
VJII Simp. de Arg. de Computadores e Proc. de Alto Desempenho

The Performance of Cache Coherency in SCI-based
Multiprocessors

Roberto A Hexsel
Depto. de Informática, Universidade Federal do Paraná

Nigel P Topham
Dept. of Computer Science, University of Edinburgh

47

Abstract The Scalable Coherent Interface {SCI) is an IEEE/ ANSI standard that
defines a hardware platform for scalable shared-memory multiprocessors. This pa­
per contains a quanti tative performance evaluation o f SCI-connected multiprocessors
that assesses both the communication and cache coherence subsystems. 1D, 2D and
3D tori with 16 and 64 nodes are investigated. For the architecture {100MHz Sparc,
2 leveis of caches) and workload simulated, it was f ound that raw network band­
width seen by a processing element is under 100Mbytes/s. The 3-D toros is 10-15%
fast er than the 2-D toros for programs that generate high leveis of network traffic.
Otherwise, the differences in performance between 2-D and 3-D tori are negligible.

1 Introduction

One of the architectural difficulties involved in the constr~ction of efficient logically­
shared physically-distributed memory multiprocessors is the interconnection system
between processors and memory. Such interconnect must provide a low-latency high­
bandwidth path between processors and memory in addition to efficient support to
the physically-distributed logically-shared memory model.

The Scalable Coherent Interface (SCI) is an ANSI/ IEEE standard [8) for a coher­
ent memory interface to as many as 65520 processing nades and defines a network
that, in theory, satisfies the above criteria. SCI defines a physical layer (cabling,
clock frequencies), a logical communication protocol (unidirectional point-to-point
links) and a cache coherent protocol (invalidation-based distributed directory). The
performance of the communication layer of SCI has been thoroughly investigated,
both analytically and by simulation [14, 15, 2) and, it does satisfy the high-bandwidth
low-latency requirement.

Bogaerts et. ai. , in [2) evaluate the performance of large SCI fabrics to be used in
data gathering and preprocessing in CERN's Large Hadron Collider. The technolo­
gical parameters used are the same as here and their results are in broad agreement
with those in [14), i.e., ser provides a low-latency high-bandwidth interconnect.
Kofuji et. ai. , in [11), report on simulation experiments with medium-sized multi­
processors using the parameters of a current implementation of a subset of the SCI
standard (125Mbytes/ s per link). [12) contains simulation results on page migration
in an SCI-based multiprocessor. [7) presents simulation results that relate cache
coherency and interconnect traffic for SCI rings.

48 XVI Congresso da Sociedade Brasileira de Computação (SBC)

SCI provides a simple yet efficient synchronization mechanism called Queue on
Lock Bit (QOLB). Its implementations and performance are compareci to other syn­
chronization mechanisms in [18, 1). As they report, QOLB fits quite naturally with
SCI's distributed sharing-lists. Kãgi et. ai. present simulation results of an architec­
ture and workload similar to those discussed here [10) . They study the interactions of
techniques to reduce the overheads associated to physically distributed memory. The
techniques investigated are synchronization with QOLB, weaker memory consistency
and cache coherence protocol optimizations for pair-wise sharing, ali of which are
supported by SCI.

The performance of shared-memory multiprocessors depcnds on a fast network
as well as on efficient implementation of the shared-memory abstraction. One tech­
nique widely employed in implementing shared-memory is to use a cache coherence
protocol to keep the physically distributed memory in a coherent state. This pa­
per investigates the interactions between cache coherence and network latencies on
an SCI-based multiprocessar executing real programs. Some of the questions we
attempt to answer are "what is the cost of sharing data using SCI's distributed
directory protocol under differing patterns of sharing?" and, "how efficiently does
coherency related traffic uses SCI's high bandwidth network?". Answers to these
questions can be fóund by looking at the behavior of a machine, with processors
and a memory hierarchy, executing real code, since in such a system ali of SCI's
components interact in a realistic manner.

This paper contains a performance evaluation of a family of multiprocessors
based on SCI interconnects where the influence of the cache coherence protocol on
performance is investigated. The experiments also relate the performance of the
memory hierarchy to that of the interconnect. The topologies studied are lD (rings) ,
2D (meshes) and 3D tori (cubes) with 16 and 64 processors. The architecture simu­
lator is driven with address sequences generated as a by-product of the execution of
real programs. The workload consists of two programs from the SPLASH suíte [16)
(MP3D and Water) and three parallel loops (Gaussian elimination, matrix multi­
plication and ali-to-ali minimum cost patl1s). The simulation environment and the
workload used to drive the architecture simulator are described in Section 2. Sec­
tion 3 discusses the overheads imposed by the cache coherency protocol. Section 4
discusses the network performance of SCr 1D, 2D and 3D tori. Section 5 presents
our conclusions.

