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conflits. Each processar access exclusively one row bus and 
one column bus, so that one. memory module is accessed by 
two processors at most. If we denote a memory module by 
Mii• this module may be accessed by processor i, in a row 
mode, and by processor j , in a column mode. A memory 
module M;;, which is the diagonal memory module, is 
accessed exclusively py processor i. 
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Fig. I Neural Onhogonal Multiprocessor - NEOMP 

An OMP architecture is efficient to severa) scientific 
computations, but the orthogonal memory access principie 
prohibits memory access in mixed modes. This may reduce 
the flcxibility of the mapping of thc algorithms, which do 
not access the memory array in orthogonal fashion. 
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Fig. 2. A typical parallel data spreading at the NEOMP 
memory modules. 

We proposed an orthogonal multiprocessar to Neural 
Network Mapping Application, NEOMP, with q vector 
proccssing units working synchronized, and a scalar 
processor responsible to control lhe vector units, ali of them 
connected to the orthogonal mcmory . Fig. I shows the 
proposed orthogonal multiprocessar diagram. The scalar 
processar is also responsible by the sequencial execution 
portion of algorilhms. Note that the total number of 

processors of NEOMP architecture is p = q + 1, 
considering the scalar processar. 

Fig. 2 shows a typical data spreading operation using 
the NEOMP memory modules. At the left side we can sce 
the diagonal memory modules which corrcspond to local 
memory of the processors, with their respcctive data . With 
a row access, the processors connected to their exclusive 
rows sprcads thc data to ali row modules, simultaneously. 
At lhe right side, we see the result of parallel data spreading· 
operation, with ali columns containing the same data, 
distributed in severa) memory modules. During the 
following column access, ali processors may access their 
own column memory modules, which contain the spreaded 
data . 

III. NEOCOGNilRON 

Neocognitron is a massively parallel neural network, 
composed of severa) layers of neuron cells, proposed by 
Fukushima [FUK 79] (FUK 82] (FUK 92] (FUK 96] (SAI 
98] inspired by Hubel and Wiesel 's model of biological 
vision. As other neural network models, neocognitron has 
its self organized training phasc and the recognition phase, 
when used in pattern recognition. 

Program neocognitron (); 
begin 

For I = 1 to L do compute_stage (/); 
end; 

Fig. 3. Neocognitron computation sequence. 

The lowest stage of the network is thc input layer U0 . . 

Each of the succccding i-th stages has a layer Us; consisting 
of S-cells followcd by a layer Uc; of C-cells. Each layer of 
S-cells or C-cells is composed by a number of two
dimensional array of cells, called cell-planes. Each ccll
plane is associated to a single feature extracted from the 
training pattems, during the learning phase. The S-cells are 
responsible by the feature extration, and the input 
connection weights of lhe S-cells are adjusted during the 
training phase. C-cells are responsible by the distorted 
features correction. Each cell inside a cell-plane receives 
input connections from the preceding layer cell-planes. 

Thc recognition phase of neocognitron, follows the 
sequence showed at the following algorithm, Fig.3, from 
Jayer 1 to L, where L is the number of stages. 

Fig.4 shows the algorithm to compute the output value 
us1 (n, k) of a S-cell, and lhe output value uc1 (n, k) of a C
cell, from the stage I. It is computed the output values to ali 
K1 cell-planes and ali N cell-positions inside the cell-plane. 

To obtain the u51 (n, k) value, it is computed the 
weighted sum, e(n,k) and h(n,k), of ali inputs coming from 
ali K1•1 cell-planes of lhe preceding layer, in a given 
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connection area Sv. which surrounds the position n, of the 
preceding layer C-eei!, or input layer, by the following 
equations ( 1) and (2) 
e(n,k )= e(n,k)+a (V,l<,k ).uct-J( n+V,K), and (I) 
h(n,k)= h(n,k)+c(v ).fucJ.J(l<, n+v)}2 

. (2) 
Then the usdn. k) value is obtained by the equation: 

u5,(n,k)=(8/(J-8)) . <p((1+ e(n,k))l 
( 1+8.b(k).sqrt(h(n,k)))-l) , (3) 

where 
<p ( x) = x , when x > O , and <p ( x ) = O, elsewhere. The 
variable e represents the threshold of the function, whose 
value is between O, and 1, and b(k) represents the inhibition 
coeficient. 

