
VIII Simp. de Arq. de Computadores e Proc. de Alto Desempenho

Performance Analysis of Bulk Synchronous
Parallel Algorithms

Wellington Santos Martins
e-mail: wsm@dei.ufg.br

Departamento de. Estatística e Infonnática
Universidade Federal de Goiás, Goiânia, Brazil

Abstract. In the last few ycars, there has been considerable interest in general
purpose computational models of parallel computation to permit independent
dcvctopment of hardware and software. The BSI.' and related models represent
an imponant stcp in this direction. This paper presents a methodology for lhe
performance analysis of bulk synchronous parallel algorithms based on
paramctcrs which rcncct thc two-lcvel memory hicarchy advocated by these
models. A parallel sorting algorithm is taken as a case study where it is shown
a closc agrccmcnt between theorctical and experimental results

1. Introduction

11

Parallel machines are in widespread use but most applications use architecture dependent
software which is thus not portable and quickly becomes obsolete with a new generation
of parallel machines. Some researchers [I, 3, 4, 9] argue that a parallel model of
computation is required which separates hardware and software development so that
portable software can be developed for a range of different parallel architectures.

Parallel models of computation can broadly be classified into two categories: PRAM
(shared memory) based models and network (nonshared memory) models. The forrner
type h as been· extensively used for analysing the complexity o f parai lei algorithrns. In this
idealised model processors operate completely synchronously and have access to a single
shared memory whose cells can be accessed_in unit time. Although these assumptions
ease the design and analysis of parallel algorithrns they usually result in algorithrns which
are unsuitable for direct implementation on current parallel machines. Network models
are based on real parallel machines but, by including realistic costs for operations, they
make analysis more difficult. In particular, by including the topology of the architecture
in the model, algorithms map with different degrees of difficulty on to machines with
different topologies. The Bulk-Synchronous Parallel (BSP) model developed by Valiant
[9] attempts to bridge the gap between these two types of model.

The BSP model - and related models - define a general purpose computational model
in which the programmer is presented with a two-Jevel memory hierarchy. Each
processor has its own local memory and access to a common shared memory. Logically,
shared memory is a uniforrn single address space although physically it may be
implemented across a range of distributed memories. The model abstracts the topology
of the machine by characterising the communication network via two parameters (L and

12 XVI Congresso da Sociedade Brasileira de Computação (SBC)

g}, which are related to lhe latency and bandwidth respectively. Global accesses are
costed using lhese two pararneters and the lower the values the lower the communication
costs. This is lhe case in the idealised PRAM model where global operations are assumed
to take the sarne time as local operations. In existing parallel machines, however, these
values are considerable higher and dependent on lhe access patterns to global memory.
Valiant [8) has shown that by introducing some random behaviour in the routing
algorithm (two-phase randomised routing) it is possible for real machines to maintain
good bandwidth and latency. This enables real machines to renect a two-level memory
hierarchy, thus hiding physical topology from the programmer.

2. BSP and Related Models

The BSP and related models aim to provide a simple view of a parai lei machine such that
the prograrnrner is able to design and analyse algorithms whose performance is
predictable in real machines. However, the way a computation is viewed, as well as the
way performance analysis of algorithrns is accomplished, may differ from one model to
another.

A computation in the BSP model consists of a sequence of supersteps separated by
barrier synchronisation. In a superstep local operations can be carried out and messages
can be sent and received to implement global operations read and write. These
comrnunication events, however, are not guaranteed to terminate before the end of a
superstep. Therefore remote data requested in a superstep can only be used in the next
superstep. The performance of a BSP algorithm is determined by adding the costs of its
supersteps. Individual supersteps are costed by analysing their total computation and
comrnunication demands. The global pararneters L and g , together with the number o f
processors p and the problem size 11, are used in this analysis. The parameter L represents
the synchronisation periodicity of the machine, whereas g is related to the time required
to realise h-relations in a situation of continuous message traffic; a h-relation is defined
as a routing problem where each processor sends and receives h messages. The cost of a
superstep is then given by max{ L. c, g.hs, g.hr } where c is the maximum time spent in
local operations, hs is the number of messages sent and hr is the number of messages
received in that superstep. Altemative cost definitions can be used, depending on the
assumplions made about the implementation of the supersteps.

