
SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing -.Natal- Brazil 257

Approximation o f Elementary Functions by
Polynomials and Rational Functions - Some

Results for FPGA Based Implementations
António J. Araújo, José S. Matos

Faculdade de Engenharia da Universidade do Pono
Instituto de Engenharia de Sistemas e de Computadores

Pr. da República, 93 - Apartado 4433- 4007 Pono CODEX- Ponuga.l
{ a.a.roujojsm} @picasso.inescn.pt

Ab.ttract-
The hardware evaluation of elementary functions such as exp(x)

and sin(x) is advantageous dueto the performance that can be reached
when compared with software solutions. Such evaluations can be done
by computing simple functions thal approximate the targeted elemen
tary functions. Actua.l microproccssors and specific proccssors like the
digital signal proccssors include computing capabilities for some ele
mentary functions but they could be inappropriate for some situations.
Due to the great impact that Field Programmable Gate Arrays (FPGA)
h ave in a wide range of hardware applications, specially in areas where
hardware customization can irnprove the overall performance, the im·
plementation of these functions in FPGA devices is worth considering.
The reconfigurabllity they offer increases lhe ftexibility and lhe power
of such custom computing machines. Implemenlations of common el
ementary functions using s ingle precision floating point arithmetic are
describcd and thc correspondent results are presented.

Keywords- Elementary functions, ftoating point arithmetic, FPGA,
polynomial approxirnations

l. INTRODUCTION

One o f the techniques used to compute the value of a par
ticular mathematical function is based on polynomial ap
proximations [Mul97), as their evaluation requires a finite
number of additions, subtractions and multiplications. If
division is also available, then rational functions can be
evaluated too. Polynomials and rational functions are then
good choices to approximate elementary functions such as
e"', logx, sinx and arctgx.

FPGAs have become a competitive alternative for high
performance applications, like DSP, previously dominated by
general purpose microprocessors and ASIC devices. An im
portant feature when using them, refers to the possibility they
offer that allows the development o f a particular hardware ap
plication, optimized for different purposes under speed/area
trade-offs. Another important advantage from using FPGAs
is reconfigurability which can be explored to implement dif
ferent approximations to a function using as criteria the al
lowable error. This important feature is not possible in cur
rent processors, where computing time is the same regard
less of required precision. Customized applications can use

FPGAs as a co-processor of a host as well as a stand-alone
computing engine. The hardware implementations that will
be described were developed with Viewlogic and Foundation
1.5 software packages and the Xilinx XC4000E family FP
GAs [Xil96) were used.

Sections li and III introduce some aspects of approximat
ing elementary functions by polynomial and rational func
tions. Some of the most common approximant polynomials
are described. Section IV presents an example o f how to ob
tain these approximations. Section V discusses the architec
tural alternatives to implement them and describes the ftoat
ing point arithmetic operators used. Next, in section VI, the
approximations for severa(functions are characterized. Their
hardware implementations are described and the results are
discussed. Finally, section VII highlights key aspects of the
current work and refers future enhancements and develop
ments.

li. POLYNOMIAL APPROXIMATIONS

Weierstrass's theorem guarantes that any continuous func
tion can be approximated by a polynomial on an interval
[a, b] o f its domain.

Let be f the function to be evaluated and P the set o f poly
nomials with degree less or equal to n. Two kinds of approx
imations are generally considered: the approximations that
minimize the average error, called least squares approxima
tions, and the approximations that minimize the worst case
error, called least maximum approximations, also known as
minimax approximations. In both cases, the problem is to
find a polynomial p• E P that minimizes the distance to f.

A. Least Squares Polynomial Approximations

Let be p•(x) = p~xn + p~_ 1 xn- l + · · · + PiX + PÕ lhe
polynomial that minimizes equation I, where w is a weight
function that can be used to select parts of [a, b] where the
approximation should be more accurate.

258 SBAC-PAD'99 llth Symposium on Computer Architecture and High Peiformance Computing- Natal - Brazil

11/- Pll = 1b w(x)[f(x)- p(x)J2dx (I)

Consider (/, g) lhe inner product defined by equation 2,
that allows to recognize where two functions are ortoghonal.

(J,g) = 1b w(x)f(x)g(x)dx (2)

The polynomial p• can be computed as follows:
• build a sequence (T m). (m ~ n) of polynomials such

that (T m) is of degree-m and (Ti, Ti) = O for i f:. j
(orthogonal polynomials);

• compute the intermediate coefficients

• and finally compute

(f, Ti)
a;= (T; , T;);

n

p• = :l:a;T;.
i=O

(3)

(4)

Some sequences of orthogonal polynomials are well
known and will be presented next. Ali o f the approximations
are on the interval [-1, 1]. However getting an approxima
tion for another interval[a, b] is straightforward:

• let g(u) = f(x) where u E [-1, 1] and x E [a, b], with
X _ b-au +!!_H.

