

272 SBAC-PAD'99 IIth Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

conflits. Each processar access exclusively one row bus and
one column bus, so that one. memory module is accessed by
two processors at most. If we denote a memory module by
Mii• this module may be accessed by processor i, in a row
mode, and by processor j , in a column mode. A memory
module M;;, which is the diagonal memory module, is
accessed exclusively py processor i.

-

EJ--·······--·-·T·Ó r Ó r·Ó ~·Ô
EJ.~ -- ·-·~ ~-ó ~ cs l.cs l.ô
EJ- 2 i :o 1o 1o 1o i i.. L. i. . i...

E~l.~., ! i !.ó !.{5 l.o l.ó
i i :._, ___ ,_,_ : i i

Proce.lcn i t ~ ---·-·-· - ·-·- i 1
i !
~--·-·-· - · - - - · - · - · - - J

........ - - · - ·-·-~

Fig. I Neural Onhogonal Multiprocessor - NEOMP

An OMP architecture is efficient to severa) scientific
computations, but the orthogonal memory access principie
prohibits memory access in mixed modes. This may reduce
the flcxibility of the mapping of thc algorithms, which do
not access the memory array in orthogonal fashion.

tJ

~

é]

_ .. _ ,..... =--

~

c::)
~

~

rJ EJ

~ ~

~ []

~ []

rJ EJ

--_ .. _ -

tJ

[]

é]

EJ

Fig. 2. A typical parallel data spreading at the NEOMP
memory modules.

We proposed an orthogonal multiprocessar to Neural
Network Mapping Application, NEOMP, with q vector
proccssing units working synchronized, and a scalar
processor responsible to control lhe vector units, ali of them
connected to the orthogonal mcmory . Fig. I shows the
proposed orthogonal multiprocessar diagram. The scalar
processar is also responsible by the sequencial execution
portion of algorilhms. Note that the total number of

processors of NEOMP architecture is p = q + 1,
considering the scalar processar.

Fig. 2 shows a typical data spreading operation using
the NEOMP memory modules. At the left side we can sce
the diagonal memory modules which corrcspond to local
memory of the processors, with their respcctive data . With
a row access, the processors connected to their exclusive
rows sprcads thc data to ali row modules, simultaneously.
At lhe right side, we see the result of parallel data spreading·
operation, with ali columns containing the same data,
distributed in severa) memory modules. During the
following column access, ali processors may access their
own column memory modules, which contain the spreaded
data .

III. NEOCOGNilRON

Neocognitron is a massively parallel neural network,
composed of severa) layers of neuron cells, proposed by
Fukushima [FUK 79] (FUK 82] (FUK 92] (FUK 96] (SAI
98] inspired by Hubel and Wiesel 's model of biological
vision. As other neural network models, neocognitron has
its self organized training phasc and the recognition phase,
when used in pattern recognition.

Program neocognitron ();
begin

For I = 1 to L do compute_stage (/);
end;

Fig. 3. Neocognitron computation sequence.

The lowest stage of the network is thc input layer U0 . .

Each of the succccding i-th stages has a layer Us; consisting
of S-cells followcd by a layer Uc; of C-cells. Each layer of
S-cells or C-cells is composed by a number of two
dimensional array of cells, called cell-planes. Each ccll
plane is associated to a single feature extracted from the
training pattems, during the learning phase. The S-cells are
responsible by the feature extration, and the input
connection weights of lhe S-cells are adjusted during the
training phase. C-cells are responsible by the distorted
features correction. Each cell inside a cell-plane receives
input connections from the preceding layer cell-planes.

Thc recognition phase of neocognitron, follows the
sequence showed at the following algorithm, Fig.3, from
Jayer 1 to L, where L is the number of stages.

Fig.4 shows the algorithm to compute the output value
us1 (n, k) of a S-cell, and lhe output value uc1 (n, k) of a C
cell, from the stage I. It is computed the output values to ali
K1 cell-planes and ali N cell-positions inside the cell-plane.