Procedure compute_stage (/) ; 

Begin 
For k = 1 to K1 do begin 

for n = 1 to N do begin 
for K = 1 to K1•1 do 

end 
end; 

end; 

for ali v € Sv do begin 
e(n,k)= e(n,k)+a (v,K,k).uc1.d n+V,K); 
h(n,k)= h(n,k)+c(v ).fuc1.J(K , n+v)}2

; 

end; 
usJ(n,k)=(S/(1-8)) . 

<p((l+ e(n,k))l( 1+8.b(k).sqrt(h(n ,k)))-l) ; 
for ali v € Sv do 
Uct (n,k) = uo (n,k) + d (v ).u51( n+v, k ); 
ucdn.k) = 'I' ( uci n, k)) 

Fig. 4. Algorithm to compute the S-cells and C-cells of the /
th stage. 

To obtain uc, (n, k), it is computed the weighted sum of 
ali inputs corresponding to the previously obtained u51 (n, 

k), in a given connection area Sv, which surrounds the 
position n, of the preceding S-cell layer, by the following 
equation: 
ucdn.k) = Uet (n,k) + d(v ). us,( n+v, k ), (4) 

followed by calculation of transfer function 'I'( x) = 
<p ( x) I (1 + <p ( x )), which limits C-cell output to the 
range f O, 1 ). 

At the last stage, the computation of the C-cells are a 
little modified, because they must be conditioned to the 
categories of patterns. We will not detail that in this paper 
because it does not affect the proposal of the architecture. 

IV. NEOCOGNITRON TRAINING 

The training phase fo llows the algorithm of Fig. 5. At 
the stage I, the training proceeds, as showed at the 

algorithm of Fig.6, computing the S-cell values to cell
planes, k = 1 to k = K1, related to already existing features, 
and k = K, +1, which corresponds to the seed selecting 
plane. Then it is verified the seed selecting plane, by the 
cell responding most strongly, called winner. lf at the 
winner position there is any response greater than zero at 
the previous K1 cell-planes, the algorithm proceeds 
searching for the next winner; otherwise, each input 
connection of the seed cell is reinforced proportionally to 
the intensity of the input connection cell, as the equations : 
a( v, K,k)= a( v, K,k) + q.c(v).uc1.J(winner+v, K) ,and (5) 
b(k) = b(k) + q. sqrt(h(winner,k)). (6) 

Program train_neocognitron(); 

begin 
for l = 1 to L do train_stage (l); 

end; 
Fig. 5 Neocognitron training sequence. 

procedure train_stage (l); 
begin 

repeat 
for k = 1 to K1 + I do compute_stage(l); 
selected = fa lse; 
repeat 
if next_winner> O then begin 

winner = next_winner; 
selected = true; 

for k = 1 to K1 do 
if u5 (wimzer, k) >O then 

selected = false; 
end; 

until (selected or next_winner = 0); 
if selected then begin 
for K = I to K1•1 do 

for ali v € S do 
a(v,K,k)= a(v,K,k) + 

q. c(v).u0 .J(winner+v,K); 

b(k) = b(k) + q. sqrt(h(winner,k)) ; 
K1= K,+l 

end 
until not (selected); 

end; 
Fig. 6. Neocognitron training algorithm. 

By this way a new feature is extracted and a new cell
plane is added to the layer, incrementing K1 by one. 

The training proccss within a S -layer, described above, 
is repeated until a li new features are detected at the seed 
selecting plane, with the presentation of training patterns at 
the input layer. 
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V. CONCURRENT COMPUTING GRAINS 

By the analysis of the neocognitron model described at 
previous section we extracted a set of concurrent 
computation grains, which corresponds to compound vector 
functions [HW A 93]. Four · grains E, H, S, and C, 
correspond to the neocognitron computing algorithm; and 
thrce grains F. Ra, and Rb, are related to the training 
algorithm. 