- 2 2 '
• compute a least squares approximation q• to g in

[-1, 1];
• obtain the least squares approximation p· to f as

p*(x) = q* (b_:ax- ~).

A. I Legendre Polynomials

For these polynomials, w(x) = 1 is considered and
[a, b] = [-1, 1].

and

A.2 Chebyshev Polynomials

i f i f:. j
otherwise.

(5)

(6)

The weight function is w(x) = 1/V1- x 2 and [a,b] =
[-1, 1].

{ i

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

performed by instructions that have a large latency even on
actual microprocessors [Mul97] .

IV. AN EXAMPLE

Ali the computation requirements to approximate elemen
tary functions by the presented methods can actually be done
by scientific applications such as Maple [CGG+9J] avoiding
a manual hard work. To see how Maple's package for numer
ical approximations, numapprox, can be used for this pur
pose, an example is included. The goal is to approximate the
function f(x) = e"' by a degree-3 Chebyshev polynomial.
The main commands in the correspondent Maple program
are self explanatory. Both Maple source code and obtained
results are included.

> restart;

> with(numapprox):

> with(orthopoly):

> wi th (plots) :

> setoptions(axes=boxed, axes
font=(TIMES,ROMAN,10),
> titlefont=(TIMES,BOLDITALIC,10));

> f := exp(x); Digits := 10:

> a:=-1: b:=1: n:=3:

> lt Chebyshev

> c oef := array(O . . n):

> poly := array(O .. n):

> printf("Chebyshev based approximation
with n =%d\ n " , n);

> plot(w, x=a .. b, title="w(x)");

> for i from O to n do

> poly[i) : = T(i,x);

> coef[i) := evalf(int(w*f*poly (i] ,
x=a .. b) I int(w*poly[i) ~ 2,

> x=a .. b));

> od;

> approx := sum(coef(k)*poly[k],
k =O .. n):

> p(x) : = collect(approx,x);

> plot({f, approx}, x=a .. b, title="f(x)
and p(x)");

> ferror := f-approx;

> plot(ferror, x=a .. b, title="error");

> maxerror : = infnorm(ferror, x=a .. b,
'xmax');

> x : = xmax;

f := e"'

Chebyshev based approximation with n=3

3.4
3.2

3
2.8
2.6
2.4
2.2

2
1.8
1.6
1.4
1.2

2.6
2.4
2.2

2
1.8
1.6
1.4

w(:r)

I I
I

\
I
l
I

\ I
I

\ I
\
\

'

" ' ____
--· -~-~·--··"'

-0.8 -0.6 -0.4 -0.2 o 0.2 0.4
X

Fig. I. Weighr funclion.

poly0 := 1

coef 0 := 1.266065878

poly 1 := x

coef 1 := 1.130318208

poly2 := 2x2 - 1

coe f 2 := .2714953396

poly3 := 4x3 - 3x

coe f 3 := .04433684984

.. /
i

/ '
/

0.6 0.8

p{x) := .9945705384 + .9973076585 x

+ .5429906792 x 2 + .1773473994 x 3

(x) andp(:r)

-0.8 -0.6 -0.4 -0.2 ~ 0.2 0.4 0.6 0.8

Fig. 2. Funcrions f(x) and p(x).

ferror :=e"'- .9945705384 - .9973076585 x

- .5429906792 x 2
- .1773473994 x 3

maxerror := .006065552959
X:= 1.

259

260 SBAC-PAD'99 I lth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

.006 ,·-""
/ ' , . I

.004 ·1 / \ ·I

\ / \ ,t

.oo2 \ / \ I
o \, i \ ;

\ / \ I
.oo2 \ / \ I

\ / \ i . 004 \ , \ .
'·"' ~ ... / '' .. / .006 ~~~~~~--,-~--~~~--~

~.8 ~.6 ~.4 ~.2 o 0.2 0.4 0.6 0.8
X

Fig. 3. Errar function.

Ali the computations were performed with an accuracy of
I O digits, but other values could be specified. Figure I shows
the weight function used (see section .0), chosen in a way as
to put more precision on the interval extremes. From figure 2
the curves of f(x) and p•(x) are indistinctive on that scale,
due to the small approximation error. Figure 3 shows the
error curve and it can be shown at the end of the results list
thatp•(x) exhibitsthemaximumerror(0.006)atx = 1 when
approximating ex.