To obtain the u51 (n, k) value, it is computed the
weighted sum, e(n,k) and h(n,k), of ali inputs coming from
ali K1•1 cell-planes of lhe preceding layer, in a given

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 273

connection area Sv. which surrounds the position n, of the
preceding layer C-eei!, or input layer, by the following
equations (1) and (2)
e(n,k)= e(n,k)+a (V,l<,k).uct-J(n+V,K), and (I)
h(n,k)= h(n,k)+c(v).fucJ.J(l<, n+v)}2

. (2)
Then the usdn. k) value is obtained by the equation:

u5,(n,k)=(8/(J-8)) . <p((1+ e(n,k))l
(1+8.b(k).sqrt(h(n,k)))-l) , (3)

where
<p (x) = x , when x > O , and <p (x) = O, elsewhere. The
variable e represents the threshold of the function, whose
value is between O, and 1, and b(k) represents the inhibition
coeficient.

Procedure compute_stage (/) ;

Begin
For k = 1 to K1 do begin

for n = 1 to N do begin
for K = 1 to K1•1 do

end
end;

end;

for ali v € Sv do begin
e(n,k)= e(n,k)+a (v,K,k).uc1.d n+V,K);
h(n,k)= h(n,k)+c(v).fuc1.J(K , n+v)}2

;

end;
usJ(n,k)=(S/(1-8)) .

<p((l+ e(n,k))l(1+8.b(k).sqrt(h(n ,k)))-l) ;
for ali v € Sv do
Uct (n,k) = uo (n,k) + d (v).u51(n+v, k);
ucdn.k) = 'I' (uci n, k))

Fig. 4. Algorithm to compute the S-cells and C-cells of the /
th stage.

To obtain uc, (n, k), it is computed the weighted sum of
ali inputs corresponding to the previously obtained u51 (n,

k), in a given connection area Sv, which surrounds the
position n, of the preceding S-cell layer, by the following
equation:
ucdn.k) = Uet (n,k) + d(v). us,(n+v, k), (4)

followed by calculation of transfer function 'I'(x) =
<p (x) I (1 + <p (x)), which limits C-cell output to the
range f O, 1).

At the last stage, the computation of the C-cells are a
little modified, because they must be conditioned to the
categories of patterns. We will not detail that in this paper
because it does not affect the proposal of the architecture.

IV. NEOCOGNITRON TRAINING

The training phase fo llows the algorithm of Fig. 5. At
the stage I, the training proceeds, as showed at the

algorithm of Fig.6, computing the S-cell values to cell
planes, k = 1 to k = K1, related to already existing features,
and k = K, +1, which corresponds to the seed selecting
plane. Then it is verified the seed selecting plane, by the
cell responding most strongly, called winner. lf at the
winner position there is any response greater than zero at
the previous K1 cell-planes, the algorithm proceeds
searching for the next winner; otherwise, each input
connection of the seed cell is reinforced proportionally to
the intensity of the input connection cell, as the equations :
a(v, K,k)= a(v, K,k) + q.c(v).uc1.J(winner+v, K) ,and (5)
b(k) = b(k) + q. sqrt(h(winner,k)). (6)

Program train_neocognitron();

begin
for l = 1 to L do train_stage (l);

end;
Fig. 5 Neocognitron training sequence.

procedure train_stage (l);
begin

repeat
for k = 1 to K1 + I do compute_stage(l);
selected = fa lse;
repeat
if next_winner> O then begin

winner = next_winner;
selected = true;

for k = 1 to K1 do
if u5 (wimzer, k) >O then

selected = false;
end;

until (selected or next_winner = 0);
if selected then begin
for K = I to K1•1 do

for ali v € S do
a(v,K,k)= a(v,K,k) +

q. c(v).u0 .J(winner+v,K);

b(k) = b(k) + q. sqrt(h(winner,k)) ;
K1= K,+l

end
until not (selected);

end;
Fig. 6. Neocognitron training algorithm.

By this way a new feature is extracted and a new cell
plane is added to the layer, incrementing K1 by one.

The training proccss within a S -layer, described above,
is repeated until a li new features are detected at the seed
selecting plane, with the presentation of training patterns at
the input layer.