In contras! with lhe bulk synchronous nature of BSP algorithms, the execution of
algorithrns on the LogP model [I) can be viewed as a number of separately executing
processes which are asynchronous with respect to each other. Communication and
synchronisation arnong the processes is performed via message passing. A message sent
to a processor can be used as soon as it arrives, instead of having to wait a barrier
operation as in the BSP model. The LogP model defines four maio pararneters: P, o, L
and g. P represents the number o f processors. The param e ter o is defined as the
overhead associated with the transrnission or reception of a message. The parameters L
and g, although using the sarne narne as in the BSP model, have different meanings. The
pararneter L sets an upper bound on the latency incurred in sending a small message
whereas g is defmed as the minimum time period (or gap) between consecutive message
transrnissions or receptions; the reciprocal of g being the bandwidth per processor. The
pararneter g is similar to that in the BSP model, in that it provides a measure of the
efficiency of message delivery. However, since there is no implicit synchronisation in the
LogP model, the notion of supersteps perforrning h-relations does not apply to this
model. The model assumes that lhe network has a finite capacity, i.e. each processor can

Vlll Simp. de Arg. de Computadores e Proc. de Alto Desempenho 13

have no more than Ug outstanding messages in the network at any one time. Processors
attempting to exceed this limit are stalled until the message transfer can be initiated. This
is in contrast to the BSP model where any balanced communication event can be done in
g. h time. The performance of LogP algorithms can be quantified by summing ali
computation and communication costs of the algorithm. Communications are costed in
terms of primitive message events. For example, the cost for reading a remote location is
2L + 4o. Two message transmissions are required, one requesting and another sending
the data. In each transmission each processor involved in the operation spends o tjme
units interacting with the network and the message takes L time units to get to its
destination. The cost of a writing operation is the same, although in this case the
response is the acknowledge required for sequential consistency. This analysis assumes
the data fits into a single transmission block. When dealing with a block of n such basic
data, the cost becomes 2L + 4o + (n- 1)g, assuming o < g. This is beeause after the first
transmission, subsequent transmissions have to wait g time units. The LogP model
encourages the use of balanced communication events so as to avoid a processor being
flooded with incoming messages; a situation where ali but Ug of the sending processors
would stall.

The WPRAM model [6] views the BSP and LogP models as architectural models. The
following description is restricted to this levei of abstraction. The WPRAM model
attempts to extend the BSP model to a more flexible form. One important difference is
that barrier synchronisation is not directly supported, instead message passing can be
used to implement any synchronisation operation. This makes the WPRAM model closer
to the LogP model. However, while the BSP and LogP models are applicable to a broad
range of machine classes, the WPRAM model has been designed for a class of scalable
distributed memory machines. This means that network latency should increase at a
logarithmic rate with respect to the number of processors, i.e. D = O(log(p)), and that
each processor should be able to send messages into the _ network at a constant
frequency, i. e. g = 0(1). The global parameters D and g are similar to L and g defined in
the LogP model. However, instead of an upper bound given by a constant, the
parameter D represents a mean delay which increases logarithmicly with the number of
processors. It is modelled by the mean network delay resulting from a continuous
random traffic and it thus includes the effects of switch contention and contention for
shared data at the destination processar. The parameter g is the same as that of tlje LogP
model, though no limit is imposed on the total number of outstanding messages a
processor can have in the network. Because the network is capable of handling a
constant maximum frequency of accesses per processar, the analysis of WPRAM
algorithms is fac ilitated since the programmer does not have to be concemed with a
network limit capacity, as is the case with LogP algorithms. Besides the global
parameters L and g, the WPRAM model defines a number of other machine parameters.
These parameters have been incorporated in a simulator so that execution time of
WPRAM programs can be obtained. This allows one to determine the relative
importance of various low levei parameters on the performance of algorithms.

The models described have in common the two-level memory structure with uniform
global access. Despite some differences as the number and meaning of the parameters,
performance analysis in these models becomes very similar when barrier synchronisations
are used in the algorithms. The performance of one such bulk synchronous algorithm, a
parallel sort with balanced merge, is analysed in this paper. The analysis follows a
proposed methodology which is based on performance parameters reflecting the two
level memory hierarchy advocated by these models. The theoretical results are then
compared with the more accurate results produced by the WPRAM simulator.

