
VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 37

Performance Evaluation with Petri Nets of a
Bus-based Multithreaded Multiprocessar

Marcelo H. Cintra
Laboratório de Sistemas Integráveis

e-mail: mcintra@lsi. usp. br

Wilson V. Ruggiero
Laboratório de Arquitetura e Redes de Computador

e-mail: wilson@larc. usp. br

Universidade de São Paulo

Abstract

Multithrea.ded architectures have been actively investigated in recent years to
build large-scale multiprocessors that are more tolerant to intra-context instruc·
tion dependencies and large synchronization and memory access !atendes. In
tliis paper we develop a multilevel Petri net model of a bus·based multiprocessar
system and use this model to verify the impact of multithr!!a.ding in processar
utilization and network latency. Using a multilevel modeling methodology for
Petri nets we show that multithrea.ded architectures have higher processar uti­
lizations, but offer a higher load to the interconnection network and the memory
system.

1 Introduction

With the advances in current microprocessor technology, we observe an increase in the
difference between the processor's clock cycle time and memory and network latencies;
and an increase in the levei of on-chip hardware parallelism {multiple functional units
and mult iple issue). To achieve t he highest performance possible with the a.vailable
resources, it is important to ma.intain a. high processar utiliza.tion. However, memory
access latencies a.nd pipeline dependencies reduce the act ual processar utilization in
current systems.

Severa! techniques ha.ve been proposed in the literature to cape with long latency
opera.tions and instruction dependencies, such a.s rela.xed memory consistency models,
prefetching, fine·gra.in synchroniza.tion, and compile· time optimizations to increa.se the
scheduling scope.

Multithreaded architedures can potentially cope with both long-latency operations
a.nd instruction dependendes. The ba.sic idea. in multithreading isto allow the processar
to run other threads while some threads are blocked due to pipeline dependencies or
long-latency operations, thus increa.sing t he processar utilization a.t the system levei a.nd

38 XVI Congresso da Sociedade Brasileira de Computação (SBC)

reducing execution time of parallel applications. Software approaches to multithreading
require little hardware support and rely ou the compiler and the operating system
to maintain and schedule threads [6], while hardware-based approaches rely almost
entirely on multiple-context processors [1, 4, 7, 9, 12, 13].

The usual approach currently used to evaluate the performance of multiprocessar
architectures is to build customized program-driven simulators, which can accurately
model the behavior of both the hardware architecture and the application, but require
much time to build and to debug the custom simulation code. Another approach to
evaluate the performance of computer systems is to use discrete event system models
such as Petri nets [11] and queueing systems [8]. As these models have a li mited
number of object types, simple and strict operating semantics and useful graphical
representations, the time required to create and debug the compu ter architectu re model
is much shorter.

As in a previous work [5], in this work we have chosen to use Petri nets to model aud
evaluate the performance of a multiprocessar computer architecture. This technique
has proven itself adequate lo model both parallelism and conflict [3], two important
charactcristics present in modern computer systems. Extensions such as timcd and
stochastic Petri nets make these nets a powerful technique for analyzing thc perfor­
mance of systems.

Modeling large and complex computer systems leads to complex Petri net models
that are difficult to understand, debug and solve. A possible approach to deal with
complex models is to partition the model in submodels that are hierarquicaly related
to each other. The advantage of this approach is that only part of thc data from
the solution of the inferior model may be needed to solve the hierarquically superior
models, leading to more efficient solutions of complex models.

In this paper we use a multilevel Petri nct model to cvaluate the performance of
multithreaded processors in a bus-based multiprocessar systcm. In [2] , analytical mod­
els for a blocked multithreaded processar, a point-to-point interconnection network and
a cache system are derived. These models, however, representa limited mult it hread­
ing scheme and cannot be easily adapted to different configurations of the network.
Petri nets were used to modela blocked-multithreadcd processar [10], but t he model
presented implements a simple memory model, and does not take into account the
conflicts for the bus. Our model is a detailed model for an interleaved-multithreaded
processar and the memory model accurately represents the contention for the bus and
the memory modules.

The organization of this paper is as follows: in section 2 wc discuss multithreading
techniques and in section 3 with present a multilevel modeling methodology. In sec­
tion 4 we present a Petri net model for a bus-based multiprocessar and in section 5 we
evaluate the performance o(a multithreaded arch itecture. Finally, section 6 concludes
the paper and presents some future works. For a review of Petri net t heory refer to
Peterson's book [11].

