
SBA C-PAD '99 11 r h Symposium on Computer Architecture and High Performance Computing - Natal - Braz.il 265

Volume Rendering FPGA Hardware
J. Hesser, A. Kugel, H. Singpiel, B. Vettermann, R. Manner

Lehrstuhl für Informatik V, Universitlit Mannheim
B6, 26, D-68131 Mannheim

{jhesser@rumms.uni-mannheim.de}

Abstract-
This paper discusses the implementation of volume ren

dering on FPGA hardware. The FPGA board is based on a
2x2 matrix of FPGA devices that are reprogrammed for dif
ferent data processing tasks that occur during rendering.
Moreover, it is shown how branch and data hazards are over
come in the pipelined system by multithreading.

Keywords- FPGA, PCI, Volume Rendering, Visualization,
Reconfigurable Computing

I. lNTRODUCTION

Volume rendering is today a standard rendering ap
proach for displaying complex three or higher dimensional
data, e.g. computerized tomography (Cn, magnetic reso
nance imaging (MRI), or ultrasound (US). The basic idea of
this sort of rendering is the simulation of the interaction of
light with matter including reflection and absorption.

Imaging systems like CT produce stacks of two
dimensional slices that are interpreted as a three dimen
sional volume. Each volume element (a pixel of a slice) is
denoted a voxel.

Volume rendering simulates how light passes through
the volume. Part of the light is reflected to the viewer.
Along the way the reflected light it is partially absorbed
until it reaches the viewing plane. There the contributions
of ali reflected light rays are accumulated and generate the
image that is displayed.

Typical data sets contain between 10-1000 voxels which
corresponds to the rendering time on modern workstations
that lie in the range of 10-1000 seconds. Thus interactive or
even real-time rendering is not possible. Therefore acceler
ating the rendering process is imperative. There are two
approaches to accomplish this task, hardware acceleration
ancl/or algorithmic optimizations. The latter prevents to
process voxels that do not contribute to the final image.

Volume rendering hardware for accelerating this type of
visualization has been proposed over the last decade in
severa) papers (1 ,2,3]. However, only a few prototypes
have been built yet. Among them are the VIRIM system
(LEV 88], VIZZARD [GUE 94], and the implementation of
Cube-4 on HPs Teramac FPGA-processor [BRA 97]. Cur
rently Mitsubishi integrates the Cube-4 architecture on the
VGSOO chip [KNI 94].

The second approach to speed-up rendering is to use al
gorithmic optimizations. These optimizations skip the proc-

essing o f transparent voxels that have . no interaction with
light. This is called space-leaping. Furthe~ore, it sup
presses the processing of ali voxels whose reflected light
does not contribute to the final image since nearly ali light
is absorbed during its way to the viewing plane.' This tech
nique is called early-ray tennination. The advantage of
these two improvements is that the complexity ofrendering
decreases for a volume o f N3 voxels from 0(N3

) to 0(N2
).

Thus a combination of both algorithmic optimization
and special purpose hardware architecture should be an
ideal solution. Nevertheless, only recently [LAC 94] an
approach to solve this problem has beeri proposed. The new
architecture is based on classical distance coding informa
tion for space-leaping and uses multithreadi~g for hiding
data hazards. While in paper [LAC 94] only the principie
hardware architecture has been proposed we concentrate
here on the implementation o f the archi~ecture · on a multi
purpose FPGA processor system called A1LANTIS .

li. ALGORITHM ANO ÜPTIMIZATIONS

In Figure 1 a principie standard volume rendering pipe
line without optimization is shown. It consists of severa!
pipeline operations:

From each pixel of the final image a ray is cast into the
volume. For each ray, at regular intervals sample points are
generated beginning with sample points nearest to the
viewing plane. Each sample point processing then involves
the following operations:

• The position of the sample point in the data volume
is calculated. The 8 neighboring v9xels are read out
and a trilinear interpolation is performed. As result
the gray value (interpreted as opacity) of the sample
point is obtained.

• A gradient is calculated by detennining the gray
value change between neighbori.ng sample points.
This gradient is the normal of a possible plane in
the volume.

• Using the plane normal, shading is performed, i.e.,
to calculate how much light is reflected to the
viewer direction by diffuse and specular reflection.

• It is calculated how much of the reflected light ·
intensity reaches the viewing plane due to ab
sorption. Each contribution of a ray is accumulated

266 SBAC-PAD '99 11th Symposium on Compute r Architecture and High Performance Computing -Natal- Brazil

and represents the brightness of the considered
pixel. This last stage is called compositing.