2 Simulation Environment
The architecture simulator consists of an approximate model of the SCr link in­
terfaces and of a detailed model of the distributed cache coherence protocol. The
model of the ring interfaces is described in [6) . The traffic conditions are meas­
ured at 101ls intervals and network delays are estimated from these measurements.
The model of the cache coherence protocol mimics the "typical set coherence pro­
toco!" as defined in [8). The simulator consists of two Unix processes: the memory
reference stream generator and the architecture simulator. The reference stream is
piped to the architecture simulator which computes the latency of each (simulated
processor) reference to memory. T his latency is used by the reference stream gen­
erator to choose the next simulated thread to run. The address sequences used to
drive the simulator are generated by instrumenting parallel programs with Symbolic

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 49

Parallel Abstract Execution (SPAE) [5). SPAE is based on the GNU gcc compiler
and allows for tracing parallel programs at any desired levei of detail. Typically, a
simulation run takes from 1 to 100 CPU hours on a lightly loaded Sparcstation2. In
order to simplify the simulator, it is assumed that on data accesses the concurrent
instruction fetch bits in the primary cache and, accesses to local data and instruc­
tions do not cause any traffic on the ring. It is also assumed that page faults have
zero cost.

The Simulated Multiprocessor The f!1Ultiprocessor consists of a number of pro­
cessing nodes interconnected by SCI links. The CPU is a 32-bit lOOMHz SPARC
processar that performs an instruction fetch and possibly a data read/write access
on every clock cycle. The simulated processors always stall on memory references
(both read and write) , thus the memory model is sequential consistency [13) . The
memory hierarchy comprises three leveis: split primary caches, unified secondary
cache and main memory. The primary caches are 8 Kbytes each, direct mapped.
The data cache is write-through with no block allocation on write misses. The sec­
ondary cache is direct mapped and, for private data references it is copy-back with
no block allocation. The secondary cache size is 256 Kbytes. On ali three leveis of
the memory hierarchy, cache and memory !ines (blocks) are 64 bytes, as per the SCI
standard. The memory hierarchy satisfies the multilevel inclusion property and the
SCI coherency protocol actions affect only the secondary caches. The access latency
for the secondary caches is 3 processar cycles. Loading a line from the secondary
cache into the primary caches or SCI controller costs 3 processar cycles plus 2ns per
64 bit word (16ns). Loading a line fromfto memory costs 120ns of access latency
plus 10ns per 64 bit word (SOns}.

The 1-, 2- and 3D k-ary n-cube networks are implemented by baving one or more
pairs of SCI links on each node, with each pair belonging to a different ring. Each
ring in the network is modeled independently. The cost of switching dimension is tive
extra network cycles (lOns). The cost of a transaction is computed by adding up the
memory and network delays on ali rings in the path from requester to responder. The
router employed in the simulator is based on the e-router [3). The e-router is sbown
in [9) to be deadlock-free on SCI-based k-ary n-cubes. The path from source to
destination. is always chosen by inserting the packet at the highest dirnension, where
it travels as far as possible before being switched onto the next lower dimension.
Deadlock avoidance is ensured by the partitioning of network queues into a set of
ordered classes, with the queues in each dimension comprising each of the classes.

The Workload The workload used to investigate the behavior of SCI multipro­
cessors consists of three parallel loops and two real programs. The parallel loops,
based on doall loops are small and exhibit a well defined pattem of memory refer­
ences. The real programs are much larger and are part of the SPLASH suite [16).
A detailed description of mp3d() and vaterO can be found in [16). mp3d0 is sim­
ulated for 50 time steps and vaterO for 4 time steps. The arrays and variables
that hold shared data are allocated to a specific range of addresses. The architecture
simulator treats references to these addresses as references to shared data.