274 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

V. CONCURRENT COMPUTING GRAINS

By the analysis of the neocognitron model described at
previous section we extracted a set of concurrent
computation grains, which corresponds to compound vector
functions [HW A 93]. Four · grains E, H, S, and C,
correspond to the neocognitron computing algorithm; and
thrce grains F. Ra, and Rb, are related to the training
algorithm.

E-grain computes to ali N positions of the cell-plane,
the weighted sum of the input UCf.J(n+V,K), with thc weight
a(v.K.k), within the connection region Sv. which results in a
parcial value of e(n,k) , corresponding to the plane lC. Each
E-grain issuc rcpeats the flow graph N times, to compute
ali positions of the E matrix. Its result is added to the E
matrix which will accumulate the weighted sum of ali K

cell-planes, after K issues o f the E-chain function.
H-grain is similar to the E-grain but the weight values

are c(v) and the input values are squared before weighted
sum. It results in the H matrix, which will contain the
weighted sum of ali preceding layer cell-planes, after K
issues of the H-grain function.

S-grain computes u5J(n,k), to ali N positions of the cell
plane, using the results of the previously described E-grain
and H-grain functions.

C -grain corresponds to the computation o f the uCJ(n, k) ,

to ali N cells. It computes the weighted sum of u5J(n+v, k),

by d(v) , and then the function \f.
F-grain corresponds to the feature extraction during the

training phase. It is used to detect a new feature address, by
the use of the seed selecting plane concept. When it is
computed the winner, it is verified if there is any non-zero
value at the same address, at the previous cell-planes of the
same layer. If any non-zero value is present at the same
address of previous cell-planes, the winner address is used
by Ra-grain and Rb-grain functions.

Ra-grain is used to reinforce the weight values a(v.K.k)
during the training algorithm. Each Ra-grain function

issue reinforccs the weight values a(v.K.k) , which
correspond to the K-th cell-plane of the preceding layer.

Rb-grain is used to compute the reinforcement of the
b(k), values. Note that this function is independent of the
preceding layer.

We classified the grain size as the table I, which shows
at the first column the identified grains; at the second
column, thc number of arithmetic operations per issue of
the processing grain; followed by the complexity of the
processing, in O function ; at next column it is showed the
typical number of arithmetic operations, using N = 400, Sv=
25, and K = 50; and finally, the processing time, using a
processar cycle o f -r =1 00 ns.

It is considered that the arithmetic operations are
executed sequencially within the grain, disregarding thc
instruclion and operands memory access overheads. We are
not considering here lhe pipelined execution, or veclor
processing, which may improve the processing time of the
majority of the grains.

Grain

E
H
s
c
F
R a
Rb

TABLE I
COMPUTING GRAINS

Operalions 0() Typical
per issue Values

2.N.Sv + N N.Sv 20.400

N.Sv.3 + N N.Sv 30.400
N.4 N 1.600
N.Sv.2 N.Sv 20.000
N+K N.K 20.000
Sv.3 Sv 75
3 - 3

Execution
Time
('t =100 ns)
2.04 ms
3.04 ms
0.16 ms
2.00ms
2.00 ms
7.5~

0.3J.lS

VI. PERFORMANCE ANAL YSIS

As an example, the mapping of the neocognitron to the
proposed architecture may be resumed, as follows. The
grains E, H, S, and C, are processed at the vector
processors, and the other functions at the scalar processar.

We can analyse one stage processing of neocognitron.
A stage of K1 cell-planes, and K1•1 preceding cell-planes,
will compute K1.K1•1 times the grains E, and H; and K1 times
the grains S, and C. If the number of vector units is q, then
we can execute the grains E, and H, in I K1• K1•1 I q I steps,
and then the S, and C, grains in I K1 I ql steps. We observe
that Lhe expression inside vertical bars used in this paper
means minimum integer greater or equal their value. The
total processing time of onc stage is then:
Tq =I K1• K1•11 q I . TE+ I K1. K1•11 q I. Tu +

I K,l q I. Ts + I K11 q I. Te (7)
If we consider that h , Tu, and Te, are of the same

complexity, we can rewrite the equation (7), as:
Tq = (2. I K1• K1•11 q I+ I K11 q I). h+ I K11 q I. Ts (8)

If we regard the memory data exchange time, we need
to consider that K1•1 cell-planes are broadcasted to q vector
units memory modules, in a orthogonal fashion. It means
that q cell-planes are distributed simultaneously, so thatthe
total memory data exchange overhead value is I K1.1 I q I
times one cell-plane distribution time TM, which is N.q.'tc,
where 'te is lhe memory access time. Before the data
spreading operation, each processar owns its diagonal
module data. After that, each processor can access ali
spreaded data by column access.

