h ave in a wide range of hardware applications, specially in areas where 
hardware customization can irnprove the overall performance, the im· 
plementation of these functions in FPGA devices is worth considering. 
The reconfigurabllity they offer increases lhe ftexibility and lhe power 
of such custom computing machines. Implemenlations of common el
ementary functions using s ingle precision floating point arithmetic are 
describcd and thc correspondent results are presented. 

Keywords- Elementary functions, ftoating point arithmetic, FPGA, 
polynomial approxirnations 

l. INTRODUCTION 

One o f the techniques used to compute the value of a par
ticular mathematical function is based on polynomial ap
proximations [Mul97), as their evaluation requires a finite 
number of additions, subtractions and multiplications. If 
division is also available, then rational functions can be 
evaluated too. Polynomials and rational functions are then 
good choices to approximate elementary functions such as 
e"', logx, sinx and arctgx. 

FPGAs have become a competitive alternative for high 
performance applications, like DSP, previously dominated by 
general purpose microprocessors and ASIC devices. An im
portant feature when using them, refers to the possibility they 
offer that allows the development o f a particular hardware ap
plication, optimized for different purposes under speed/area 
trade-offs. Another important advantage from using FPGAs 
is reconfigurability which can be explored to implement dif
ferent approximations to a function using as criteria the al
lowable error. This important feature is not possible in cur
rent processors, where computing time is the same regard
less of required precision. Customized applications can use 

FPGAs as a co-processor of a host as well as a stand-alone 
computing engine. The hardware implementations that will 
be described were developed with Viewlogic and Foundation 
1.5 software packages and the Xilinx XC4000E family FP
GAs [Xil96) were used. 

Sections li and III introduce some aspects of approximat
ing elementary functions by polynomial and rational func
tions. Some of the most common approximant polynomials 
are described. Section IV presents an example o f how to ob
tain these approximations. Section V discusses the architec
tural alternatives to implement them and describes the ftoat
ing point arithmetic operators used. Next, in section VI, the 
approximations for severa( functions are characterized. Their 
hardware implementations are described and the results are 
discussed. Finally, section VII highlights key aspects of the 
current work and refers future enhancements and develop
ments. 

li. POLYNOMIAL APPROXIMATIONS 

Weierstrass's theorem guarantes that any continuous func
tion can be approximated by a polynomial on an interval 
[a, b] o f its domain. 

Let be f the function to be evaluated and P the set o f poly
nomials with degree less or equal to n. Two kinds of approx
imations are generally considered: the approximations that 
minimize the average error, called least squares approxima
tions, and the approximations that minimize the worst case 
error, called least maximum approximations, also known as 
minimax approximations. In both cases, the problem is to 
find a polynomial p• E P that minimizes the distance to f. 

A. Least Squares Polynomial Approximations 

Let be p•(x) = p~xn + p~_ 1 xn- l + · · · + PiX + PÕ lhe 
polynomial that minimizes equation I, where w is a weight 
function that can be used to select parts of [a, b] where the 
approximation should be more accurate. 
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11/- Pll = 1b w(x)[f(x)- p(x)J2dx (I) 

Consider (/, g) lhe inner product defined by equation 2, 
that allows to recognize where two functions are ortoghonal. 

(J,g) = 1b w(x)f(x)g(x)dx (2) 

The polynomial p• can be computed as follows: 
• build a sequence (T m). (m ~ n) of polynomials such 

that (T m) is of degree-m and (Ti, Ti) = O for i f:. j 
(orthogonal polynomials); 

• compute the intermediate coefficients 

• and finally compute 

(f, Ti ) 
a;= (T; , T;); 

n 

p• = :l:a;T;. 
i=O 

(3) 

(4) 

Some sequences of orthogonal polynomials are well 
known and will be presented next. Ali o f the approximations 
are on the interval [-1, 1]. However getting an approxima
tion for another interval[a, b] is straightforward: 

• let g(u) = f(x) where u E [-1, 1] and x E [a, b], with 
X _ b-au +!!_H. 

