SBAC-PAD’99 11th Symposium on Computer Architecture and High Performance Computing - Natal - Brazil 265

Volume Rendering FPGA Hardware

J. Hesser, A. Kugel, H. Singpiel, B. Vettermann, R. Minner

Lehrstuhl fiir Informatik V, Universitdt Mannheim
B6, 26, D-68131 Mannheim
{jhesser@rumms.uni-mannheim.de}

Abstract—

This paper discusses the implementation of volume ren-
dering on FPGA hardware. The FPGA board is based on a
2x2 matrix of FPGA devices that are reprogrammed for dif-
ferent data processing tasks that occur during rendering.
Moreover, it is shown how branch and data hazards are over-
come in the pipelined system by multithreading.

Keywords— FPGA, PCI, Volume Rendering, Visualization,
Reconfigurable Computing

I INTRODUCTION

Volume rendering is today a standard rendering ap-
proach for displaying complex three or higher dimensional
data, e.g. computerized tomography (CT), magnetic reso-
nance imaging (MRI), or ultrasound (US). The basic idea of
this sort of rendering is the simulation of the interaction of
light with matter including reflection and absorption.

Imaging systems like CT produce stacks of two-
dimensional slices that are interpreted as a three dimen-
sional volume. Each volume element (a pixel of a slice) is
denoted a voxel.

Volume rendering simulates how light passes through
the volume. Part of the light is reflected to the viewer.
Along the way the reflected light it is partially absorbed
until it reaches the viewing plane. There the contributions
of all reflected light rays are accumulated and generate the
image that is displayed.

Typical data sets contain between 10-1000 voxels which
corresponds to the rendering time on modern workstations
that lie in the range of 10-1000 seconds. Thus interactive or
even real-time rendering is not possible. Therefore acceler-
ating the rendering process is imperative. There are two
approaches to accomplish this task, hardware acceleration
and/or algorithmic optimizations. The latter prevents to
process voxels that do not contribute to the final image.

Volume rendering hardware for accelerating this type of
visualization has been proposed over the last decade in
several papers [1,2,3]. However, only a few prototypes
have been built yet. Among them are the VIRIM system
[LEV 88], VIZZARD [GUE 94], and the implementation of
Cube-4 on HPs Teramac FPGA-processor [BRA 97]. Cur-
rently Mitsubishi integrates the Cube-4 architecture on the
VG500 chip [KNI 94].

The second approach to speed-up rendering is to use al-
gorithmic optimizations. These optimizations skip the proc-

essing of transparent voxels that have no interaction with
light. This is called space-leaping. Furthermore, it sup-
presses the processing of all voxels whose reflected light
does not contribute to the final image since nearly all light
is absorbed during its way to the viewing plane. This tech-
nique is called early-ray termination. The advantage of
these two improvements is that the complexity of rendering
decreases for a volume of N* voxels from O(N?) to O(N?).
Thus a combination of both algorithmic optimization
and special purpose hardware architecture should be an
ideal solution. Nevertheless, only recently [LAC 94] an
approach to solve this problem has been proposed. The new
architecture is based on classical distance coding informa-
tion for space-leaping and uses multithreading for hiding
data hazards. While in paper [LAC 94] only the principle
hardware architecture has been proposed we concentrate
here on the implementation of the architecture on a multi-
purpose FPGA processor system called ATLANTIS.

II. ALGORITHM AND OPTIMIZATIONS

In Figure 1 a principle standard volume rendering pipe-
line without optimization is shown. It consists of several
pipeline operations:

From each pixel of the final image a ray is cast into the
volume. For each ray, at regular intervals sample points are
generated beginning with sample points nearest to the
viewing plane. Each sample point processing then involves
the following operations:

¢ The position of the sample point in the data volume
is calculated. The 8 neighboring voxels are read out
and a trilinear interpolation is performed. As result
the gray value (interpreted as opacity) of the sample
point is obtained. . :

e A gradient is calculated by determining the gray
value change between neighboring sample points.
This gradient is the normal of a possible plane in
the volume.

e Using the plane normal, shading is pcrfénned, ie.,
to calculate how much light is reflected to the
viewer direction by diffuse and specular reflection.

e It is calculated how much of the reflected light-
intensity reaches the viewing plane due to ab-
sorption. Each contribution of a ray is accumulated

266 SBAC-PAD’99 1lth Symposium on Computer Architecture and High Performance Computing - Natal - Brazil

and represents the brightness of the considered
pixel. This last stage is called compositing.