ge () solves a system o f linear equations by Gaussian elimination and backwards
substitution. It is assumed that the system of equations hãs some property that makes
Gaussian elimination without pivoting numerically stable (e.g. diagonal dominance).
The algorithm runs through severa! elimination stages. Each stage consists of a

so XVI Congresso da Sociedade Brasileira de Computação {SBQ

vector scale operation of the form (xk+1 = cxk) followed by a (rank-1) update of
the matrix (A.t+l = Ak + d.xy) where x and y are vectors, c and d are scalars. At
the k-th stage, matrix A has dimension ((n- k) x (n- k + 1)). mmult O computes
C = A x B for square matrices A and B. The algorithm consists of three nested loops
and each processor computes a slice of the result matrix. paths O is a member of
the class of transitive closure algorithms. For a graph with N nodes, paths () finds
the lowest cost path from each node to every other node [4). The vertices are labeled
with the distance between the nodes they join andare stored in the matrix D. Thus,
D[i, j) is the distance between nodes i and j and, absence o f a vertex is represented
by infinite cost. The simulated graph is a random graph with out-degree 6. The
three loops are O(n3) and input data-set sizes are scaled as 1.26 x nodes.

Scalability of data sets For a given program, an architecture is said to be scal­
able ·under corutant work per processar if the execution time remains roughly con­
stant as more processors are added and the data-set size is increased 50 that the
work per processor remains constant. One way of ensuring a uniform distribution
of work across processors is by keeping the number of references to shared data
(roughly) constant. By choosing a large enough number of references, the caches
can be fully and equally exercised, thus minimizing distortion caused by cold starts.
Data-set sizes were chosen 50 that there are at least one million references to shared
data. Detailed reference counts for the simulations reported here can be found in [6).
Table 1 shows, for the programs in the workload the number of molecules simulated
(mp3d0, vaterO), the size of the matrices (ge(), mmultO) and the size of the
graph (paths O).

program data .l. procs. ~ 1 16 64
mp3d0 molecules (103) 3.0 15.2 34.2
vater() molecules 54 237 512

ge() matrix rows 136 343 545
mmultO matrix rows 100 252 400
pathsO graph vertices 70 176 280

Table 1: Data-set sizes for the workload.

3 Cache Coherency

This section compares the performance of the three topologies and relates perform­
ance to sharing behavior and cache coherence activity. Since the simulated machine
sizes are not ali the same on the three topologies, comparisons are drawn for same­
sized multíprocessors. 10 tori were simulated with 16 nodes, 20 with.l6 (4x4) and
64 nodes (8x8) and, 3D tori with 64 nodes (ilx4x4). Detailed statistics for bit, ftush
and purge ratios can be found in [6). The flU8h ratio is the number of cache !ines
fiushed for each reference to the secondary caches. The purge ratio is the number
of sharing-lists purged per write to shared-data and, the sharing-list length is the
number of copies in the sharing-list that have to be purged prior to updating the
ca.ched line.

Figure 1 compares the performance of the workload on 16- and 64-node tori.
Execution time is split into six types of activity: (1) the time spent fetching and
executing instructions, (2) time spent on references to private data, (3) time spent on

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 51

references to node local shared-data, (4) time spent on references. to remote shared­
data, (5) time spent on network delays (netwrk) and, · (6) time spent waiting at
barriers and locks (syncr). Time spent on references to remote data include the cost
of purging sharing lists. References to instructions and private data that miss in the
secondary cache may cause the flushing of a shared line; otherwise, these references
do not cause any network activity. References to node local shared-data that miss
in the secondary cache may cause a line to be flushed to local or remote memory;
the former does not cause network traffic.

16-node 64-node

mp3d·r mp3d·m
mp3d·m mp3d-c

water·r watec-m
c::::::J instr watu·m water~

-privale , .. , &•·m
...

&•·m -I &C-1: -sb.nd --mmult-r mmult·m

-~ mmult-m mmult-c

I' patbs·m -·yncr patbs· r
patbs·m patbs-c

o .I .2 .3 .4 ..5 .6 .7 .8 .9 o . I .2 .3 .4 ..5 .6 .7 .8 .9 1.0
timc(s] time (s)

Figure 1: Performance of 16- and 64-node multiprocessors. The suffixes -r, -m and
-c stand for ring, mesh and cube, respectively. Data sets scale up with machine size.