- 2 2 ' 
• compute a least squares approximation q• to g in 

[-1, 1]; 
• obtain the least squares approximation p· to f as 

p*(x) = q* (b_:ax- ~). 

A. I Legendre Polynomials 

For these polynomials, w(x) = 1 is considered and 
[a, b] = [-1, 1]. 

and 

A.2 Chebyshev Polynomials 

i f i f:. j 
otherwise. 

(5) 

(6) 

The weight function is w(x) = 1/V1- x 2 and [a,b] = 
[-1, 1]. 

{ i 
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performed by instructions that have a large latency even on 
actual microprocessors [Mul97] . 

IV. AN EXAMPLE 

Ali the computation requirements to approximate elemen
tary functions by the presented methods can actually be done 
by scientific applications such as Maple [CGG+9J] avoiding 
a manual hard work. To see how Maple's package for numer
ical approximations, numapprox, can be used for this pur
pose, an example is included. The goal is to approximate the 
function f(x ) = e"' by a degree-3 Chebyshev polynomial. 
The main commands in the correspondent Maple program 
are self explanatory. Both Maple source code and obtained 
results are included. 

> restart; 

> with(numapprox): 

> with(orthopoly): 

> wi th (plots) : 

> setoptions(axes=boxed, axes
font=(TIMES,ROMAN,10), 
> titlefont=(TIMES,BOLDITALIC,10)); 

> f := exp(x); Digits := 10: 

> a:=-1: b:=1: n:=3: 

> lt Chebyshev 

> c oef := array(O . . n): 

> poly := array(O .. n): 

> printf("Chebyshev based approximation 
with n =%d\ n " , n); 

> plot(w, x=a .. b, title="w(x)"); 

> for i from O to n do 

> poly[i) : = T(i,x); 

> coef[i) := evalf(int(w*f*poly (i] , 
x=a .. b) I int(w*poly[i) ~ 2, 

> x=a .. b)); 

> od; 

> approx := sum(coef(k)*poly[k], 
k =O .. n): 

> p(x) : = collect(approx,x); 

> plot({f, approx}, x=a .. b, title="f(x) 
and p(x)"); 

> ferror := f-approx; 

> plot(ferror, x=a .. b, title="error"); 

> maxerror : = infnorm(ferror, x=a .. b, 
'xmax'); 

> x : = xmax; 

f := e"' 

Chebyshev based approximation with n=3 
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Fig. I. Weighr funclion. 

poly0 := 1 

coef 0 := 1.266065878 

poly 1 := x 

coef 1 := 1.130318208 

poly2 := 2x2 - 1 

coe f 2 := .2714953396 

poly3 := 4x3 - 3x 

coe f 3 := .04433684984 

.. / 
i 

/ ' 
/ 

0.6 0.8 

p{x) := .9945705384 + .9973076585 x 

+ .5429906792 x 2 + .1773473994 x 3 

(x) andp(:r) 

-0.8 -0.6 -0.4 -0.2 ~ 0.2 0.4 0.6 0.8 

Fig. 2. Funcrions f(x) and p(x). 

ferror :=e"'- .9945705384 - .9973076585 x 

- .5429906792 x 2
- .1773473994 x 3 

maxerror := .006065552959 
X:= 1. 

259 
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Fig. 3. Errar function. 

Ali the computations were performed with an accuracy of 
I O digits, but other values could be specified. Figure I shows 
the weight function used (see section .0), chosen in a way as 
to put more precision on the interval extremes. From figure 2 
the curves of f(x) and p•(x) are indistinctive on that scale, 
due to the small approximation error. Figure 3 shows the 
error curve and it can be shown at the end of the results list 
thatp•(x) exhibitsthemaximumerror(0.006)atx = 1 when 
approximating ex. 

V. HARDWARE IMPLEMENTATION 

The main hardware resources needed for polynomial eval
uation are an adder/subtracter and a multiplier, and also a 
divider for rational functions, ali of them for ftoating point 
operands. Next sections detail these requirements. 