E-grain computes to ali N positions of the cell-plane, 
the weighted sum of the input UCf.J(n+V,K), with thc weight 
a(v.K.k), within the connection region Sv. which results in a 
parcial value of e(n,k) , corresponding to the plane lC. Each 
E-grain issuc rcpeats the flow graph N times, to compute 
ali positions of the E matrix. Its result is added to the E 
matrix which will accumulate the weighted sum of ali K 

cell-planes, after K issues o f the E-chain function. 
H-grain is similar to the E-grain but the weight values 

are c(v) and the input values are squared before weighted 
sum. It results in the H matrix, which will contain the 
weighted sum of ali preceding layer cell-planes, after K 
issues of the H-grain function. 

S-grain computes u5J(n,k), to ali N positions of the cell
plane, using the results of the previously described E-grain 
and H-grain functions. 

C -grain corresponds to the computation o f the uCJ( n, k) , 

to ali N cells. It computes the weighted sum of u5J(n+v, k), 

by d(v) , and then the function \f. 
F-grain corresponds to the feature extraction during the 

training phase. It is used to detect a new feature address, by 
the use of the seed selecting plane concept. When it is 
computed the winner, it is verified if there is any non-zero 
value at the same address, at the previous cell-planes of the 
same layer. If any non-zero value is present at the same 
address of previous cell-planes, the winner address is used 
by Ra-grain and Rb-grain functions. 

Ra-grain is used to reinforce the weight values a(v.K.k) 
during the training algorithm. Each Ra-grain function 

issue reinforccs the weight values a(v.K.k) , which 
correspond to the K-th cell-plane of the preceding layer. 

Rb-grain is used to compute the reinforcement of the 
b(k), values. Note that this function is independent of the 
preceding layer. 

We classified the grain size as the table I, which shows 
at the first column the identified grains; at the second 
column, thc number of arithmetic operations per issue of 
the processing grain; followed by the complexity of the 
processing, in O function ; at next column it is showed the 
typical number of arithmetic operations, using N = 400, Sv= 
25, and K = 50; and finally, the processing time, using a 
processar cycle o f -r =1 00 ns. 

It is considered that the arithmetic operations are 
executed sequencially within the grain, disregarding thc 
instruclion and operands memory access overheads. We are 
not considering here lhe pipelined execution, or veclor 
processing, which may improve the processing time of the 
majority of the grains. 

Grain 

E 
H 
s 
c 
F 
R a 
Rb 

TABLE I 
COMPUTING GRAINS 

Operalions 0() Typical 
per issue Values 

2.N.Sv + N N.Sv 20.400 

N.Sv.3 + N N.Sv 30.400 
N.4 N 1.600 
N.Sv.2 N.Sv 20.000 
N+K N.K 20.000 
Sv.3 Sv 75 
3 - 3 

Execution 
Time 
('t =100 ns) 
2.04 ms 
3.04 ms 
0.16 ms 
2.00ms 
2.00 ms 
7.5~ 

0.3J.lS 

VI. PERFORMANCE ANAL YSIS 

As an example, the mapping of the neocognitron to the 
proposed architecture may be resumed, as follows. The 
grains E, H, S, and C, are processed at the vector 
processors, and the other functions at the scalar processar. 

We can analyse one stage processing of neocognitron. 
A stage of K1 cell-planes, and K1•1 preceding cell-planes, 
will compute K1.K1•1 times the grains E, and H; and K1 times 
the grains S, and C. If the number of vector units is q, then 
we can execute the grains E, and H, in I K1• K1•1 I q I steps, 
and then the S, and C, grains in I K1 I ql steps. We observe 
that Lhe expression inside vertical bars used in this paper 
means minimum integer greater or equal their value. The 
total processing time of onc stage is then: 
Tq =I K1• K1•11 q I . TE+ I K1. K1•11 q I. Tu + 

I K,l q I. Ts + I K11 q I. Te (7) 
If we consider that h , Tu, and Te, are of the same 

complexity, we can rewrite the equation (7), as: 
Tq = ( 2. I K1• K1•11 q I+ I K11 q I). h+ I K11 q I. Ts (8) 

If we regard the memory data exchange time, we need 
to consider that K1•1 cell-planes are broadcasted to q vector 
units memory modules, in a orthogonal fashion. It means 
that q cell-planes are distributed simultaneously, so thatthe 
total memory data exchange overhead value is I K1.1 I q I 
times one cell-plane distribution time TM, which is N.q.'tc, 
where 'te is lhe memory access time. Before the data 
spreading operation, each processar owns its diagonal 
module data. After that, each processor can access ali 
spreaded data by column access. 