Now the equation (8) may be rewritten as follows:
Tq = (2. I K,. K,., I q I + I K,l q I). TE+

IK11ql. Ts + IK1•11qi .TM. (9)

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil 275

The processing time to one processar T1 will be
computed as follows,

T1 = (2.K1. K1.1 + K1). TE+ K1. Ts. (10)
which may result in

T1=KI.f(2.KI·I+I) . h+ Ts. l- (II)
lf TE = O(N.Sv) and Ts = O(N), as table 1, we

substitute at (li) the Ts, to obtain:
T1 = K,. (2.Kf.l +I + IISv). TE, (12)

and i f K1•1 > > I, we should rewrite the equation as:
TI= K,. 2. Kl·l . TE. (13)

The speed-up S., should be calculated by:
s., =TI I T.,. (14)

The speed-up is affected by the memory data
distribution overhead, and the idle vector units, during the
T., processing time computing. If we consider that q<< K,.1

and q << K1. we reduce the number of idle vector units. In
this case, IK1•11 ql, and IK11 ql, may be approximated to K1.

1 I q, and K11 q, respectively, and S., results in:
s., = q I (I+ TM 1(2.KI .TE)), (15)

which is rewritten as:
S., = q I (I + a.) , (16)

where a.= TM 1(2.K,.TE).
By equation (16) we see that a. should be smaller than

possible, to achieve the linear speed-up.
We can analyse a. , calculating the O function , as

follows:
O(a.) = O(TM 1(2.K,.h)), so
O(a.)= 0(N.q I (2.KI .N.Sv)), and
O(a.) = 0(q I (2. KI .Sv)) . (17)

We considered above that q<< K1 , so by the
equation (17) we can conclude that a. is negligible unless
we increase excessively the number of vector processing
units, which is not our initial proposal.

VII. MAPPING RESULT

It follows the computation result of the mapping of the
architecture to a tipical neocognitron used in pattem
recognition. Table 11 shows the network structure, of a
typical neocognitron structure, with five stages (layers)
composed by S-cells and C-cells columns.The rows are
showing the cell-plane dimension N, connection area Sv.
number of cell-planes, and the number of grain execution
issues h .111 .ls , and I c, during the recognition phase, and
IF, IRa, and /Rb• during the training phase. Table III shows
the sequencial processing time, at respective stages, and the
table IV, the total processing time, and the speed-up, using
the processar cycle time of -r =100 ns. The rows are varying
the number of vector processing units, from I to 32. Here
we consider the memory data spreading time with memory
access time of 'te =100 ns. The speed-up obtained are very
close to the number of vector units. If it is regarded the
scalar control unit, the speed-up is close to linear, which is

the ideal case. Table V shows the neocognitron training
time by stage, regarding that during the training process, the
feature extraction procedure is repeated severa! times,
varying the input pattems. The values showed are rninimum
because those values corresponds to the processing time
when the features was actually extracted. The training time
is reduced increasing the number of vector processors
because the grains E, H, S, and C, executed during the
recognition phase, are also used repeatedly at each feature
extraction operation.