2 Multithreaded Architectures

Multithreading techniques allow the processar to switch among resident contexts and
issue instructions from different threads to maximize processar utilization when some
threads are unable to fill the issue slots. So, the basic issue in mult it hreading models

VIII Simp. de Arg. de Computadores c Proc. de Alto Desempenho 39

is how to schedule threads and their instructions in the available issue slots. The
multithreading models described next differ basically on when a context switch occurs,
and a new thread is allowed to issue more instructions. For superscalar processors,
the models also differ on how the. available issue slots are filled with instructions from
non-blocked threads.

• lssue instructions from a single thread and switch on long-latency operations

In this model a thread is allowed to issue instructions until it reaches a long­
latency operation, such as a cache miss, at which point the thread is consid­
ered blocked and a context switch occurs. In this model, which has been called
"blocked" or "coarse grain multithreading" (1, 14] , the thread is allowed to fully
utilize the available issue slots and functional units. Thus, this model offers a
single- thread performance similar to a single context processar, but is also subject
to ali pipeline dependencies found in single context processors.

• lssue instructions from a single thread and switch on every cycle

In this model a context switch occurs every clock cycle, that is, at each clock
cycle the instruction is issued from one of the available threads, in a round­
robin or priority scheme. Some variations of this model have been studied in t he
literature, such as the "fine-grain" multithreading scheme, exemplified by the
HEP multiprocessar (12] and the MASA architecture (7], and the "interleaving"
scheme [9], which is the model that we use in our multithreaded multiprocessar
system, described in section 5. This model can also be used in multiple-issue
processors, as in the Tera multiprocessar [4], which issues 3 instructions from lhe
same thread, in a VLIW scheme, and switches to a different context every cycle.

• Issue instructions from multiple threads and switch on every cycle

As in lhe previous model a context switch occurs every clock cycle, and instruc­
tions can be issued from different contexts on each new cycle. However, in this
model the issue slots, in a superscalar or VLIW processar, can be used by differ­
ent threads in the same cycle. This scheme was proposed in [13] and was called
"Simultaneous Multithreading". Severa! variations of this model can be imple­
mented, with varying degrees of complexity and flexibility. The most general
variant, called "Full Simultaneous Multithreading", allows ali active threads to
compete each cycle for ali available issue slots, but has a very complex imple­
mentation.

3 A Multilevel Modeling Methodology

Detailed Petri net models of complex computer systems are difficult to debug and
maintain and require large ammounts of computational resources to be solved. Par­
titioning the model in submodels leads to small Petri net modules that are easier to
debug and maintain. In addition, creating submodels that are hierarchically related,
i.e. one submodel is a detailcd description of part of the higher levei model, can make
thc solution proccss less cxpensivc.

The basic proccdure in crcating multilevel models is to represent a certain portion
of the system as a high levei event (a transition in Petri nets) in the upper levei and

40 XVI Congresso da Sociedade Brasileira de Computação (SBC)

as a detailed submodel in the lower levei. Solving the lower levei submodel we can
then obtain enough information on the timing behavior of the subsystem and, using
a special methodology, we can accurately transfer this information to the upper levei
model.

In our proposed methodology, we represent the subsystem in the high levei model
as a single transition, whose firing delay depends on the number of tokens in its input
place, which we call the load place. The number of tokens in this transition, which
we will call the hierarchical transition, represents the load offered to the lower levei
subsystem. To solve the higher levei model, we then need a table mapping the number
of tokens in the input place of the hierarchical transition to the actual firing time of
the transition.

Following this methodology, we need only to obtain the mapping from the load on
the lower levei submodel to the effective time involved in the event represented by the
subsystem. This can be accomplished by solving the lower levei submodel for different
loads and obtaining the average time required by the subsystem to complete its service.
In practice, the subsytem model is a.n open Petri net model, a.nd the time involved in
the operation of the subsystem is the time required by a token to flow through the
model and exit. Thus, to solve the model and obtain the average time required by the
subsystem, we need to dose the model, whicfi can be accomplished by feeding back
ali the exits from the submodel to a single entrance place. This entrance place is then
the place in the interface of both models, and we call it the interface place. Figure 1
pictures the relationship between the submodels in our methodology.

Figure 1: Pictorial representation of the Petri net submodels in the multilevel modeling
methodology. Place PL is a load place and place

VIJI Simp. de Arg. de Computadores c Proc. de Alto Desempenho 41

The table created by the methodology described above can then be used to dynam­
ically calculate, at each simulation cycle, the fi ring delay of t he hierarchical transition
in the higher levei model. This methodology has two main advantages over solving a
complete model of the system. First, once the mapping table is created, it is possible to
simulate the higher levei model without having to simulate the lower levei submodel.
The second advantage is that because the only information required from the lower
levei submodel is the mapping table, one can easily substitute the lower levei model by
a different model to either increase t he detail of the submodel or represent a different
configuration. ·

The proposed multilevel modeling methodology for Petri nets can be summarized
as follows:

• Partition the complete system in hierarchically related submodels, following the scheme
shown in figure l.