V. HARDWARE IMPLEMENTATION

The main hardware resources needed for polynomial eval
uation are an adder/subtracter and a multiplier, and also a
divider for rational functions, ali of them for ftoating point
operands. Next sections detail these requirements.

A. Polynomial Evaluation

In order to minimize the number of arithmetic operations
to evaluate a general polynomial Horner's rule can be used.
With this scheme a polynomiallike a4 x4 + a3 x3 + a 2x 2 +
a1x +ao can be computed as (((a4x+a3)x + a2)x + a 1)x +
a0 . By this way, the power operator is avoided and the total
number o f performed operations is reduced. For a complete
degree-n polynomial, with Horner's rule, only n multiplica
tions and n additions must be executed.

For large degree polynomials another method called adap
tation of coefficients [Knu81] can be used, and other methods
exist that take in account the number of nonexisting polyno
mial terms [Mu197].

Figure 4 shows an arranjement that can be used to evaluate
polynomials with a topology that follows Horner's rule. For
a degree-n polynomial at most 2n clock cycles are needed.

For rational function computation two alternatives exist.
An obvious solution uses an evaluator for the numerator and
another one for the denominator (figure S(a)). The division

x~-+~

A~~~~

Fig. 4. Polynomial evaluation .

is only enabled when both polynomials evaluation are com
pleted and the final result is available in 2m+ 1 clock cycles.
The other way a rational function can be computed uses only
a polynomial evaluator (figure 5(b)) that performs both nu
merator and denominator evaluations in 2(n + m) + 1 clock
cycles. Appropriated control enables the correct load opera
tion into the register. This solution consumes less area but is
slower than the first one.

B
X
A

B'
X'
A'

B
X

A

(a)

(b}

Fig. 5. Allemalives for rational function evaluation.

B. Floating Point Operators

The three arithmetic operators needed to perform polyno
mial and rational function evaluations were designed to exe
cute single precision ftoating point operations [Boa85]. This
formal uses a 23-bit wide significand, a 8-bit wide exponent
and I bit to store the operand's signal.

SBAC-PAD'99 I Ith Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 261

The main operation when performing fioating point com
putations uses integer arithmetic to operate the significands
and also the exponents of each operand. Due to the num
ber of bits, the integer operations involving the significands
are the most time consuming tasks in the fioating point al
gorithms for the addition/subtraction, multiplication and di
vision. In the implementations done, these integer opera
tions were implemented as parallel arrays to optimize the
speed. A common operator that is present in ali their cells is a
full adder. The Xilinx XC4000E family [Xil96] provides in
side each configurable logic block (CLB) dedicated logic for
carry generation and exclusive paths for fast carry propaga
tion between adjacent CLBs [New96]. This dedicated carry
logic allows to implement two full adders inside each CLB.
This signifies that an integer adder with 24 bits needs only
12+2 CLBs. The two additional CLBs are needed to initial
ize and terminate the carry chain [New96].

The integer units used by the operators showned at fig
ures 4 , 5(a) and 5(b) are non-pipelined. However to evalu
ate large degree polynomials or when evaluating a stream of
polynomials, even if each one is a low degree polynomial,
a pipelined solution could be preferable in order to increase
the thoughput of the evaluator.

TABLE I

IMPLEMENTATION DATA FOR THE OPERATORS

Operator
Adder/Subtracter
Multiplier
Divider

CLBs
146
682
428

Delay time (ns)
72
105
310

Table I shows the results for the three fioating point oper
ators that were implemented, showing for each one the num
ber of CLBs and the delay time that limits the performance.
The largest unit is the multiplier, consuming 682 CLBs. This
implies that at least a X4025 FPGA should be used in a cir
cuit that uses such multiplier. In spite of the integer divider
size be smaller than the integer multiplier, the divider's delay
time is greater than the multiplier's delay time because ali the
cells of the array are in the carry path [Kor98] .

VI. RESULTS

To obtain an elementary function approximation a two step
procedure is used. Fi'rst, Maple is used to obtain the ap
proximant and then it is evaluated with a choosed architec
ture. Many approximations were obtained for severa) ele
mentary functions in [-1, 1], using the described approxi
mation methods (sections II and III) . Some of them are
included here, focusing on the approximation error or the
number of significant bits.

Tables II and III present the maximum absolute errors for

ez and ln(x + 2) when using severa) approximants with de
grees from 2 to 5.