grain
N

Sv
K
h
lu
l s
I c
IF
fRu

[Rh

TABLEII
NEOCOGNITRON STRUCTURE AND
COMPUTING GRAIN EXECUTION

Sta e I Sta e 2 Sta e 3
SI C! S2 C2 S3 C3

57x57 57x57 57x57 2lx21 2lx21 13xl3
5x5 3x3 5x5 5x5 7x7 5x5

16 I6 I6 16 62 62
I6 - 256 - 992 -
16 - 256 - 992 -
16 - 16 - 62 -

- I6 - 16 - 62
16 - 16 - 62 -
16 - 16 - 62 -
16 - 16 - 62 -

TABLE 11 (cont)
Stage 4 Sta e 5

grain S4 C4 ss C5
N 13xl3 7x7 7x7 3x3
Sv 7x7 Sx5 5x5 3x3
K 99 99 96 96
h 6,I38 9,504
lu 6,138 9,504
l s 99 96
I c 99 96
IF 99 96
IR, 99 96
IRh 99 96

Table VI shows the neocognitron total training time,
considering the training time by stage showed at the
previous1y showed Table V.

Table VII shows the memory data spreading time, when
the number of processors are varying from 1 to 32. The
memory access time used is 'te =100 ns. It is noted that the
spreading time increases with the number of vector
processors. When the number of processors is double, the
data spreading time is also doubled.

Fig.7 shows the speed-up diagram using the data of
tab1e IV. There we can note that the speed-up is close to
linear along the range of 1 to 16 processors, and after that,
degrades s1owly, unti1 32 processors.

276 SBAC-PAD'99 11th Symposium on Computer Architecture and High Perfonnance Computing- Natal- Brazil

A good implementation of NEOMP may vary from 2 to
8 processors, where the number of memory modules varies,
not excessively, from 4 to 64, considering the typical values
of the neocognitron structure, as showed at table 11.

TABLE III
STAGE PROCESSING TIME

Stage Stage 2 Stage Stage Stage 5
q I (ms) 3 4 (ms)

(ms) (ms) (ms)
1 774 10,619 10,840 25,652 5,917
2 393 5,314 5,420 12,826 2,958
3 299 3,574 3,626 8,550 I,972
4 205 2,659 2,717 6,415 1,479
5 209 2,165 2,180 5,132 1,183
6 164 1,789 1,819 4,275 986
7 167 1,543 1,555 3,665 845
8 121 1,332 1,358 3,209 739
16 99 668 679 1,606 369
32 !SI 343 340 803 I84

TABLEIV
TOTAL PROCESSING TIME ANO SPEED-UP

q Total Speed-up q Total Speed-up
(s) (s)

I 53.8 I 6 9.0 5.95
2 26.9 1.99 7 7.7 6.91
3 18.0 2.98 8 6.7 7.96
4 13.4 3.99 16 3.4 15.72
5 10.8 4.95 32 1.8 29.54

VIII. HARDWARE SIMULA TION

Whcn it is considered the hardware implcmentation of
neural networks, with the current technologies, the first
question which arises is the use of analog and digital
technology [IWA 95]. The analog circuits have the
following characteristics: (a) current and voltages allows
the implementation of arithmetic operators; (b) the circuit
dimension is reduccd; (c) weak to noisy immunity, and to
thc construction of complex and large circuits. At the other
hand the digital circuits are characterized as: (a) strong to
noisy immunity, and to the construction of complex and
large circuits; (b) ea5y to memory implementation, and
processing of large amount of data. We conclude that the
digital technology is adequated to the implementation of
large neural networks, using neurochips, improved
microprocessors, or dedicated digital signal processors.
Field Programmable Gate Arrays (FPGA's) have been
become an important technology for the design of VLSI
circuits and systems. The field programmability of the

components leads to fast implemcntation of application
specific integratcd circuits, rapid prototyping, circuit
emulation, reconfigurable circuit and system design [HER
98][LEW 98][TSU 98].

The use of FPGA's is also suited to thc EHW
(Evolvable HardWare) context of projcct. It is notorious
that thc traditional hardware is inflexible. EHW is a ncw
field whose architecture, structure, and functions change
dynamically and autonomously in order to improve its
performance [YAO 99].