• Close the lower levei submodel by feeding back the exits from the submodel to a
common input place.

• Determine the range of the load offered by the higher levei portion of the system to
the lower levei subsystem.

• Obtain the cycle time for ali the range of load in the subsystem

• Eliminate the eventual oscilations in the function relating the load to the cycle time.

• Solve the higher levei submodel dynamically calculating the firing time of the hierar­
chical transition using the table obtained in the previous phase.

4 A Bus-based Multiprocessar Model

To evaluate the performance of a multithreaded architecture we must accurately eval­
uate the long-latencies observed in the system. In this work we consider a popular
configuration of a bus-based multiprocessor wit h N processors and M memory mod­
ules, connected by a common bus. In this system, the contexts requesting a memory
access are put in a queue to access the bus, which can only service one request at a
time. Once the bus is granted to a context, a data request packet is sent to one of
the memory modules and the request for dãta is enqueued at this module. Ali mem­
ory modules service only one request at a time and to send the responses back to the
processors they must compete to access the bus. Figure 2 shows a Petri net model for
such a system.

In the Petri net model of figure 2, place p3 represents the shared bus and place p5
represents the memory p~ol with M modules. For simplicity, in t his model we consider
that t he memory requests are uniformily distributed across the memory modules. Place
pl represents the contexts requesting memory access and the firing of transition t6
removes a context from the memory system after its request is completed. Transitions
t1 and t5 represent the contention for using the bus for the data request and reply,
respectively. Transitions t2, t4 and t6 have fixed firing delays and represent the packet
transmission time {t2 and t6) and the actual memory access time (t4) . The values used

42 XVI Congresso da Sociedade Brasileira de Computação (SBC)

pS

Figure 2: Petri net model of a bus-based multiprocessar wilh M memory modules.

for lhese times (in processar cycles) are lypical of a modern mull iprocessor system:
t2 = t6 = 5 and t4 = 20.

According to the multilevel modeling methodology presenled in section 3, to transfer
the behavior of this memory system to lhe higher levei system, we must compute the
average overall access times for different number of contexts. We then closed the
model presented in figure 2, by connecting transition t6 to place pl, and used lhe
simulator RP -SIM [5) to compute the average access time for 1 to 32 tokens in place
pl, representing 1 to 32 contexts requesting memory access. This datais then used in
the multithreaded processor, presented in the next section.

We observed that modeling in detail the bus and memory system is highly desireable
because the effective memory access time is very sensitive to lhe number of conlexts
contending for the bus. In ou r simulations, we found lhat the effective access time varies
from 30 cycles, with only one conlext, to about 320 cycles with 32 contexts. Thus,
a simple model of the multithreaded multiprocessar that approximates lhe memory
access time by a single value for ali loads willlead to misleading results.

5. A Multilevel Model of a Multithreaded Archi­
tecture

In this work we developed a Petri net model of an·interleaved multithreaded archilec­
ture (9) , which we believe lo be the mosl fiexible and better performing multithreading
model for traditional scalar processors. In lhis model, an instruction from a different
context is issued and executed at each cycle and i f lhe inslruclion is a memory request
the context is marked blocked, otherwise the contexl remains ready in the task pool.
The Petri net model for this processor is shown in figure 3

Figure 3: Petri net modelo f a multithreaded scalar processo r with N C resident conlexts
and implementing the interleaving multithreading model.

VJII Simp. de Arg. de Computadores c Proc. de Alto Desempenho 43

In Lhe model of figure 3, place pl represents the task pool wiLh NC ready conLexts,
p5 represenLs Lhe single issue sloL available each cycle and place p4 represents contexts
requesLing memory access. The system considered has an off-chip cache and the firing
of Lransition t4 indicates that either the insLruction was not a memory operation or the
insLrudion was a memory operation that could be satisfied from the cache. Transition
t3, on the other hand, represents a memory operation that could not be satisfied from
the cache. Transitions t3 and t4 are a random switch and the probability associated
wiLh Lhe firing of transition t3 is tbe cache-miss raLe observed for a given application.
To model a muiLiprocessor system with P processors, we need only replicate P times
the Petri net model in figure 3 and use the sum of tokens in ali places p4 as the total
number of contexts contending for the memory. In this case the union of places p4
corresponds to the load place.