In this solution the data flows from the address
generation stage where the position of the sample point is
determined over the memory read-out, interpolation/grad-
ient, and shading to the compositing stage. One sample
point after the other of the considered ray is processed in
the volume rendering pipeline. Because there is no feed-
back in the data flow it can easily be implemented in hard-
ware.

With larger data sets, however, an excessive amount of
hardware is required to achive real-time rendering rates
[LAC 94]. Algorithmic optimizations mitigate this problem
significantly, reducing the amount of hardware needed by at
least one order of magnitude.

The optimization techniques are mainly space-leaping
and early-ray termination. Space-leaping skips empty
regions in the data set. Early-ray termination stops further
calculation when the intensity of a ray is below a user
Anfinzhleurhipchald.

Addrens Generation Addrens Generation
FPea P-Fudd .
; ; Distance
d
Memory Read Out Memory Read Out
Interpol ation Interpolation

However, the sample points of a ray are processed se-
quentially in the pipeline. The subsequent sample point
address can only be determined when the distance value of
the current sample point is already read from the volume
memory. Consequently, there is a feedback in the rendering
pipeline (data hazard). Further address calculation has to
stop until the distance information is available. With mod-
crn fast memory interfaces like SDRAMs there is a delay of
3 clock cycles from addressing to data out. An additional
delay originates from the calculation of the next sample
point address. Both delays reduce the pipeline utilization to
less than 10%.

The top of Figure 2 illustrates the problem. In this ex-
ample a delay of three clock cycles is assumed. The hard-
ware stages are drawn in the vertical direction, the elapsed
time in clock cycles is represented by the abscissa. Dark
squares indicate that the respective hardware stage is used
during the corresponding clock cycle. As can be seen, due
to the dependency of the operations 1 and 3 the pipeline is
used only at one third of the time.

The. hatteen, Af, Bimuree L chowvs, ann cahition, (esel T AT
94] for details). Instead of inserting no-operations into the
pipeline, sample point positions of other rays are calculated.
This approach corresponds to multithreading. Each ray is
considered a thread and after each sample point there is a
context switch to the next thread (ray)'.

In our solution, up to 64 rays are processed in a round
robin order. Thus there is enough time to calculate the next
sample point position of a ray before this result is required.

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing - Natal - Brazil 267

Fig. 3 Volume rendering pipeline with multithreading.

III. HARDWARE

For our implementation we use a multi-purpose FPGA
and RISC based computing system called ATLANTIS
[KUG 99]. It realizes a hybrid* system with a close cou-
pling of RISC and FPGAs. CompactPCI provides the basic
communication mechanism. Applications besides volume
rendering are pattern recognition tasks like particle track
recognition in high energy and heavy ion physics and n-
body calculation in astronomy. The high-performance
hardware is complemented by CHDL, a FPGA design tool
with special support for hybrid systems.

A. ATLANTIS system

The basic idea behind ATLANTIS is to provide a
modular multi-purpose computing platform for a variety of
applications. Dedicated FPGA boards for computing and
I/0, a high-end host CPU plus a private backplane bus
system for up to 1 GB/s data rate support flexibility and
scalability. A highly successful approach to adjust such a
hybrid system to different applications is modularity.
ATLANTIS implements modularity at different levels. First
of all there are the main entities host CPU and FPGA
processor which allow to partition an application into
modules tailored for either target.