TABLEV
STAGE TRAINING TIME (s)

q Stage I Stage 2 Stal!:c 3 Stage 4 Stage 5
1 6 90,261 341,460 1,282 286
2 3 45 170 641 143
3 2 30 114 427 95
4 I 22 85 320 71
5 I 18 68 256 57
6 I 15 57 213 47
7 I 13 48 183 40
8 I 11 42 160 35
16 I s 21 80 17
32 I 2 10 40 8

TABLE VI
TOTAL TRAINING TIME (min s)

q Total q Total q Total
I 33' 27" s 6'42" 16 2'6"
2 16'43" 6 5' 34" 32 I ' 3"
3 li ' 9" 7 4 '46"
4 8' 21" 8 4' 10"

We projected the vector unit prototype using an FPGA
environment. As a sample prototype the grains E, H, S. and
C, wcre implemented in 8 bits integer input data, and a
timing unit was included to enablc the complete exccution
of the functions. Thc square root and divide operations
were not included, at this first prototype. Ali othcr circuits
were possible to fit in a single FPGA, EPFIOK40, with
40.000 gates, which showed the feasibility to construct
hardware prototypcs of real time neocognitron systcms,
with a few number of components. Although the complete
prototype involves the orthogonal memory system and the
scalar processar unit, the number of memory modules will
not be so great if lhe number of vcctor units is small in lhe
proposal.

The scalar processing unit prototype was also projected
using the same FPGA environment. It is a simple fixed
control processar wilh small number of instructions, as a
RISC processar of 16 bits data. The instruction levei
parallelism is also explored, making possible the
interpretation of two independent instructions

SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Braúl 277

simultaneosly, at the scalar processar, which functions as a
superscalar processar. The corresponding circuit was
feasible to construct in a single FPGA, as lhe vector
processing unit.

q

1
2
3
4
5
6

7
8
16
32

TABLE VII
MEMORY DATA SPREADING TIME (~s)

Stage I Stage 2

- -
6,498 5,198
9,747 5,848
12,996 5,198
16,245 6,498
19,494 5,848
22,743 6,822
25,992 5,198
51 ,984 5,198
103,968 10,396

32

Stage 3
-
705
793
705
882
793
926
705
705
1,411

Stage 4
-
270
304
270
338
304
354
270
1,08 1
1,081

Ideal

_.,/:;.

Stage 5
-
78
88
78
98
88
102
78
548
627

__ /_,// ::::~=.

16

8

..
2

2 .. 8 16 32

Fig. 7. Speed-up of thc proposed architecture compared to the
ideal speed-up.

IX. CONCLUSION

Orthogonal mutiprocessor architecture is adequated to a
special scientific computation whcre the data processing
may be parallclized, besides of their frequent and volumous
interchange. In lhis way, a typical application is the
hardware implementlnion of neural network models.
Neocognitron is a known model of neural network which
explicits their internai interconnections layer by layer, and
it consists a good mapping example, in the performance
analysis of the proposed vector orthogonal multiprocessar
NEOMP.

By the above result we can conclude that lhe proposed
arquitecture is suitable to lhe neocognitron mapping, when

the number of vector functional units is not considerable
great, compared to the number of cell-planes of the neural
network q << K1 , to ali layers. By table IV, we note that
the speed-up is near q even with q = 32, where Sq = 29.54.
The total processing time to lhis number of functional units,
is 1.8 s, which qualifies lhe proposed architecture to real
time application of neocognitron. The simulation of the
hardware prototype showed that it is possible to construct
eight bits vector units in a single FPGA, of 40.000 gates, as
the control processar of sixteen bits. Although the complete
prototype involves orthogonal memory system, it seems
feasible to construct the hardware real time neocognitron
system with a few number o f FPGA components.

At the performance analysis presented at Section VI, it
was considered the vector units sequencial processing time.
If it is considered the pipeline operation, which is
characteristic to vector processing units, the speed-up will
be optimized. Another consideration is that the speed-up
analysis was taken in comparation of one vector processar.
Normally, at the software implementation of neocognitron,
the processing time is reduced in comparation with the
proposed vector processar unit.

Although the complete project and implementation of
the NEOMP prototype is essential to the real evaluation of
the architecture, it was showed in this work that lhe
proposed architecture is suitable to the hardware
implementation of feedforward neural network models,
like neocognitron, using current technology.