In this solution the data flows from the address
generation stage where the position of the sample point is
determined over the memory read-out, interpolationlgrad
ient, and shading to the compositing stage. One sample
point after the other of the considered ray is processcd in
the volume rendering pipeline. Because there is no feed
back in the data flow it can easily be implemented in hard
ware.

With larger data sets, however, an excessive amount of
hardware is required to achive real-time rendering rates
[LAC 94]. Algorithmic optimizations mitigate this problem
significantly, reducing the amount of hardware needed by at
least one order o f magnitude.

The optimization techniques are mainly space-leaping
and early-ray termination. Space-leaping skips empty
regions in the data set. Early-ray termination stops further
ca!culation when the intensity of a ray is below a user
definable threshold.

Distancc
d

Fig. rendering pipeline. Right:
Volume rendering pipcline with algorithmic optimization.

The implementation of these optimization techniques in
the standard volume-rendering pipeline would introduce
major problems in the pipeline flowthat reduce the pipeline
speed drastically. This problem described next (see Figure
I).

Space-leaping assumes that the data set is preprocessed.
For each voxel the tn.inimal distance to the next non
transparent voxel is stored in a distance data set. During
rendering along with the sample point' s neighbors the cor
responding distance value is read out. It represents the
number of voxels that can be skipped before the next non
transparent voxel can be encountered.

However, the sample points of a ray are processed se
quentially in the pipeline. The subsequent sample point
address can only be determined when the distance value of
the current sample point is already read from the volume
memory. Consequently, there is a feedback in the rendering
pipeline (data hazard). Further address calculation has to
stop until the distance information is available. With mod
em fast memory interfaces Jike SDRAMs there is a delay of
3 clock cycles from addressing to data out. An additional
delay originates from the calculation of the next sample
point address. Both delays reduce the pipeline utilization to
less than I 0%.

The top of Figure 2 illustrates the problem. In this cx
ample a delay of three clock cycles is assumed. The hard
ware stages are drawn in the vertical direction, the elapsed
time in clock cycles is represented by the abscissa. Dark
squares indicate that the respective hardware stage is used
during the corresponding clock cycle. As can be seen, due
to the dependency of the operations I and 3 the pipeline is
used only at one third of the time.

The bottom of Figure 2 shows our solution (see [LAC
94] for details). Instead of inserting no-operations into the
pipeline, sample point positions of other rays are calculated.
This approach corresponds to multithreading. Each ray is
considered a thread and after each sample point there is a
context switch to the next thread (ray) 1•

In our solution, up to 64 rays are processed in a round
robin order. Thus there is enough time to calculate the next
sample point position of a ray before this result is required.

Figure 3 shows an implementation of the rendering
pipeline with multithreading. The main modification to the
earlier pipeline is the ray queue. It is realized as a shift
register where each slot stores the parameters of a single
ray. When the new sample point of a ray is calculated the
ray is added at the end o f the ray queue.

Moreover, early-ray termination deletes a ray from the
queue whose intensity is below a user defined threshold.

Ti IM'

Fig. 2 Pipeline utilisation.
Top: Without muhithreading
Bottom: With multithreading, different gray values indicate
different rays.

1 This approach is possible since the rays are processed independ
ently.

SBAC-PAD'99 1 Jth Symposium on Compute r Architecture and High Performance Computing- Natal- Brazil 267

l

L _ _ :
Fig. 3 Volume rcndcring pipcline with multithreading.

111. HARDWARE

For our implementation we use a multi-purpose FPGA
and RISC based computing system called A 1LANTIS
[KUG 99]. It realizes a hybrid2 system with a close cou
pling of RISC and FPGAs. CompactPCI provides the basic
communication mechanism. Applications besides volume
rendering are pattern recognition tasks like particle track
recognilion in high energy and heavy ion physics and n
body calculation in astronomy. The high-performance
hardware is complemented by CHDL, a FPGA design tool
with special support for hybrid systems.

A. ATI.ANTIS system

The basic idea behind A 1LANTIS is to provi de a
modular multi-purpose computing platform for a variety of
applications. Dedicated FPGA boards for computing and
I/0, a high-end host CPU plus a private backplane bus
system for up to I GB/s data rate support fle~ibility and
scalability. A highly successful approach to adJUSt sue~ a
hybrid system to different applications is modulart_ty.
A 1LANTIS implements modularity at differentlevels. Ftrst
of ali there are lhe main entilies host CPU and FPGA
processar which allow to partition an application into
modules tailored for either target.