To satisfy the requirements of different applications
concerning computing power and I/O bandwidth,
computing and I/O resources are implemented on separate
FPGA boards. Depending on a specific application a certain
amount and combination of computing and I/O boards
together with the host CPU form the particular system. For

% In order to emphasise the close coupling between host-computer
and FPGA system we use the term “hybrid” system.

this a backplane based interconnect system (private bus)
provides scalability.

Fig. 4 ATLANTIS system overview

Finally, modularity is used on the sub-board level by
allowing different memory types or different I/O interfaces
per board type. The ATLANTIS system thus consists of
four main components:

The computing board - ACB

The /O board - AIB

The private bus on the active backplane - AAB
The host CPU with PCI backplane.

A schematic view of the whole system is shown in Fig-
ure 4.

The ATLANTIS computing board along with the host
CPU are used for volume rendering. We therefore describe
in the following section the ATLANTIS computing board
(ACB) in more detail.

B. ATLANTIS Computing Board (ACB)

The core of the main processing unit of the ATLANTIS
system consists of a 2x2 FPGA matrix (see Fig. 5).
Assuming a usable gate count of approximately 180k per
chip for the Lucent ORCA 3T125 the gate count per board
sums up to 720k FPGA gates. Each FPGA has 4 different
ports:

e 2 ports @ 72 lines to a neighboring FPGA each in
vertical and horizontal direction

e 1 logical I/O port @ 72 lines and

e [module port @ 206 lines.

268 © SBAC-PAD'99 Ilth Symposium on Computer Architecture and High Performance Computing - Natal - Brazil

These 4 ports use a total amount of 422 I/O signals per
FPGA. The 72 lines of FPGA interconnect provide high
bandwidth as well as multi-channel communication be-
tween chips.

The module port is built from 2 high-density mezzanine
connectors @ 124 pins. Depending on the application,
memory modules with very different architecture or mod-
ules with additional logic resources like DSPs can be used
to optimize the system performance. Also other I/O inter-
faces can be implemented.

The 1/0 port serves different tasks on the 4 FPGAs, de-
pending on the physical connection of the chips:

e One FPGA is connected to the PLX9080 PCI interface
chip thus providing the host-I/O functionality.

e Two FPGAs are connected to a backplane bus via the
upper 2 CPCI connectors (J4/P4 and J5/P5).

e One FPGA supports two 32 bit M-Link’ interfaces

(sender and receiver) with a physical VHD68 SCSI

connector for high speed external I/O.

The two backplane ports support high-speed I/O of
1 GB/s @ 66MHz, 2*64bit. The host interface via PCI
supports two independent DMA (on demand) channels
allowing 125 MB/s max data throughput.

3 M-Link is a FIFO like new international standard for point-to-
point links. At present we use an 80 MB/s LVDS implementation
similar to CERN internal S-Link interface.

V. IMPLEMENTATION

C. System Working Flow

The single volume rendering system just uses one
FPGA board (ACB) and a host CPU board connected via
the CompactPCI bus of ATLANTIS.

A subboard has been additionally designed that provides
the volume memory for storage of the rendered data set. It
is mounted on the module ports and integrates the memory
read-out stage in the rendering pipeline.

Our design makes heavy use of the reconfiguration
properties of FPGAs, i.e., by appropriate reconfiguration
we define special purpose processors for different opera-
tions for which they are optimally suited. There are 4 main
configuration modes of the ACB for volume rendering:

e Initialization

e LUT and reflectance map adjusting
e Distance calculation

e Rendering configuration

Each of them is set up within 35 ms up to 140 ms de-
pending on the number of FPGAs which have to be recon-
figured.

The first two configuration modes are only used for
loading data into registers and memory whereas the other
two configurations are used for setting internal parameters
for the rendering process concerning the shading process
and the assignment of voxel gray value to opacities.

A.1.C.1 Distance calculation

After startup the extension of the transparent regions
within the data set is determined. This is done by distance
transforms. For this purpose one FPGA has to be reconfig-
ured with a two pass non-linear digital filter.