ACKNOWLEDGMENT

The author would like to gratcfully acknowledge Dr.
K.Fukushima for lhe period of stay at the Osaka University .

REFERENCES

[AMA 97] AMA WY, A.El & LULASINGHE, P.
Algorithmic Mapping of Feedforward
Neural Networks onto Multiple Bus
Systems, IEEE Trans. On Parallel and
Distributed Systems V oi. 8, N.2, pp. 130-
136, Feb. 1997.

[FUK 79] FUKUSHIMA, K., Neural-network model
for a mechanism of pattern recognition
unaffected by shift in position
neocognitron,Trans. IEICE Japan, vol.
62-A, no .I O, pp. 658-665, 1979.

[FUK 82] FUKUSHIMA, K.& MIY AKE, S.,
Neocognitron: A New A1gorilhm for
Pattern Recognition Tolerant of
Deformations and Shift in Position,

278 SBAC-PAD'99 11th Symposium on Computer Architecture and High Performance Computing- Natal- Brazil

Pattern Recognition, vol. 15, no.6,
pp.455-469, 1982.

[FUK 92] FUKUSHIMA,.K. & W AKE, N.,
Improved Neocognitron with Bend
Detecting Cells, IEEE - lnternational
Joint Conference on Neural Networks,
Baltimore, Maryland, June 7-11, 1992, pp.
190-195, 1992.

[FUK 96] FUKUSHIMA,K.& T ANIGA W A, M.,
Use of Different Thresholds in Leaming
and Recognition, Neurocomputing, 11 ,
pp. 1-17, 1996.

[HER 98] HERZEN,B.V., Signal Processing at 250
MHz Using High-Performance FPGA's,
IEEE Trans. On VLSI Systems, Vol. 6,
N.2, pp. 238-246, Jun. 1998.

[HW A89] HW ANG, K.; TSENG, P & KIM, D. , An
Orthogonal Multiprocessor for Parallel
Scientific Computations, IEEE Trans. On
Computers, Vol.38,N.1,pp.47-61 ,Jan.l989

[HW A 93] HW ANG,K.-Advanced Computer Ar
chitecture-Parallelism,Scalability, Pro
grammability .McGrawHill ,Sing., 1993.

[IWA 95] IWATA, A.& AMEMIYA, Y.- Neural
Network LSI. The Institute of
Electronics, Information and
Communication Engineers, Japan, 1995.

[KUM 94] KUMAR, V.; SHEKHAR, S.& AMIN,
M.B., A Scalable Parallel Forrnulation of
the Backpropagation Algorithm for
Hypercubes and Related Architectures,
IEEE Trans. On Parallel and
Distributed Systems, Vol. 5, N. IO, pp.
I 073-1090, Oct. 1994.

[LEW 98] LEWIS, D.M., GALLOW A Y, D.R.,
IERSSEL, M., ROSE, J. & CHOW, P.,
The Transmogrifier-2: A I Million Gate
Rapid Prototyping System, IEEE Trans.
On VLSI Systems, Vol. 6,N.2,pp. 188-
198, Jun. 1998.

[SAI 98] SAlTO, J.H. & FUKUSHIMA, K. ,
Modular Structure of Neocognitron to
Pattem Recognition, Proc. ICONIP'98,
Fifth Int. Conf. On Neural Information
Processing, Kitakyushu, Japan, pp.279-

282, Oct. 1998.

[TSU 98] TSUTSUI, A. & MIYASAKI, T., ANT
on-Yards: FPGA/MPU Hybrid Architectu
re for Telecommunication Data Proces
sing. IEEE Trans. On VLSI Systems,
V oi. 6, N.2, pp. 199-211, Jun. 1998.

[Y AO 99] Y AO, X., Following the Path o f Evolvable
Hardware, Communications of the ACM,
Vol. 42, N.4, Ap. 1999.

[Y AS 98] Y ASUNAGA, M., HACHIY A, 1. ; MOKI,
K. & KIM, J. , Fault Tolerant Self
Organizing Map Implemented by Wafer
Scale lntegration, IEEE Trans. On VLSI
Systems, Vol. 6, N.2, Jun. 1998.