As can be seen in Figure 1, the performance of mP.3d0 is limited by network
delays and references to shared data. Molecule data in this program is migratory (17] .
At any simulation step, data for a given molecule are mostly used by one processor
but as simulation progresses those data migrate from processor to processor. At the
beginning of each simulation step, many cache !ines are flushed and replaced and this
involves 1 or 2 coherency protocol transactions to flush the old line pl~s 1 or more
to fetch the new line. Towards the end of the steps, as data are updated, stale
read-shared copies have to be invalidated and sharing-lists purged, with 2 or more
transactions if copies exist. On a 16-node ring, every reference to the secondary
cache causes an average 0.41 !ines to be flushed and, every shared-data write causes
an average 0.99 sharing-lists to be purged by invalidating 1.2 copies. On 16-node
meshes, mp3d0 displays virtually the same behavior (the above figures are 0.40,
0.99 and 1.2 respectively) but the higher network capacity yields a performance gain
of 11%. In some of the workload, the variation in the time spent referencing private
and shared data stems from the changes in the mapping of pages to nodes.

mp3d0 displays the same type of behavior on 64-node systems as in 16-node
systems but, because of the larger data sets, the shared-data hit ratios are lower (<
0.58). Thus, processors spend m<;>st of the time waiting for the completion of remote
shared-data references. As before, the larger network capacity o f the 3D torus yields a
performance gain of 15%. v ater O ge O and mmuit O .do not make many references
to remote shared-data and do not use much interconnect bandwidth. Hence they
show only .slight improvements in performance in the higher dimensionality network.

52 XVI Congresso da Sociedade Brasileira de Computação (SBC)

When comparing to 16-node systems, these programs spend more time on references
to shared-data because the data sets scale up with machine size, hence the bit ratios
decrease because of the higher number of capacity, compulsory and coherency misses.

The algorithm used in paths O is not well suited to physically distributed
memory because the processors scan the entire graph matrix when computing the
minimum cost paths. This causes the setup of long sharing-lists whicb bave to be
purged on updates to the cost of patbs. In the mesb, tbe sbared-data read bit
ratios at secondary cacbes is 0.65. Eacb write to shared-data purges an average
0.995 sbaring-lists, invalidating an average 9.3 copies per purge. Besides the higb
leveis of write-sharing, there are many cache-line mapping conflicts since each refer­
ence to secondary caches causes an average 0.90 !ines to be flushed. For the cube,
the above figures are: bit ratio 0.65; 0.994 sbaring-lists purged with 10.4 copies each;
0.89 !ines flusbed per reference. Because of the increase in data set size, on 64-node
machines, paths O spends a large fraction of the time waiting for the completion of
sbared-data references.

The cost of cache coherency In order to assess the overheads imposed by the
SCI cache coherence protocol and interconnection network, simulations were run on
an ideal shared-memory multiprocessor. The IDEAL multiprocessor has a network
with zero propagat.ion delay and a coherence protocol whose actions have zero latency.
Wben a cache line is flushed or purged, the coherence protocol actions take effect
instantaneously. The results for mp3d (), water O and paths O are shown in Figure 2.
For each of the three programs, tbe results for IDEAL are shown above those for the
SCI-based machine. In IDEAL, the segments labeled shared account for references
to shared data in local as well as remote memory. References to local or remote
shared-data have the same cost.

16-node

mp3d·r ~~llil!!:z;::~
mp3d·m~
water·re

water-m ~==-=:•i..:::::n•
paths·r t=IIJ

paths·m t:IJ
O .I .2 .3 .4 ·' .6 .7 .8 .9

lime[s]
·,

64-node

C=:Jinstr

-local

C:::lsharcd

- remote

C=:J netwrlc

- syner

O . I .2 .3 .4 ..5 .6 .7 .8 .9 1.0
time[s)

Figure 2: Performance of IDEAL verstl3 SCI multiprocessor. For each program, the
idPal performance is shown above the simulated performance. The suffixes -r, -m and
-c stand for ring, mesh and cube respectively.

In IDEAL, there is a good degree of overlapping between executing an instruction
and a data reference in the same processor clock cycle (p-cycle). The referen·ces
that miss in either of the caches incur in the cost of a memory access (13 p-cycles).

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 53

Because the Sei-based multiprocessar lacks any latency hiding devices, the latencies
of each and every cache miss are fully exposed e.g. references to remote data cost
at least two round-trip delays (2 x 10-20 p-cycles) in addition to cache and memory
accesses. For the programs shown in Figure 2, the combination of miss, flush and
purge ratios makes the fraction of time spent on shared-data references be about
double that in IDEAL. This doubling accounts for the protocol actions involved in
flushing stale data, purging sharing-lists and fetching fresh data.