A.1.C.2 Rendering configuration

The rendering configuration executes 3 tasks in parallel:
e Downloading of ray parameters
¢ Implementation of the rendering algorithm
e Upload of rendering results

Downloading of ray parameters

For multithreading we use a 8x8 bunch of rays (64). For
them several parameters have to be downloaded: The start-
ing point (3x24 bit), the minimal distance to the next sam-
pling point (3x16 bit) and the maximal ray length (10 bit)
have to be stored for each ray on the FPGA in a parameter
RAM.

SBAC-PAD’99 11th Symposium on Computer Architecture and High Performance Computing - Natal - Brazil 269

To be able to overlap the time of downloading parame-
ters and rendering, an additional local storage is selected.
. For this purpose the FPGA is used.

Implementation of the rendering algorithm

iV Mo e Lt e e e
Fig. 6 Detailed view of the pipeline implementation. The three
gray regions are the building blocks that are concentrated on

one FPGA respecuvely.

The most interesting part for optimization is the ray
queue. It implements the context switch for multithreading
(see Fig. 6). This queue stores ray numbers that are used for
addressing the parameter RAM.

Together with the address calculation (24 bit fixed
point) and the ray parameters, one ORCA3T125 is complet-
ely filled. The three offset values (X,Y,Z) with 16 bit
resolution have to be multiplied by the 8 bit distance value
and added to the last sample point position of the ray,
which is implemented as three times 24 bit.

One FPGA is needed for the SDRAM controllers of the
volume memory since this volume memory is subdivided
into 8 separate banks to increase the data throughput.

The 8x8 bit opacity values are together with 3x6 bit
LSBs (following the MSBs) of the sample point position
the input of the tri-linear interpolation stage. It fills one
complete FPGA as well. Output of the interpolation stage
are one 8 bit value opacity and three 8 bit gradient values
estimated from the neighboring voxels of the sample point
[VSC 95].

Shading is done according to Smit [PFI 95] where the
complex calculation is essentially performed by a LUT.

In parallel to shading the absorption of the ray with the
8 bit opacity (A) and intensity (I) values is calculated by
I=I(1-A).

The compositing step uses the 8 bit result of the bilinear
interpolation of the reflection map and the intensity of the
rays. It handles all 64 rays by addressing the result RAM
and intensities with the ray number.

V. PERFORMANCE RESULTS

The volume rendering system is currently under
construction and should be up and running summer 1999.
Before design of the system began it has been simulated in
C and VHDL. These simulation results were performed
assuming a 100 MHz system.

In the simulation a fully pipelined hardware is assumed.
The memory read-out operation consists of three stages and
the remaining steps in the volume rendering pipeline are
requiring 9 pipeline stages.

For the simulation we used a CT data set from a human
Jjaw with 256x256x128 voxels. This data set is viewed from
three different viewing directions and three different levels
of opacity for soft tissue is applied (see Fig. 7).

On average one achieves efficiencies of between 90%
~nl 7%, Thauammhas i ~sannlremintes: vai res ‘vetween 10-

15% of all voxels if the data set consists mainly of empty
space and opaque objects and 25-40% for semi transparent
opacity levels.

The above results correspond to rendering rates from 20
Hz on semi-transparent data sets to 138 Hz. The results are
achieved from images of size 256x128. Perspective views
reduce the rendering speed by a factor of 2.

These frame rates have to be compared with those
achievable on standard PCs. Rendering rates on high-end
PCs are in the range of one second to about 10 seconds for
the same sort of data. A 100 MHz ASIC achieves a speedup
of a factor > 100 while FPGA systems are currently limited
to a factor >50.

270 SBAC-PAD'99 1lth Symposium on Computer Architecture and High Performance Computing - Natal - Brazil

Fig. 7 The images show different views on the jaw data set if
the surface is rendered opaque.

Fig. 8 The images show the frontal view with different levels
of opacities of the boundary between bone and the
surrounding area. The last image uses semi-transparent soft-
tissue.