TABLEII

MAXIMUM ABSOLUTE ERRORS FOR e"

Degru Legendre
2 8.2 X 10-
3 1.1 X 10-2

4 1.2 X 10-3

5 1.1 X 10-4

TABLE 111

MAXIMUM ABSOLUTE ERRORS FOR ln(x + 2)

Degru
2
3
4
5

Legendre
2.6 X 10
6.0 X 10- 3

1.4 X 10-3

3.5 X 10- 4

From these results it is clear that the minimax method
is the best, followed by Chebyshev's approximants. These
functions were analyzed but other ones could be used in
stead. Figure 6 visualizes the error curves correspondent to
the approximations of ez by degree-3 polynomials. From
these plots can be observed that Jacobi polynomials present
bad results due to its behaviour near the interval extremes.

0015

Legendre
Chebyshe
Jacobi
minimax

· \ I I

"-·- -, ,' ' ... _ ...

-o.o~,'----:-4:':.8---4:":.6,-----4:'-.•,------:'o.2:---o'---:o:':.2--o,._.• _ _..o.&---'o.8----l

Fig. 6. Erro r curves for degree-3 approximants.

Applying the minimax method on different functions and
for severa) degrees, the significant bits of the results are on
the table IV. The number o f significant bits is computed from
the maximum absolute error by equation 12.

262 SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

NSB = -log2 1/(x)- p·(x)l (12)

TABLEIV

NSB WHEN APPROXIMATING SEVERAL FUNCTIONS BY MINI MAX

f(x)\n 2 3 4 5 6 7 8
ez 4.5 7.5 10.8 14.4 18.2 22.3 26.4
ln{x + 2) 6.2 8.5 10.7 12.9 15.0 17.1 19.2
sinx 4 .7 11.0 11.0 18.3 18.3 26.5 26.5
arcsin x 2.4 3.5 3.5 4.2 4 .2 4 .7 4 .7
tanx 2.7 5.6 5.6 8.6 8.6 11.5 11.5

A conclusion that can be taken from table IV is that the
sequence of minimax polynomials converges to f(x) with
different speeds and that the convergence speed is difficult
to predict. For example, the approximations to the function
arcsin(x) present bad results. Even with large degree polyno
mials its approximations error decreases slowly. Figure 7 is
an alternative to table IV and helps to see these situations.

~r----,----~----~----~~==~==~

25

20

exp(x)
ln(x+2)
sin(x)
arcsin(x)

---------------- ---

02~------~----~------~----~------~----_J

Fig. 7. EvoluJion of the NSB using minimax.

For several elementary functions, figure 8 shows de mini
mum polynomial degree that is needed to reach a target accu
racy on the result. For these results Chebyshev polynomials
were used. The error curves for arcsin(x) correspondent to
several degree-n polynomials are presented in figure 9.

Results from using rational function approximations are
also included. Table V includes the absolute maximum er
ror and the NSB for both polynomial and rational functions
when approximating e:t in (-1, 1], varying n from 2 to 5.
At the first column (n, O) designates a degree-n polynomial
and (n, m) refers to the rational function degrees used for the
numerator and denominator polynomials.

oor-------~----~~----~======~

50

40

30

20

10

\

\

\

\

exp(x)
ln(x+2)
tan(x)
arcsin(x)

- - - -·- - - - -·-

Fig. 8. Polynomial's degree as a function of accuracy.

0.2 ,....---.----..----..,..----,----.----.-----.----..,..----.----.

0 .15

0 .1

-0.05

-o.1

-o.15

,
I I

>'
I \

'· ,
... - ... ~

- - -

,
/

- - -

Fig. 9. Error functions for arcsin(x) .

\
· , I

An important feature can be taken from these data. In
terms of NSB the table entries for (n, m) = (2, 3) and
(n, m) = (5, O) show that the first one presents a better result
than the second one. This better precision is accomplished by
a faster evaluation using the circuit on figure 5(a) where two
polynomials are calculated in parallel. The rational approx
imation for (n, m) = (2, 3) takes 7 clock cycles while the
polynomial approximation consumes I O clock cycles with
(n, m) = (5, 0). These results were obtained for éz:, but
the same conclusion can be obtained from other elementary
functions.

Table VI quantifies the clock cycles needed to compute an

SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 263

TABLEV

RESULTS FOR e'" RATIONAL APPROXIMATIONS

n,m jerrorl NSB
2,0 4.5 X 10 2 4.5
0,2 3.5 X 10-2 4.8
1,2 1.7 X 10-3 9.2
2,2 8.7 X 10-5 13.5
3,0 5.5 X 10 3 7.5
0,3 4.5 X 10-3 7.8
1,3 1.2 X 10-4 13.0
2,3 4.3 X 10-6 17.8
3,3 1.6 X 10-7 22.6
4,0 5.5 X 10 4 10.8
0,4 4.6 X 10-4 11.1
1,4 8.2 X 10-6 16.9
2,4 2.0 X 10-7 22.2
3,4 5.5 X 10-9 27.4
4,4 1.5 X 10-10 32.6
5,0 4.5 X 10 S 14.4
0,5 3.9 X 10-5 14.6
1,5 4.9 X 10-7 21.0
2,5 9.0 X 10-9 26.7
3,5 1.9 X 10-10 32.3
4,5 4.2 X 10- 12 37.8
5,5 9.7 X 10-14 43.2