The times involved in the model of figure 3 are l cycle, fixed, for t2 and the memory
access times for the bus-memory system, for t5. To model the timing hehavior of the
memory system, the firing delay of transition t5 is adjusted according to the nurnber
of Lokens in ali places p4 aL each simulation cycle to refied the memory access time
obtained from Lhe bus and memory system model.

Using the Petri net model of figure 3, along with Lhe values obtained in section 4,
we evaluated the processor utilization for multiprocessor systems of various sizes and
different degrees of multithreading (the number of resident contexts allowed by the
hardware). The configurations studied are representative of current shared-memory
multiprocessors, with up to 32 processors. For ali configurations studied, the number
of memory modules used is the same as the number of processors in the system. The
processors used have 1 (no multithreading), 2, 4 or 8 resident contexts.

To assess the gains obtained with multithreading, ~e then performed a series of
simulations to compare multithreaded archiLectures with differenL degrees of multi­
Lhreading but the same overall number of conLexts. The cache miss raLes used are
similar to Lhe raLes observed for Lhe MP3D and LocusRoute applicaLions (14) from
the SPLASH benchmarks: 7% and 0.6%, respectively. We have chosen these appli­
cations because they represent common parallel scientific applications with bad cache
behaviors (MP3D) and good cache behaviors (LocusRoute).

The processor utilization versus number of contexts in the system for different
degrees of mulLiLhreading is shown in figure 4. From this figure we verify that the
increase in Lhe levei of multithreading increases the overall processor utilization. Also,
for the same configuration, we observe thaL the processor utilization decreases as the
size of the system is increased. This latter dependence refiects the bus and memory
contention accurately modeled in the Petri net model of figure 2, and which is not
accurately modeled in [10).

Comparing the curves from figure 4(a) with the curves from figure 4(b), we notice
that the performance improvements from multithreading are highly dependent on the
cache behavior of the applications. For applications with good cache behaviors (fig­
ure 4(b)), the utilization of a single-context processor is already high, the utilization
of a two-context processor is almost 1 and the incrementai gains from multithread­
ing degrees of more than 4 become marginal. Applications with bad cache behaviors
(figure 4(a)), on tlll' other hand, seem to require higher degrees of multithreading to
achieve a high processor utilization.

A side-(\ffed of using multithreading in multiprocessor systems is the increase in the

44 XVI Congresso da Sociedade Brasileira de Computação (SBC)

u

2CIPE

r r . .
••

u

••
•• 10 " 20 2S .. ,. • •,...,

(a) (b)

Figute 4: Processor utilization for different degrees of multithreading. The cache miss
rates are similar io ihe raies observed in ihe (a)MP3D applicaiion and (b)LocusRouie
application.

load offered io ihe neiwork. This happens because processors wiih C resideni coniexis
can have up io C ouisianding memory requesis, requiring larger buffers io hold ihe
requesis and a higher neiwork and memory bandwidth io serve more requests in ihe
same time. To verify this effect on the bus-memory system, we observed lhe effective
memory access times for ihe configuraiions studied. The observed memory access
times are shown in figures 5(a) and 5(b) for the MP3D and LocusRouie applicaiions,
respectively.

,.. ...
... ,IICM • ...

'

'
: oiOI'E "" I

1 ... 2CH(
I.,.

L : ["•
L. ·- I",

•• •• .. 20 a .. ,. ... 10 tS 20 2S ,. -·- _.,_
(a.) (b)

Figure 5: Effeciive memory access time in processor cycles for different degrees of
multithreading. The cache miss raies are similar io the raies observed in lhe (a)MP3D
application (b)LocusRoule application.

Analyzing figures 5(a) and 5(b), we observe that indeed systems with higher degrees
of multithreading experience higher delays for ihe memory accesses. Again, we observe
that applications with good cache behaviors tend to be less sensitive to effects of higher

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 45

degrees of multithreading. For a program with bad cache behavior (figure 5(a)) we
notice that the effective memory access time is very dose to the maximum observed time
for the bus and memory subsystem with 32 contexts (see section 4). This result shows
that for these applications multi threading, and thus multiple outstanding memory
requests, together with a high cache miss, can lead the memory system to its maximum
load.

6 Conclusions and Future Work

Multithreaded architectures can potenÜally hide both memory access latencies and
pipeline dependencies and thus increase the processor utilization. Hiding long-latency
operations and increasing processor utilization will have greater impact in future sys­
tems than they have today, because we can expect larger systems, with more hardware
parallelism, and an increase in the memory and communication latencies in processor
cycles.