14

i
C104
ruuten

(a) Target Architecnue

XVI Congresso da Sociedade Brasileira de Computação (SBC)

Randomiscd Shared Mcmory

(b) Programmcr's Vicw
Figure I - WPRAM simulator

3. WPRAM Computational Model and WPRAM Simulator

An architectural levei description of the WPRAM was given previously. At a higher,
computationallevel, the WPRAM (computational) model can be described as consisting
of P processors which operate asynchronously and which have access to a shared
a6dress space with weak coherency semantics (the ·w· in WPRAM stands for Weak
coherency). This means that newly written data is only guaranteed to be visible to other
processes when the writer and readers synchronise in some way. Forms of
synchronisation provided include process creation, barrier synehronisation and tag
synchronisation, which are used to co-ordinate processing and maintain shared data
consistency. Also important is the fact that the shared address space distinguishes two
forms of data: global data which is randomly distributed amongst ali processors and local
data which is mapped to a single processar memory. The WPRAM (computational)
model can be mapped to real machines conforming to the WPRAM (architectural) model
requirements, that is D = O(log(P)) and g = 0(I); the model also assigns performance
0(1) to local operations and O(D + X) to the access of X remote words. One such
mapping was done by implementing the WPRAM model on a simulator (WPRAM
simulator) using performance figures for the T9000 transpu ter and C 104 packet router.
A full description of the simulator and mapping can be found in [6].

The WPRAM simulator mentioned earlier was used to obtain the experimental resuhs
given in this paper. The simulator is based on the interaction of processes that are used
to represent both the nodes of the target machine and the user processes. Algorithms are
implernented using a programming interface and can be subsequently executed directly
on the simulator. This way the sequence of operations generated by the program drives
the simulator (execution-driven discrete-event simulation). The WPRAM target
architecture for the simulator is a distributed memory machine, which supports uniform
global access by the use of data randomisation1

, see Figure I. The simulator includes a

1 Thc use of data randomisation, whcre data is distributed throughout lhe local mcmorics, obviatcs the
nccd for randomiscd routing.

Vlll Simp. de Arq. de Computadores e Proe. de Alto Desempenho 15

detailed performance model which costs operations based on measured performance
figures for the T9000 transpu ter processor and simulations o f the C I 04 packet router.
Local operations modelled by the simulator include arithmetic calculation, context
switching, message handling and local process management. Messages entering the
network are assumed to be split up 19 guarantee that no one message ties up a switch for
long periods of time, while global data is assumed to be randomised based on the unit of
a cache line. Global operations are costed based on the high levei pararneters g and D.
The value for g was obtained from the Esprit PUMA Project while D was derived from a
simulation of the CI04 router carried out at Inmos. Work on validating the simulator
results has been carried out at Leeds with a close match being found between theoretical
predictions and experimental results.

The simulator is written in C and provides a rich prograrnming interface to execute
algorithms written in C. The prograrnming interface consists of a set of library
procedures which support process management, shared data access and process
synchronisation. Only a small subset of these library calls were used in this research,
including: procedures for process management (fork, join, my_node and my_index), read
and write procedures for data access, and a procedure to barrier synchronise processes.

4. Experimental Methodology and Performance Composition

The methodology proposed here consists of two parts. First, pararneters describing local
and global performance are defined and, based on them, performance equations for the
algorithms are derived. This mathematical model is used to predict the performance
(execution time) of the algorithms by specifying the chosen number of processors and the
size of the input data. Secondly, the algorithms are implernented on a machine and their
performance measured. Close agreement between prediction and experimental results
validates the mathematical model.

Due to their well-defined structure, most bulk synchronous algorithms are easy to
analyse. The total execution time can be obtained by simply summing up ali computation
and communication contributions of each (super)step. The analysis assumes that, in all
segments of the program, the computation and communication operations do not overlap
and can thus be simply added to give the total execution time of each segment.

S. A Case Study: ParaUel Sort using a Balanced Merge

The use of the proposed methodology is illustrated in this section by analysing the
performance of a parallel sorting algorithm due to Francis and Mathieson [2]. The
algorithm removes the linear time bottleneck inherent in simple extensions of sequential
algorithms by employing a balanced merge algorithm that utilises all processors in all
steps of the merge phase.

Figure 2 illustrates the algorithm for n = 16 and p = 4. Each processor initially sorts
nlp data items and at every following stage each processor finds n/p data items in a set of
data items and merges them. For example, for a system of two processors, the data
would initially be split into two data sets and each processor would sequentially sort its
own data set. After this each processor would, in parallel, find the n/2 smallest data items
and the n/2 largest data items in the complete set. This is equivalent to partitioning the
two smaller data sets each into two segments where the number of data items in the pair
of segments containing the smaller values is the sarne as the number of values in the pair

16 XVI Congresso da Sociedade Brasileira de Computação (SBC)

of segments containing the larger values. The two segments containing the smaller values
are then merged as are the two segments containing the larger values. The resultant data
sets are then concatenated to form the result.

j ., 1 7 :s lu s • 12 I•" 1s • to I• •• :z ~I Jnitial disU"ibution

,, J 7 u I s • 11 I li .. 10 IJ •3 1 ' ' •3
I• s 1 I" I
I• I• " u I

I• I•• " ••I
I> • • I•• I

I• s s 1 I• u 11 ul:z " ' I) l•o n •• '' I

I• ' !• 1 • l11 ui ui

!1 • H~ I • to j., , .. ••I

Eoich pn>C«<I<

aorta 4 clc.mc.nll

I!Mc:h proccuor
Ond.l lu: ICtpnenl&

Each rmccssor
merges its
~eamcnu

Find sc~entt aHáin

I• 1 J • I s ~ 7 11! • 10 11 11 FJ 14 as •• I FJnal mergc

Figure 2 Balanced mergesort for n = 16 and p = 4

The calculation of the partition position in a data set is complex; the algorithm is defined
in [2].