To satisfy the requirements of different applicalions
conceming computing power and l/0 bandwidth,
computing and l/0 resources are implemented on separate
FPGA boards. Depending on a specific application a certain
amount and combination of computing and l/0 boards
together with the host CPU form the particular system. For

2 In arder to emphasise the close coupling between host-computer
and FPGA system we use the tenn "hybrid" system.

this a backplane based interconnect system (private bus)
provides scalability.

Fig. 4 ATLANTIS system overview

Finally, modularity is used on the sub-board levei by
allowing different memory types or differentl/0 interfaces
per board type. The A 1LANTIS system thus consists o f
four main components:

• The computing board- ACB
• The l/0 board - AIB
• The private bus on the active backplane- AAB
• The host CPU with PCI backplane.

A schematic view of the whole system is shown in Fig
ure 4.

The A 1LANTIS computing board along with the host
CPU are used for volume rendering. We therefore describe
in the following section the A 1LANTIS computing board
(ACB) in more detail.

B. ATLANTIS Computing Board (ACB)

The core o f the main processing unit o f the A lLANTIS
system consists of a 2x2 FPGA matrix (see Fig. 5).
Assuming a usable gate count of approximately 180k per
chip for the Lucent ORCA 3Tl25 the gate count per board
sums up to 720k FPGA gates. Each FPGA has 4 diffcrent
ports:

• 2 ports @ 72 !ines to a neighboring FPGA each in
vertical and horizontal direction

• 1 logicall/0 port @ 72 !ines and
• 1 module port @ 206 !ines.

268 SBAC-PAD'99 llth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

Fig. 5 ATLANTIS Computing Board

These 4 ports use a total amount of 422 110 signals per
FPGA. The 72 lines of FPGA interconnect provide high
bandwidth as well as multi-channel communication be
tween chips.

The module port is built from 2 high-density mezzanine
connectors @ i 24 pins. Depending on the application,
memory modules with very different architecture or mod
ules with additional logic resources like DSPs can be used
to optimize the system performance. Also other 110 inter
faces can be implemented.

The 110 port serves different tasks on the 4 FPGAs, de
pending on the physical connection of the chips:
• One FPGA is connected to the PLX9080 PCI interface

chip thus providing the host-110 functionality.
• Two FPGAs are connected to a backplane bus via the

upper 2 CPCI connectors (J4/P4 and J5/P5).
• One FPGA supports two 32 bit M-Link3 interfaces

(sender and receiver) with a physical VHD68 SCSI
connector for high speed externai 110.

The two backplane ports support high-speed 110 of
1 GB/s @ 66MHz, 2*64bit. The host interface via PCI
supports two in.dependent DMA (on demand) channels
allowing 125. MB/s max data throughput.

3 M-Link is à FIFO like new intemational standard for point-to
point links. At present we use an 80 MB/s L VDS implementation
similar to CERN internai S-Link interface.

IV. IMPLEMENTATION

C. System Working Flow

The single volume rendering system just uses one
FPGA board (ACB) and a host CPU board connected via
thc CompactPCI bus o f A 1LANTIS.

A subboard has been additionally designed that provides
the volume memory for storage of the rendered data set. It
is mounted on the module ports and integrates the memory
read-out stage in the rendering pipeline.

Our design makes heavy use of the reconfiguration
properties of FPGAs, i.e., by appropriate reconfiguration
we define special purpose processors for different opera
tions for which they are optimally suited. There are 4 main
configuration modes of the ACB for volume rendering:

• Initialization
• LUT and reflectance map adjusting
• Distance calculation
• Rendering configuration

Each of them is set up within 35 ms up to 140 ms de
pending on the number of FPGAs which have to be recon
figured.

The first two configuration modes are only used for
loading data into registers and memory whereas the other
two configurations are used for setting internai parameters
for thc rendering proccss concerning the shading process
and the assignment of voxel gray value to opacities.

A.l .C.l Distance calculation

After startup the extension of the transparent regions
within thc data sct is determined. This is donc by distance
transforms. For this purpose one FPGA has to be reconfig
ured with a two pass non-linear digital til ter.

A.l .C.2 Rendering configuration

Thc rcndering configuration executes 3 tasks in parallel:
• Downloading o f ray parameters
• lmplementation of the rendering algorithm
• Upload o f rendering results

Downloading of ray parameters
For multithreading we use a 8x8 bunch of rays (64). For

them severa! parameters have to be downloaded: The start
ing point (3x24 bit), the minimal distance to the next sam
pling point (3x16 bit) and the maximal ray length (10 bit)
have to be stored for each ray on the FPGA in a parameter
RAM.

SBAC-PAD'99 IIth Symposium on Computer Architecture and High Performance Computing -.Natal o Brazil 269

To be able to overlap the time of downloading parame
ters and rendering, an additional local storage is selected.
For this purpose the FPGA is used.