The main reason why FPGA systems perform such well
compared to ASICs is that the performance bottleneck is
the memory speed which is limited to 100 MHz to most
devices. Recent SDRAMSs achieve 150MHz operation
frequency, RDRAMSs even allow data read out rates of up to
500 MHz so that higher performance of ASIC solutions
could be assumed.

The performance of this system is difficult to compare
to other approaches in literature. The main reason is that no
other hardware uses both techniques of algorithmic
optimizations; and (besides the VIRIM system in 1995
[GUE 94]) only one hardware systemn has actually been
built. This system is the VolumePro board that persuades
rendering rates of 30 Hz for 256° data sets
(www.3dvolumegraphics.com).

VI. CONCLUSIONS AND OUTLOOK

The ATLANTIS computing board turned out to be a versa-
tile hardware for the volume rendering application. It al-
lows to integrate the full board complexity on a few FPGAs
only. Free pins on the board allow integrating a special
purpose subboard that contains the volume memory. Fi-
nally, the reconfigurability gives us the possibility to mini-
mize the necessary amount of hardware by reloading the
configuration for different computing tasks that occur dur-
ing rendering.

VIL REFERENCES

[LEV 88] Levoy M. Display of Surfaces from Volume Data.
IEEE Computer Graphics & Appl., 8(5), 1988: 29-37

[GUE 94] Giinther T., Poliwoda C., Reinhart C., Hesser J., Min-
ner R., Meinzer H.-P., Baur H.-J.. VIRIM: A Mas-
sively Parallel Processor for Real-Time Volume Visu-
alization in Medicine. W. StraBer, 9th Eurographics
Workshop on Graphics Hardware, Oslo, Norway,
1994: 103-108

[BRA 97] Brady M., Jung K., Nguyen H.T., Nguyen T. Two-
Phase Perspective Ray Casting for Interactive Volume
Navigation. Proc. Visualization'97, Phoenix, AZ,
1997: 183-189

[KNI94] Knittel G., StraBer W. A Compact Volume Rendering
Accelerator. 1994 Symp. on Vol. Vis., ACP press.,
NY, 1994: 67-74

[LAC 94] Lacroute P. and Levoy M. Fast Volume Rendering

Using a Shear-Warp factorization of the Viewing

Transform. Computer Graphics, Proc. of SIGGRAPH

‘94, Orlando, FL, 1994: 451-457

Pfister H.-P. Towards a Scalable Architecture for

Real-Time Volume Rendering 10th Eurographics

Workshop on Graphics Hardware, Maastricht, The

Netherlands, 1995: 123-130

[VSC 95] Van Scheltinga J.T., Smit J., Bosma M. Design of an
On-Chip Reflectance Map. 10" EuroGraphics Work-
shop on Graphics Hardware, Maastricht, 1995: 51-55

[CHA 94] Chaudhry G., Li X.. A Case for the Multithread Proc-

essor Architecture. Computer Architecture News,

22(4), Sept. 1994

Lichtermann J. Design of a Fast Voxel Processor for

Parallel Volume Visualization. W. StraBer, Ist Eu-

rographics Workshop on Graphics Hardware, Maas-

tricht, The Netherlands, 1995: 83-92

[KNI95] Knittel G. A PCl-based volume rendering accelerator.
W. StraBer,10"™ Eurographics Workshop on Graphics
Hardware, Maastricht, The Netherlands, pp. 73-82

[ZU192] Zuiderveld K.J., Koning A.H., Viergever M.A. Accel-
eration of Ray-Casting using 3D Distance Transforms.
Proc. Vis. in Biomed. Comp., Chapel Hill, 1992: 324-
335

[FOL 90] Foley, van Dam, Feiner, Hughes. Computer Graphics:
Principles and Practice. Addison Wesley, Reading,
MA, 2d. ed., 1990

[KUG 99] A. Kugel, H, Singpiel, J Hesser., R. Minner.
ATLANTIS: A hybrid approach combining the power
of FPGA and RISC processor based on CompactPCI
in Proc. FPGA "99, Monterey, CA, 1999.

[PFI 95]

[LIC 95)