Analysls

The parameters describing local (ks, k,J and global (k;, kg) performance were obtained
by experimentation.

The frrst two parameters, ks and km, were used to model local computations when
serting and rnerging respectively. Since the bound of sequential mergesort (which was
the sequential sorting used) is O(n.log(n)) and that of sequential merge is O(n), it is
reasonable to assume that the time of sorting n integers is ts(n) = ks.n.log(n) and the time
of merging n integers is tm(n) = km.n. A simple approximation to ks and km was
obtained by dividing the total run time (for n = 200, 400, 600, 800 and I 000) in
rnicroseconds by n.log(n) and n respectively. Using a single processor, each
implernentation (sort and merge) was run on 5 different data sets generated randomly,
and the average run time was used in the calculation of ks and km.

The parameters k; and kg were used to model global communications when accessing
a single integer and a sequence of integers in global memory (remote access)
respectively. The bound of accessing X remote words in the WPRAM is O(D +X) where
D corresponds to the network latency D = O(log(P)). However in order to facilitate the
performance analysis conducted, and because most remote accesses required by the
algorithrns are pipelined, the latency was modelled as a constant. The bound of accessing
n integers then becomes t(n) = O(n). To obtain an approximation for t(n) a simple
program was developed in which n integers were read/write frornlto global memory. lt
was observed that t(n) = 23.ceiling(n/4) + 24. In the WPRAM simulator remote data is
moved in blocks of 16 bytes (corresponding to 4 words), what explains the step function
found. Thus the value for k;, access to a single integer, and kg, access to n integers, were
approximated to 47 and 5.7 rnicroseconds respectively.

VIII Simp. de Arq. de Computadores e Proc. de Alto Desempenho 17

Computation

As expected, the computation time of this algorithm does not have any linear component
in n. Initially, each processor sorts nlp elements and then they ali participate in each step
of the merge phase, each one producing exactly 1/pth of the final merged data. The
computation time is given by:

(I) comp(n,p) = sor{;)+ merge(;)log(p)

Using the parameters defined, this equation can be simplified to:

n (n) n (2) comp(n,p) = k, -log - +k,. - Iog(p)
p p p

Communication

Figure 4 illustrates how such implementation can be done. Each processor starts by
reading n/8 elements, sorting them and writing the result to global memory. The merge
phase has, in this case, three steps. In each step, the processors merge and write n/8
elements. The partition's boundaries are calculated using a binary search. The decision
whether to copy the entire segments to be searched to local memory or to read the
elements individually as they are required, is dependent on the machine pararneters and
data input size. For the machine (WPRAM simulator) and data input size (lk, 5k and
IOk) considered, it was verified experimentally that the first option is better only when
the number of processors is small (less than 4). Hence it was decided to use the second
altemative, where elements are read individually. The search space size varies in each

Figure 4 Action of 8 processors in lhe balanced mergesort algoritlun

18 XVI Congresso da Sociedade Brasileira de Computação (SBC)

step of the merge phase thus, for the example considered, 21og(n/8) are read in the first
step, 2log(n/4) in the second and 2log(n/2) in the final step. In each of these steps, once
the partition's boundaries have been calculated, the corresponding n/8 elements are read,
merged and written back. The communication time of this algorithm is given by:

(3)

comm(n,p) = read(;)+writ{~)+h>(read(2log(;,))+ read(;)+ write(;))

which can be simplified to

(4) comm(n,p) = (2log(n)-log(p)-l)log(p)k, +(2;+ 2log(p); }~

The total execution time of the balanced mergesort algorithm is then found by adding (2)
to (4):

(5) T.....,(n,p) = (k, fog(;) + 2k1 + (k .. + 2)1og(p)); + (21og(n) - log(p)-l)log(p)k,

By substituting the coefficients k5 , km and k
8

for their values, equation (5) can be
simplified to:

(6) Tu<c(n,p) =

11.4!!. + 1.7!!.1og(!!.) + 3.7!!.1og(p)+ 94 log(n)log(p)- 47(1og(p))
2

- 47log(p)
p p p p •

which gives the total execution time in microseconds.