A. Polynomial Evaluation 

In order to minimize the number of arithmetic operations 
to evaluate a general polynomial Horner's rule can be used. 
With this scheme a polynomiallike a4 x4 + a3 x3 + a 2x 2 + 
a1x +ao can be computed as (((a4x+a3)x + a2)x + a 1 )x + 
a0 . By this way, the power operator is avoided and the total 
number o f performed operations is reduced. For a complete 
degree-n polynomial, with Horner's rule, only n multiplica
tions and n additions must be executed. 

For large degree polynomials another method called adap
tation of coefficients [Knu81] can be used, and other methods 
exist that take in account the number of nonexisting polyno
mial terms [Mu197]. 

Figure 4 shows an arranjement that can be used to evaluate 
polynomials with a topology that follows Horner's rule. For 
a degree-n polynomial at most 2n clock cycles are needed. 

For rational function computation two alternatives exist. 
An obvious solution uses an evaluator for the numerator and 
another one for the denominator (figure S(a)). The division 

x~-+~ 

A~~~~ 

Fig. 4. Polynomial evaluation . 

is only enabled when both polynomials evaluation are com
pleted and the final result is available in 2m+ 1 clock cycles. 
The other way a rational function can be computed uses only 
a polynomial evaluator (figure 5(b)) that performs both nu
merator and denominator evaluations in 2(n + m) + 1 clock 
cycles. Appropriated control enables the correct load opera
tion into the register. This solution consumes less area but is 
slower than the first one. 

B 
X 
A 

B' 
X' 
A' 

B 
X 

A 

(a) 

(b} 

Fig. 5. Allemalives for rational function evaluation. 

B. Floating Point Operators 

The three arithmetic operators needed to perform polyno
mial and rational function evaluations were designed to exe
cute single precision ftoating point operations [Boa85]. This 
formal uses a 23-bit wide significand, a 8-bit wide exponent 
and I bit to store the operand's signal. 
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The main operation when performing fioating point com
putations uses integer arithmetic to operate the significands 
and also the exponents of each operand. Due to the num
ber of bits, the integer operations involving the significands 
are the most time consuming tasks in the fioating point al
gorithms for the addition/subtraction, multiplication and di
vision. In the implementations done, these integer opera
tions were implemented as parallel arrays to optimize the 
speed. A common operator that is present in ali their cells is a 
full adder. The Xilinx XC4000E family [Xil96] provides in
side each configurable logic block (CLB) dedicated logic for 
carry generation and exclusive paths for fast carry propaga
tion between adjacent CLBs [New96]. This dedicated carry 
logic allows to implement two full adders inside each CLB. 
This signifies that an integer adder with 24 bits needs only 
12+2 CLBs. The two additional CLBs are needed to initial
ize and terminate the carry chain [New96]. 

The integer units used by the operators showned at fig
ures 4 , 5(a) and 5(b) are non-pipelined. However to evalu
ate large degree polynomials or when evaluating a stream of 
polynomials, even if each one is a low degree polynomial, 
a pipelined solution could be preferable in order to increase 
the thoughput of the evaluator. 

TABLE I 

IMPLEMENTATION DATA FOR THE OPERATORS 

Operator 
Adder/Subtracter 
Multiplier 
Divider 

CLBs 
146 
682 
428 

Delay time (ns) 
72 
105 
310 

Table I shows the results for the three fioating point oper
ators that were implemented, showing for each one the num
ber of CLBs and the delay time that limits the performance. 
The largest unit is the multiplier, consuming 682 CLBs. This 
implies that at least a X4025 FPGA should be used in a cir
cuit that uses such multiplier. In spite of the integer divider 
size be smaller than the integer multiplier, the divider's delay 
time is greater than the multiplier's delay time because ali the 
cells of the array are in the carry path [Kor98] . 

VI. RESULTS 

To obtain an elementary function approximation a two step 
procedure is used. Fi'rst, Maple is used to obtain the ap
proximant and then it is evaluated with a choosed architec
ture. Many approximations were obtained for severa) ele
mentary functions in [-1, 1], using the described approxi
mation methods (sections II and III) . Some of them are 
included here, focusing on the approximation error or the 
number of significant bits. 