Now the equation (8) may be rewritten as follows: 
Tq = ( 2. I K,. K,., I q I + I K,l q I ). TE+ 

IK11ql. Ts + IK1•11qi .TM. (9) 
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The processing time to one processar T1 will be 
computed as follows, 

T1 = ( 2.K1. K1.1 + K1 ). TE+ K1. Ts. (10) 
which may result in 

T1=KI.f(2.KI·I+I) . h+ Ts. l- (II) 
lf TE = O(N.Sv) and Ts = O(N), as table 1, we 

substitute at (li) the Ts, to obtain: 
T1 = K,. ( 2.Kf.l +I + IISv). TE, (12) 

and i f K1•1 > > I, we should rewrite the equation as: 
TI= K,. 2. Kl·l . TE. (13) 

The speed-up S., should be calculated by: 
s., =TI I T.,. (14) 

The speed-up is affected by the memory data 
distribution overhead, and the idle vector units, during the 
T., processing time computing. If we consider that q<< K,.1 

and q << K1. we reduce the number of idle vector units. In 
this case, IK1•11 ql, and IK11 ql, may be approximated to K1. 

1 I q, and K11 q, respectively, and S., results in: 
s., = q I (I+ TM 1(2.KI .TE)), (15) 

which is rewritten as: 
S., = q I ( I + a.) , (16) 

where a.= TM 1(2.K,.TE). 
By equation (16) we see that a. should be smaller than 

possible, to achieve the linear speed-up. 
We can analyse a. , calculating the O function , as 

follows: 
O(a.) = O(TM 1(2.K,.h)), so 
O( a.)= 0( N.q I (2.KI .N.Sv)), and 
O( a.) = 0( q I (2. KI .Sv)) . (17) 

We considered above that q<< K1 , so by the 
equation ( 17) we can conclude that a. is negligible unless 
we increase excessively the number of vector processing 
units, which is not our initial proposal. 

VII. MAPPING RESULT 

It follows the computation result of the mapping of the 
architecture to a tipical neocognitron used in pattem 
recognition. Table 11 shows the network structure, of a 
typical neocognitron structure, with five stages (layers) 
composed by S-cells and C-cells columns.The rows are 
showing the cell-plane dimension N, connection area Sv. 
number of cell-planes, and the number of grain execution 
issues h .111 .ls , and I c, during the recognition phase, and 
IF, IRa, and /Rb• during the training phase. Table III shows 
the sequencial processing time, at respective stages, and the 
table IV, the total processing time, and the speed-up, using 
the processar cycle time of -r =100 ns. The rows are varying 
the number of vector processing units, from I to 32. Here 
we consider the memory data spreading time with memory 
access time of 'te =100 ns. The speed-up obtained are very 
close to the number of vector units. If it is regarded the 
scalar control unit, the speed-up is close to linear, which is 

the ideal case. Table V shows the neocognitron training 
time by stage, regarding that during the training process, the 
feature extraction procedure is repeated severa! times, 
varying the input pattems. The values showed are rninimum 
because those values corresponds to the processing time 
when the features was actually extracted. The training time 
is reduced increasing the number of vector processors 
because the grains E, H, S, and C, executed during the 
recognition phase, are also used repeatedly at each feature 
extraction operation. 

grain 
N 

Sv 
K 
h 
lu 
l s 
I c 
IF 
fRu 

[Rh 

TABLEII 
NEOCOGNITRON STRUCTURE AND 
COMPUTING GRAIN EXECUTION 

Sta e I Sta e 2 Sta e 3 
SI C! S2 C2 S3 C3 

57x57 57x57 57x57 2lx21 2lx21 13xl3 
5x5 3x3 5x5 5x5 7x7 5x5 

16 I6 I6 16 62 62 
I6 - 256 - 992 -
16 - 256 - 992 -
16 - 16 - 62 -

- I6 - 16 - 62 
16 - 16 - 62 -
16 - 16 - 62 -
16 - 16 - 62 -

TABLE 11 (cont) 
Stage 4 Sta e 5 

grain S4 C4 ss C5 
N 13xl3 7x7 7x7 3x3 
Sv 7x7 Sx5 5x5 3x3 
K 99 99 96 96 
h 6,I38 9,504 
lu 6,138 9,504 
l s 99 96 
I c 99 96 
IF 99 96 
IR, 99 96 
IRh 99 96 

Table VI shows the neocognitron total training time, 
considering the training time by stage showed at the 
previous1y showed Table V. 