exponential in [- 1, 1), using different degrees for minimax
polynomials and rational functions. Column 2 refers to the
polynomial evaluator of figure 4, and columns 3 and 4 refer
to the rational function evaluators presented in figures 5(a)
and 5(b), respectively.

The curves showned at figure I O give a better understand
about this behavior. The approximation accuracy in terms
of NSB is presented as a function of the number of clock
cycles, both for polynomial and rational approximations of
ex with minimax method. From this data can be concluded
that in terms of hardware it is possible to obtain a solution
that is simultaneously faster and precise than other ones. For
example, while a degree-5 polynomial takes 10 clock cy
cles to evaluate e"', this function can be also computed in
only 7 clock cycles by the parallel evaluator of figure 5(a)
with increased precision. This is the main conclusion that
can be taken from this.analysis. However, the area needed
for these implementation alternatives and consequently the
FPGA prices with such resources should be taken into ac
count.

VII. CONCLUSION

The main contribution of this work is on the analysis of
feasibility of elementary function approximations for FP-

TABLEVI

CLOCK CYCLES FOR e'" APPROXIMATIONS

n,m p R type 1 R type 2
3,0 6
0,3 7 7
1,3 7 9
2,3 7 11
3,3 7 13
5,0 10
0,5 11 11
1,5 li 13
2,5 li 15
3,5 11 17
4,5 11 19
5,5 11 21

30

25

20

0.~--~----~--~~~o--~>~2--~,~.----,~6---->~8----J2o

Fig. I O. NSB as a function o f clock cycles.

GAs based custom computing machines. Some results were
shown for an implementation that uses non-pipelined floating
point arithmetic operators with single precision. Different
strategies can be used to choose the best way an approxima
tion can be evaluated, taking in to account speed and area con
straints and trade-offs. Combining applications like Maple
and synthesis tools for FPGAs, an integrated environment is
being developed to automatically generate an hardware solu
tion that satisfies user specified parameters like precision and
speed/area trade-offs.

Future work can be done in two main directions. The
first one, refers to the elementary function approximation it
self. The exposed methods can be combined with table based
methods for a mixed solution. Because these tables can be
stored inside the FPGAs using the look-up tables available

264 SBAC-PAD'99 I lth Symposium on Compute r Architecture and High Performance Computing- Natal- Brazil

in the CLBs this seems to be an interesting alternative to the
methods described. The other direction concerns the way
how the arithmetic operators are implemented and how they
can be optimized for area and performance constraints.

REFERENCES

(Bak75] G. A Baker. Es.<emial.<of Padé approximants. Academic Press.
New York. 1975.

[Boa85] I. S. Board. IEEE Srandard for Binary Floating Point Arith
metic. The lnstitute of Electrical and Electronics Engineers,
New York. 1985. ANSUIEEE Std. 754-1985.

(CGG+9 1] B. W. Char. K. O. Geddes. G. H. Gonnet, B. L. Leong. M. B.
Monagan. and S. M. Watt. Maple V Library Reference Manual.
Springer Verlag, Berlin. Germany, 1991.

[HCL +68] J. F. Han. E. W. Cheney. C. L. Lawson. H. J. Maehly. C. K.
Mesztenyi, J. R. Rice. H. G. Thacher. and C. Witzgall. Com
puter Appmximation.<. Wiley, New York, 1968.

[Knu81] Donald Knuth. The Art nf Compu ter Pro~:ramming -Seminu
merical Algorithm.<. volume 2. Addison-Wesley. Reading. MA,
1981.

[Kor98] Israel Koren. Compurer Arithmetic Algorithm.<. Brookside
Court, Amherst. MA. 1998.

[Mul97] Jean-Michel Muller. Elementary Function.< - Al~:orirhms and
lmplemelllation. Birkhtiuser. Boston. 1997.

[New96] Bemie New. Using the dedicated carry logic in XC4000E. Ap
plication Note XAPP O 13, Xilinx, 1996.

[Ric64] J. R. Rice. The Approximation of Functitm.<. Addison-Wesley.
Rending. MA. 1964.

[Xil96] Xilinx. The Programmable w~:ic Dma Book. 1996.