Results

The predicted and measured time for the balanced mergesort algorithm is shown in figure
5. The results were obtained for input sizes of IK, 5K and IOK, using 2, 4, 8, 16 and 32
processors. As shown in the graph, the balanced mergesort gives a good performance
overall. It removes the bottleneck existing in other sorting algorithms [7], improving
performance more uniformly with lhe number of processors.

The graph also shows that there was close agreement between predicted and
experimental results; measured values being ali within I% of the predicted values.
However, there is no guarantee that the WPRAM simulator mimics the WPRAM model
and hence the simulator needs to be validated against the machine model. Recently, a
mapping of the WPRAM model has been implemented to a real parallel machine [5], the
KSR machine, and results obtained with this implementation have been shown in
accordance with corresponding re~lts obtained with the WPRAM simulator, thus
validating the mapping.

V111 Simp. de Arg. de Computadores c Proc. de Alto Desempenho

300

-250
2
.§.200
o

~ 150
c

·~ 100 .
.J!

50

o
2

6. Conclusions

Padla BdCI109dMargasat

4 8 16

Nl.nt>8r d PIOCIIIS<n

32

... lkPredded

-1kMlaU'ed

...... S<Predded

--S<MlaU'ed

........ lO<Predded

-10<MlaU'ed

Figure 5 Rcsults for Parallcl Balanced Mergeson

19

Recent proposed models of parallel computation abstract the topology of the machine by
characterising the communication network via parameters related to latency and
bandwidth. This paper presented a methodology for the performance analysis of bulk
synchronous parallel algorithms based on parameters which reflect the two-level memory
hierarchy advocated by these models. The proposed methodology was illustrated with
the performance analysis and implementation of a parallel sorting algorithm. By deriving
performance equations for the algorithm it was shown that similar results to those
produced by the simulator, which includes a much more detailed performance model, can
be obtained without the step of coding and simulating the algorithm. It is then expected
that such analysis can be helpful when developing algorithms for real parallel machines
conforming to the WPRAM's requirements. In the specific case of the sorting algorithm
implemented, for example, the decision of whether to copy a whole segment (nlp) to
carry out a binary search or to retrieve each item individually, will depend on their costs,
(nlp).km and log(n/p).k; respectively. Given a particular machine, there will be certain
values

20 XVI Congresso da Sociedade Brasileira de Computação (SBC)

References

[I] Culler, D., Karp R., Patterson, D., Sahay, A., Schauser, K., Santos, E. , Subramonian,
R. and vonEicken, T. "LogP: Towards a Realistic Model of Parallel Computation". In
Proceedings of the 4th ACM SIGPI.AN Symposium on Principies mui Practice of
Parallel Programming PPOPP, San Diego, California, volume 28, pages 19-22,
ACM Press, may 1993.

[2] Francis, R. S. and Mathieson, I. D. "A Benchmark Parallel Sort for Shared Memory
Multiprocessors", IEEE Transactions on Computers, Vol. 37, No. 12, pp. 1619-
1626, December 1988.

[3] McColl, W. F. "General purpose parallel computing". In A. M. Gibbons and P.
Spirakis editors, Lectures on Parallel Computation. Proc. 1991 ALCOM Spring
School on Parallel Computation, volume 4 of Cambridge /nternational Series on
Parallel Computation, pages 337-391. Cambridge University Press, Cambridge, UK,
1993.

[4] Nash, J. M. and Dew, P. "Parallel Algorithm Design on the XPRAM model". In
Proceedings ofthe 2nd Abstract maclrines Workslrop, Leeds, 1993.

[5] Nash, J. M., Dyer, M. E. and Dew, P. "Designing Practical Parallel Algorithms for
Scalab1e Message Passing Machines". In Proceedings of tire 1995 Wor1d Transpttter
Congress, pages 529-541, September 1995.

[6] Nash, J. M. "A study of the XPRAM Model for Paralle1 Computing", PlrD Tlresis,
University of Leeds, 1993.

[7] Dowsing, R. D. and Martins, W. S. "Performance of a Selection of Sorting
Algorithms on a General Purpose Parallel Computer", To appear in Concurrency:
Practice and Experience.

[8] Valiant, L. G. "General Purpose Parallel Architectures". In tire Handbook of
Theoretical Computer Science, J. van Leeuwen, Ed. North Holland 1990, pp. 944-
971.

[9] Valiant, L. G. "A Bridging Model for Paralle1 Computation", Comnumications of
ACM, pp. 103- I I I , August 1990.