Table VII shows the memory data spreading time, when 
the number of processors are varying from 1 to 32. The 
memory access time used is 'te =100 ns. It is noted that the 
spreading time increases with the number of vector 
processors. When the number of processors is double, the 
data spreading time is also doubled. 

Fig.7 shows the speed-up diagram using the data of 
tab1e IV. There we can note that the speed-up is close to 
linear along the range of 1 to 16 processors, and after that, 
degrades s1owly, unti1 32 processors. 
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A good implementation of NEOMP may vary from 2 to 
8 processors, where the number of memory modules varies, 
not excessively, from 4 to 64, considering the typical values 
of the neocognitron structure, as showed at table 11. 

TABLE III 
STAGE PROCESSING TIME 

Stage Stage 2 Stage Stage Stage 5 
q I (ms) 3 4 (ms) 

(ms) (ms) (ms) 
1 774 10,619 10,840 25,652 5,917 
2 393 5,314 5,420 12,826 2,958 
3 299 3,574 3,626 8,550 I,972 
4 205 2,659 2,717 6,415 1,479 
5 209 2,165 2,180 5,132 1,183 
6 164 1,789 1,819 4,275 986 
7 167 1,543 1,555 3,665 845 
8 121 1,332 1,358 3,209 739 
16 99 668 679 1,606 369 
32 !SI 343 340 803 I84 

TABLEIV 
TOTAL PROCESSING TIME ANO SPEED-UP 

q Total Speed-up q Total Speed-up 
(s) (s) 

I 53.8 I 6 9.0 5.95 
2 26.9 1.99 7 7.7 6.91 
3 18.0 2.98 8 6.7 7.96 
4 13.4 3.99 16 3.4 15.72 
5 10.8 4.95 32 1.8 29.54 

VIII. HARDWARE SIMULA TION 

Whcn it is considered the hardware implcmentation of 
neural networks, with the current technologies, the first 
question which arises is the use of analog and digital 
technology [IWA 95]. The analog circuits have the 
following characteristics: (a) current and voltages allows 
the implementation of arithmetic operators; (b) the circuit 
dimension is reduccd; (c) weak to noisy immunity, and to 
thc construction of complex and large circuits. At the other 
hand the digital circuits are characterized as: (a) strong to 
noisy immunity, and to the construction of complex and 
large circuits; (b) ea5y to memory implementation, and 
processing of large amount of data. We conclude that the 
digital technology is adequated to the implementation of 
large neural networks, using neurochips, improved 
microprocessors, or dedicated digital signal processors. 
Field Programmable Gate Arrays (FPGA's) have been 
become an important technology for the design of VLSI 
circuits and systems. The field programmability of the 

components leads to fast implemcntation of application
specific integratcd circuits, rapid prototyping, circuit 
emulation, reconfigurable circuit and system design [HER 
98][LEW 98][TSU 98]. 

The use of FPGA's is also suited to thc EHW 
(Evolvable HardWare) context of projcct. It is notorious 
that thc traditional hardware is inflexible. EHW is a ncw 
field whose architecture, structure, and functions change 
dynamically and autonomously in order to improve its 
performance [ YAO 99]. 