4 Bandwidth and Latency
In the Sei-based multiprocessor studied here, programs that endure low hit ratios
and/or have much write-sharing will be slowed down by network congestion. Read
misses may cause the flushing of shared lines; write misses may cause both a flush
and the purging of the sharing-list in addition to fetching the missed line. Each of
these events might trigger one or more protocol transactions across the network and
each transaction consists of one request plus its echo and one response plus its echo to
cross the network. For the workload simulated, the percentage of packets that carry
64 bytes of data is under 10-13%. One half of ali packets are echoes (8 bytes/packet)
and the remaining 37-40% packets carry cache coherency information such as list
pointers and invalidation requests (16-32 bytes/packet).

The underlying transport mechanism in Sei is the asynchronous insertion ring.
The transmission of a packet is completed when its echo is received by the t rans­
mitter. The time lapse between the insertion of a packet into the output buffer and
the receipt of its echo is defined as the round-trip delay of the network. Latencies
incurred in accessing memory and caches are not included. T he static (no traffic)
latency for a 16-node ring is 116ns, for an average packet size of 22 bytes.

Node throughput is the number of symbols inserted by the node per time unit and
is a measure of the amount of coherence-related traffic generated by the processor
and cache/memory controllers. Note that the measured throughput includes packet
header overhead. Data-only throughput is about 20 to 30% of raw throughput.
Given that under 14% of ali packets injected into the network carry 64 bytes of data
while ali except echo packets carry cache coherency information, raw throughput
is a better measure of overall system performance. In a mesh, a single processar
request can generate up to two packets, one on each network dimension. The first
packet is injected by the processar and the second by the ser interface of the node
where the change of dimension occurs. Similarly for cubes. Processor throughput
is thus computed by taking only traffic generated by the on-board processor and
cache/memory controller, and dividing it by the execution time.

The number of packets a node can transmit per time unit depends on the traffic
on the network. The traffic seen by a node at its ring interface(s) is defined as the
number of symbols per time unit that is output by the ring interface(s). It consists
of the packets inserted by the node itself plus the packets passing through that node
towards downstream nodes. Traflic leveis around 600 Mbytes/s are a limiting factor
in the performance of Sei-connected rings since, at these leveis, network delays
are holding down the rate of network requests by processors. Bypass buffers have
utilisations of over 50% and that leaves few opportunities for injecting packets into
the rings.

54 XVI Congresso da Sociedade Brasileira de Computação (SBC)

Throughput versus Latency A plot of throughput versus latency for a given
network shows how well processors can use the available bandwidth. Figure 3 shows
the plots for the three topologies discussed here. The data for each of the programs
keep their relative position on ali four topologies. Network saturation is evident
from the slope of the line on the plot for 16-node ring. mp3d() causes the highest
traflic and endures the longest delays. The traffic leveis on the mesh are much lower
because of its larger network capacity. Hence, mp3d() does not drive the 16-node
mesh into saturation. However, on the 64-node mesh, this program starts to saturate
the mesh. The higher capacity and smaller distances of the cube yield lower delays
on the programs that cause high leveis of traffic.

The !ines of throughput versus latency for 16-node machines show a marked
improvement in the 20 torus relative to the 10 torus. This stems from the increased
network capacity and a lessening of contention for the insertion of messages in to the
rings. The sarne effect can be seen on the 64-node machines, since the data sets
séale up with machine size, the effects of increasing network capacity are readily
apparent on the 20 and 30 tori. With the data sets used in the simulations, there
would be little to be gained from using higher dimensional networks (~ 4) since the
delays incurred in changing dimension would offset gains from increased capacity
and smaller diameter.

In terms of overall performance, cubes are 1Q-15% faster than meshes with pro­
grams that generate high leveis of network traffic, that is, can drive the network
closer to saturation. For programs that produce low leveis of traffic, the differences
between meshes and cubes are negligible. One has to balance the additional cost of
increasing the aimensionality of the network against the potential improvement in
performance. On the 64-node systems, this means using 64 additional SCI interfaces
if a 30 torus is employed - by adding 50%" more link interfaces the speed increases
by 15%. Considering the small increases in performance with the workload used
herE:, the 20 torus is a better choice given the price-performance differences.

g
>. ...
c ..
li

throughput vs 1atency
2W r-----~--~r---~~---,----~----~--,

.IJ I

180 f- .-··············!f]
IJ ..• -~

200 r

160 ~·-··x········x &l··~~H~:~~·::~: ...
<-?-o~---- ..