Tables II and III present the maximum absolute errors for 

ez and ln(x + 2) when using severa) approximants with de
grees from 2 to 5. 

TABLEII 

MAXIMUM ABSOLUTE ERRORS FOR e" 

Degru Legendre 
2 8.2 X 10-
3 1.1 X 10-2 

4 1.2 X 10-3 

5 1.1 X 10-4 

TABLE 111 

MAXIMUM ABSOLUTE ERRORS FOR ln(x + 2) 

Degru 
2 
3 
4 
5 

Legendre 
2.6 X 10 
6.0 X 10- 3 

1.4 X 10-3 

3.5 X 10- 4 

From these results it is clear that the minimax method 
is the best, followed by Chebyshev's approximants. These 
functions were analyzed but other ones could be used in
stead. Figure 6 visualizes the error curves correspondent to 
the approximations of ez by degree-3 polynomials. From 
these plots can be observed that Jacobi polynomials present 
bad results due to its behaviour near the interval extremes. 

0015 

Legendre 
Chebyshe 
Jacobi 
minimax 

· \ I I 

"-·- -, ,' ' ... _ ... 

-o.o~,'----:-4:':.8---4:":.6,-----4:'-.•,------:'o.2:---o'---:o:':.2--o,._.• _ _..o.&---'o.8----l 

Fig. 6. Erro r curves for degree-3 approximants. 

Applying the minimax method on different functions and 
for severa) degrees, the significant bits of the results are on 
the table IV. The number o f significant bits is computed from 
the maximum absolute error by equation 12. 
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NSB = -log2 1/(x)- p·(x)l (12) 

TABLEIV 

NSB WHEN APPROXIMATING SEVERAL FUNCTIONS BY MINI MAX 

f(x)\n 2 3 4 5 6 7 8 
ez 4.5 7.5 10.8 14.4 18.2 22.3 26.4 
ln{x + 2) 6.2 8.5 10.7 12.9 15.0 17.1 19.2 
sinx 4 .7 11.0 11.0 18.3 18.3 26.5 26.5 
arcsin x 2.4 3.5 3.5 4.2 4 .2 4 .7 4 .7 
tanx 2.7 5.6 5.6 8.6 8.6 11.5 11.5 

A conclusion that can be taken from table IV is that the 
sequence of minimax polynomials converges to f(x) with 
different speeds and that the convergence speed is difficult 
to predict. For example, the approximations to the function 
arcsin(x) present bad results. Even with large degree polyno
mials its approximations error decreases slowly. Figure 7 is 
an alternative to table IV and helps to see these situations. 

~r----,----~----~----~~==~==~ 

25 

20 

----------

exp(x) 
ln(x+2) 
sin(x) 
arcsin(x) 

---------------- ---

02~------~----~------~----~------~----_J 

Fig. 7. EvoluJion of the NSB using minimax. 

For several elementary functions, figure 8 shows de mini
mum polynomial degree that is needed to reach a target accu
racy on the result. For these results Chebyshev polynomials 
were used. The error curves for arcsin(x) correspondent to 
several degree-n polynomials are presented in figure 9. 

Results from using rational function approximations are 
also included. Table V includes the absolute maximum er
ror and the NSB for both polynomial and rational functions 
when approximating e:t in (-1, 1], varying n from 2 to 5. 
At the first column (n, O) designates a degree-n polynomial 
and (n, m) refers to the rational function degrees used for the 
numerator and denominator polynomials. 

oor-------~----~~----~======~ 
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Fig. 8. Polynomial's degree as a function of accuracy. 
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Fig. 9. Error functions for arcsin(x) . 
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An important feature can be taken from these data. In 
terms of NSB the table entries for (n, m) = (2, 3) and 
(n, m) = (5, O) show that the first one presents a better result 
than the second one. This better precision is accomplished by 
a faster evaluation using the circuit on figure 5(a) where two 
polynomials are calculated in parallel. The rational approx
imation for (n, m) = (2, 3) takes 7 clock cycles while the 
polynomial approximation consumes I O clock cycles with 
(n, m) = (5, 0). These results were obtained for éz:, but 
the same conclusion can be obtained from other elementary 
functions. 