TABLEV 
STAGE TRAINING TIME (s) 

q Stage I Stage 2 Stal!:c 3 Stage 4 Stage 5 
1 6 90,261 341,460 1,282 286 
2 3 45 170 641 143 
3 2 30 114 427 95 
4 I 22 85 320 71 
5 I 18 68 256 57 
6 I 15 57 213 47 
7 I 13 48 183 40 
8 I 11 42 160 35 
16 I s 21 80 17 
32 I 2 10 40 8 

TABLE VI 
TOTAL TRAINING TIME (min s) 

q Total q Total q Total 
I 33' 27" s 6'42" 16 2'6" 
2 16'43" 6 5' 34" 32 I ' 3" 
3 li ' 9" 7 4 '46" 
4 8' 21" 8 4' 10" 

We projected the vector unit prototype using an FPGA 
environment. As a sample prototype the grains E, H, S. and 
C, wcre implemented in 8 bits integer input data, and a 
timing unit was included to enablc the complete exccution 
of the functions. Thc square root and divide operations 
were not included, at this first prototype. Ali othcr circuits 
were possible to fit in a single FPGA, EPFIOK40, with 
40.000 gates, which showed the feasibility to construct 
hardware prototypcs of real time neocognitron systcms, 
with a few number of components. Although the complete 
prototype involves the orthogonal memory system and the 
scalar processar unit, the number of memory modules will 
not be so great if lhe number of vcctor units is small in lhe 
proposal. 

The scalar processing unit prototype was also projected 
using the same FPGA environment. It is a simple fixed 
control processar wilh small number of instructions, as a 
RISC processar of 16 bits data. The instruction levei 
parallelism is also explored, making possible the 
interpretation of two independent instructions 
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simultaneosly, at the scalar processar, which functions as a 
superscalar processar. The corresponding circuit was 
feasible to construct in a single FPGA, as lhe vector 
processing unit. 

q 

1 
2 
3 
4 
5 
6 

7 
8 
16 
32 

TABLE VII 
MEMORY DATA SPREADING TIME (~s) 

Stage I Stage 2 

- -
6,498 5,198 
9,747 5,848 
12,996 5,198 
16,245 6,498 
19,494 5,848 
22,743 6,822 
25,992 5,198 
51 ,984 5,198 
103,968 10,396 

32 

Stage 3 
-
705 
793 
705 
882 
793 
926 
705 
705 
1,411 

Stage 4 
-
270 
304 
270 
338 
304 
354 
270 
1,08 1 
1,081 

Ideal 

_.,/:;. 

Stage 5 
-
78 
88 
78 
98 
88 
102 
78 
548 
627 

__ /_,// ::::~=. 

16 

8 

.. 
2 

2 .. 8 16 32 

Fig. 7. Speed-up of thc proposed architecture compared to the 
ideal speed-up. 

IX. CONCLUSION 

Orthogonal mutiprocessor architecture is adequated to a 
special scientific computation whcre the data processing 
may be parallclized, besides of their frequent and volumous 
interchange. In lhis way, a typical application is the 
hardware implementlnion of neural network models. 
Neocognitron is a known model of neural network which 
explicits their internai interconnections layer by layer, and 
it consists a good mapping example, in the performance 
analysis of the proposed vector orthogonal multiprocessar 
NEOMP. 

By the above result we can conclude that lhe proposed 
arquitecture is suitable to lhe neocognitron mapping, when 

the number of vector functional units is not considerable 
great, compared to the number of cell-planes of the neural 
network q << K1 , to ali layers. By table IV, we note that 
the speed-up is near q even with q = 32, where Sq = 29.54. 
The total processing time to lhis number of functional units, 
is 1.8 s, which qualifies lhe proposed architecture to real 
time application of neocognitron. The simulation of the 
hardware prototype showed that it is possible to construct 
eight bits vector units in a single FPGA, of 40.000 gates, as 
the control processar of sixteen bits. Although the complete 
prototype involves orthogonal memory system, it seems 
feasible to construct the hardware real time neocognitron 
system with a few number o f FPGA components. 

At the performance analysis presented at Section VI, it 
was considered the vector units sequencial processing time. 
If it is considered the pipeline operation, which is 
characteristic to vector processing units, the speed-up will 
be optimized. Another consideration is that the speed-up 
analysis was taken in comparation of one vector processar. 
Normally, at the software implementation of neocognitron, 
the processing time is reduced in comparation with the 
proposed vector processar unit. 

Although the complete project and implementation of 
the NEOMP prototype is essential to the real evaluation of 
the architecture, it was showed in this work that lhe 
proposed architecture is suitable to the hardware 
implementation of feedforward neural network models, 
like neocognitron, using current technology. 
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