In this paper we have investigated two important aspects of multithreading in a
bus-based shared-memory multiprocessor:· processor utilization and contention in the
shared bus. We have shown that multithreaded architectures with 2 to 8 contexts have
better processor utilization than single-thread systems with the same overall number
of contexts. This increase in the processor utilization can be exploited to speed up
parallel applications and to increase the throughput of multiprogrammed multiuser
systems.

Dilferently from previous work with analytical models, we have modeled in deta.il
the behavior of the bus and the memory system, and the contention for their access. We
have verified that using multithreaded processors increases the contention for the bus
and the overall memory access time. Thus, when designing multithreaded architectures
wit h high degrees of multithreading, we must account for the increase in the network
traffic and design the memory and interconnection system with sufficient bandwidth.

In this work, we have used a multilevel modeling methodology for Petri nets that
allowed us to efficiently and accurately solve the multithreaded multiprocessor model.
The flexible approach for handling multi pie-levei models allows us to easily modify both
models and even replace the subsystems and their models without having to change
other par~s of the model. Some extensions to the work presented in this paper are
then to model dilferent internonnection networks and memory systems and dilferent
multithreaded architectures, such as Simultaneous Multithreading, which is more likely
to be used in the next generation of sup-erscalar processors.

In ali ou r simulations we used the Petri net simulator RP ...SIM:, which proved to be
a very powerful and flexible tool for dealing with generic timed Petri net models. This
simulator is currently being improved with the addition of a graphical user interface
that will make this tool more accessible to a larger group of users.

References

[1] Agarwal, A. , Lim, B. H., Kranz, D., and Kubiatowicz, J., APRIL: A Processor
Architecture for Multiprocessing, In Proceedings o f the 17th Annual International
Symposium on Computer Architecture, pp. 104-114, May 1990

46 XVI Congresso da Sociedade Brasileira de Computação (SBC)

(2) Agarwal, A., Performance Tradeoffs in Multithreaded Processors, IEEE Transac­
tions of Para/lei and Distributed Systems, vol. 3, no. 5, September 1992

(3) Agerwala, T., Putting Petri Nets to Work, Computer, pp. 85-94, December 1979

(4) Alverson, R., Callahan, D., Cummings, D., Koblenz, B., Porterfield, A., and
Smith, B., The Tera Computer System, In Proceedings of the ACM ICS, pp. 1- 6,
June 1990

(5) Cintra, M. H. and Ruggiero, W. V., A Tool for Modeling and Simulation of Com­
puter Architectures Using Petri Nets, In Proceedings of the VII Brazilian Sympo­
sium on Computer Architecture, August 1995

(6) Culler, D. E. , Sah, A., Schauser, K. E., von Eicken T., Wawrzynek, J., Fine-grain
Parallelism with Minimal Hardware Support: A Compiler-Controlled Threaded
Abstract Machine, In Proceedings of the Fourth lnternational Conference on Ar­
chitectural Supportfor Programming Languages and Operating Systems, April1991

(7) Halstead, R. H. Jr. and Fujita, T., MASA: A Multithreaded Processar Architecture
for Parallel Symbolic Computing, In Proceedings of the 15th Annual lnternational
Symposium on Computer Architecture, pp. 443-451, May 1988

(8) Jain, R:, The Art of Computer Systems Performance Analysis: Techniques f or
Experimental Design, Measurement, Simulation, and Modeling, John Wiley, 1992

(9) Laudon, M., Gupta, A., and Horowitz, M., Interleaving: A Multithreading Tech­
nique Targeting Multiprocessors and Workstations, In Proceedings of the 6th In­
ternational ConfeiYmce on Architectural Support for Programming Languages and
Operating Systems, pp. 308-318, October 1994

(1Q) ·Nemawarkar, S. S., Govindarajan, R., Gao, G. R. , Agarwal, V. K., Performance
Evaluation of Latency Tolerant Architectures, In Proceedings of the 4th lnterna­
tional Conference on Computing and lnformation, pp. 183-186, May 1992

[11) Peterson, J. L., Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981

(12) Smith, B. J., A Pipelined Shared Resource MIMD Computer, In Proceedings o}
the 1978 lnternational Conference on Para/lei Processing, pp. 6-8, August 1978

(13) Thllsen, D. M., Eggers, S. J., and Levy, H. M., Simultaneous Multithreading:
Maximizing On-Chip Parallelism, In Proceedings o f the !!!!nd Annual lnternational
Symposium on Computer Architecture, pp. 392-403, June 1995

(14) Weber W. D., and Gupta, A., Exploring the Benefits of Multiple Hardware Con­
texts in a Multiprocessar Architecture: Preliminary Results, In Proceedings o f the
16th Annual lnternational Symposium on Computer Architecture, pp. 273-280,
June 1989