Table VI quantifies the clock cycles needed to compute an 
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TABLEV 

RESULTS FOR e'" RATIONAL APPROXIMATIONS 

n,m jerrorl NSB 
2,0 4.5 X 10 2 4.5 
0,2 3.5 X 10-2 4.8 
1,2 1.7 X 10-3 9.2 
2,2 8.7 X 10-5 13.5 
3,0 5.5 X 10 3 7.5 
0,3 4.5 X 10-3 7.8 
1,3 1.2 X 10-4 13.0 
2,3 4.3 X 10-6 17.8 
3,3 1.6 X 10-7 22.6 
4,0 5.5 X 10 4 10.8 
0,4 4.6 X 10-4 11.1 
1,4 8.2 X 10-6 16.9 
2,4 2.0 X 10-7 22.2 
3,4 5.5 X 10-9 27.4 
4,4 1.5 X 10-10 32.6 
5,0 4.5 X 10 S 14.4 
0,5 3.9 X 10-5 14.6 
1,5 4.9 X 10-7 21.0 
2,5 9.0 X 10-9 26.7 
3,5 1.9 X 10-10 32.3 
4,5 4.2 X 10- 12 37.8 
5,5 9.7 X 10-14 43.2 

exponential in [- 1, 1), using different degrees for minimax 
polynomials and rational functions. Column 2 refers to the 
polynomial evaluator of figure 4, and columns 3 and 4 refer 
to the rational function evaluators presented in figures 5(a) 
and 5(b), respectively. 

The curves showned at figure I O give a better understand 
about this behavior. The approximation accuracy in terms 
of NSB is presented as a function of the number of clock 
cycles, both for polynomial and rational approximations of 
ex with minimax method. From this data can be concluded 
that in terms of hardware it is possible to obtain a solution 
that is simultaneously faster and precise than other ones. For 
example, while a degree-5 polynomial takes 10 clock cy
cles to evaluate e"', this function can be also computed in 
only 7 clock cycles by the parallel evaluator of figure 5(a) 
with increased precision. This is the main conclusion that 
can be taken from this.analysis. However, the area needed 
for these implementation alternatives and consequently the 
FPGA prices with such resources should be taken into ac
count. 

VII. CONCLUSION 

The main contribution of this work is on the analysis of 
feasibility of elementary function approximations for FP-

TABLEVI 

CLOCK CYCLES FOR e'" APPROXIMATIONS 

n,m p R type 1 R type 2 
3,0 6 
0,3 7 7 
1,3 7 9 
2,3 7 11 
3,3 7 13 
5,0 10 
0,5 11 11 
1,5 li 13 
2,5 li 15 
3,5 11 17 
4,5 11 19 
5,5 11 21 

30 

25 

20 

0.~--~----~--~~~o--~>~2--~,~.----,~6---->~8----J2o 

Fig. I O. NSB as a function o f clock cycles. 

GAs based custom computing machines. Some results were 
shown for an implementation that uses non-pipelined floating 
point arithmetic operators with single precision. Different 
strategies can be used to choose the best way an approxima
tion can be evaluated, taking in to account speed and area con
straints and trade-offs. Combining applications like Maple 
and synthesis tools for FPGAs, an integrated environment is 
being developed to automatically generate an hardware solu
tion that satisfies user specified parameters like precision and 
speed/area trade-offs. 

Future work can be done in two main directions. The 
first one, refers to the elementary function approximation it
self. The exposed methods can be combined with table based 
methods for a mixed solution. Because these tables can be 
stored inside the FPGAs using the look-up tables available 
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in the CLBs this seems to be an interesting alternative to the 
methods described. The other direction concerns the way 
how the arithmetic operators are implemented and how they 
can be optimized for area and performance constraints. 
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