Implementation of the rendering algorithm

Fig. 6 Detailed view of the pipeline impl

270 SBAC-PAD'99 11th Symposium on Computer Architecture and High Peiformance Computing - Natal- Brazil

Fig. 7 The images show different views on the jaw data set if
the surface is rendered opaque.

Fig. 8 Thc images show the frontal view with different leveis
of opacities of the boundary between bone and the
surrounding area. T he last image uses semi-transparent ·soft
tissue.

The main reason why FPGA system s perform s uch well
compared to ASICs is that the performance bottleneck is
the memory speed which is limited to 100 MHz to most
devices. Recent SDRAMs achieve 150MHz operation
frequency, RDRAMs even allow data read out rates of up to
500 MHz so that higher performance of ASIC solutions
could be assumed.

The performance of this system is difficult to compare
to other approaches in literature. The main reason is that no
other hardware uses both techniques of algorithmic
optimizations; and (besides the VIRIM system in 1995
[GUE 94]) only one hardware system has actually been
built. This system is the VolumePro board that persuades
rendering rates of 30 Hz for 2563 data sets
(www.3dvolumegraphics.com).

VI. CONCLUSJONS ANO ÜUTLOOK

The A TLANTIS computing board turned out to be a versa
tile hardware for the volume rendering application. lt al
Jows to integrate the full board complexity on a few FPGAs
only. Free pins on the board allow integrating a special
purpose subboard that contains the volume memory. Fi
nally, the reconfigurability gives us the possibility to mini
mize the necessary amount of hardware by reloading the
configuration for different computing tasks that occur dur
ing rendering.

VII. REFERENCES

[LEV 88] Levoy M. Display of Surfaces from Volume Data.
IEEE Computer Graphics & Appl., 8(5), 1988: 29-37

[GUE 94] Günther T., Poliwoda C., Reinhart C., Hesser J. , Man
ner R., Meinzer H.-P., Baur H.-J .. VIRIM: A Mas
sively Parallel Processar for Real-Time Volume Visu
alization in Medicine. W. StraBer, 9th Eurographics
Workshop on Graphics Hardware, Oslo, Norway,
1994: 103-108

[BRA 97] Brady M., Jung K., Nguyen H.T., Nguyen T. Two
Phase Perspective Ray Casting for lnteractive Volume
Navigation. Proc. Visualization'97, Phoenix, AZ,
1997: 183-189

[KNI 94] Knittel G., StraBer W. A Compact Volume Rendering
Accelerator. 1994 Symp. on Vol. Vis., ACP press.,
NY, 1994: 67-74

[LAC 94] Lacroute P. and Levoy M. Fast Volume Rendering
Using a Shear-Warp factorization of the Viewing
Transform. Computer Graphics, Proc. of SIGGRAPH
'94, Orlando, FL, 1994: 451457

[PFI 95] Pfister H.-P. Towards a Scalable Architecture for
Real-Time Volume Rendering lOth Eurographics
Workshop on Graphics Hardware, Maastricht, The
Netherlands, 1995: 123-130

[VSC 95] Van Scheltinga J.T. , Smit 1., Bosma M. Design of an
On-Chip Rejlecrance Map. 10"' EuroGraphics Work
shop on Graphics Hardware, Maastricht, 1995: 51-55

[CHA 94] Chaudhry G., Li X .. A Case for the Multithread Proc
essar Architecture. Computer Architecture News,
22(4), Sept. 1994

[LIC 95] Lichtermann J. Design of a Fast Voxel Processar for
Parallel Volume Visualization. W. StraBer, 1st Eu
rographics Workshop on Graphics Hardware, Maas
tricht, The Netherlands, 1995: 83-92

[KNI 95] Knittel G. A PCI-based volume rendering accelerator.
W. Stral3er,IO'h Eurographics Workshop on Graphics
Hardware, Maastricht, The Netherlands, pp. 73-82

[ZUI 92] Zuiderveld K.J., Koning A.H., Viergever M.A. Acce l
eration of Ray-Casting using 3D Distance Transforms.
Proc. Vis. in Biomed. Comp., Chapel Hill, 1992: 324-
335

[FOL 90] Foley, van Dam, Feiner, Hughes. Computer Graphics:
Principies and Practice. Addison Wesley, Reading,
MA, 2d. ed. , 1990

[KUG 99] A. Kugel, H, Singpiel, J Hesser., R. Mãnner.
ATLANTIS: A hybrid approach combining the power
of FPGA and RISC processar based on CompactPCI
in Proc. FPGA '99, Monterey, CA, 1999.