+·+·++. .•••..•..•. ~---·· ··· · ··········+

140

1W
ring-16 ~

mesh-16 +
mesh-64 IJ
cube·64 X 100

80 I I I I I - 1

o 20 40 60 80 100 120
throughput (MBytels)

-
-

Figure 3: Plots of throughput versus latency for rings, meshes and cubes.

5 Conclusion

This paper presents a performance evaluation study of SCI-based shared memory
multiprocessors. Previous studies of SCI-based systems have concentrated on net-

Vlll Simp. de Arg. de Computadores c Proc. de Alto Desempenho 55

work performance and to some extent ignored the influence of the cache coher­
ence protocol. Here, the interactions between interconnection network and cache
coherence protocol are investigated. A multiprocessar system was "implemented"
in the simulator with components compatible with the current leveis of perform­
ance. Two architectural parameters were investigated, namely machine size, and
interconnection topology. Machines were simulated with sixteen and sixty-four
100MHz Sparc processors connected in 1D, 2D and 3D tori.

In arder to assess the overheads imposed by the cache coherency protocol, the
simulated multiprocessar was compared to an ideal machine with zero latency coher­
ency protocol and interconnect. For tire workload simulated, it was found that the
cache coherence protocol increases the fraction of execution time spent on references
to shared-data by between 40 and 160%. On top of that, network latencies should
be considered as well. Latency tolerating mechanisms, write buffers as a minimum,
should be implemented in the nades. Otherwise, not unlike other distributed memory
systems, performance would be- rather poor.

References
[1) N M Aboulenein, J R Goodman, S Gjessing, and P J Woest. Hardware support

for synchronisation in the Scalable Coherent Interface (SCI). In Proc of the 8th
Intl Parallel Processing Symposium, pages 141-150, Cancún, 1994. IEEE Comp
Soe Press.

(2) J A C Bogaerts, R Di vi à, H Müller, and J F Renardy. SCI based data acquisition
architectures. IEEE 1rans. on Nuclear Sciences, 39(2}, April1992.

[3) William J Dally and Charles L Seitz. Deadlock-Free message routing in multi­
processar interconnection networks. IEEE 1rans. on Computers, C-36(5):547-
553, May 1987.

(4) N Deo, C Y Pang, and R E Lord. Two parallel algorithms for shortest path
problems. Tech Report CS-80-059, Washington State Univ, March 1980.

(5) D Grunwald, G J Nutt, D Wagner, and B Zorn. A parallel execution eval­
uation testbed. Tech Report CU-CS-560-91, Dept of Computer Science, Univ
of Colorado, November 1991.

(6) Roberto A Hexsel. A Quantitative Performance Evaluati'on of SCI Memory
Hierarchies. PhD dissertation, Dept of Computer Science, Univ of Edinburgh,
October 1994. Tech Report CST-112-94.

(7) Roberto A Hexsel and Nigel P Topham. The performance of SCI multiprocessar
rings. Journal of the Brazilian Computer Society, 1(2):24- 37, July 1995.

(8] IEEE. IEEE Std 1596-1992 - Standard for Scalable Coherent Interface. IEEE,
1992.

[9) Ross E Johnson and James R Goodman. Interconnect topologies with point-to­
point rings. Tech Report 1058, Computer Sciences Dept, Univ of Wisconsin­
Madison, December 1991.

[10) A Kãgi, N Aboulenein, D C Burger, and J Goodman. An analysis of the in­
teractions of overhead-reducing techniques for shared-memory multiprocessors.
In Proc of the Intl Conf on Supercomputing (ICS95}, pages 11-20, Barcelona,
July 1995. ACM P:~ss.

56 XVI Congresso da Sociedade Brasileira de Computação (SBC)

[11] S T Kofuji, C A P da Silva, L G G Katake, M H S Cintra, and J A Zuffo.
Anéis e hierarquias de anéis com interconexões ANSI/IEEE Sei. In VII Simp
Brasileiro de Arquit de Computadores - Proc de Alto Desempenho, pages 11- 25,
julho 1995.

[12] S T Kofuji, M X T Delgado, E D M Ordonez, and J A Zuffo. Efeito da
migração de páginas no SPADE-I: um multiprocessador de larga escala com
memória compartilhada. In XXII Semin Integrado de Software e Hardware,
pages 61-73, julho 1995.

[13] Leslie Lamport. How to make a multiprocessar that correctly executes mul­
tiprocess programs. IEEE 1Tans. on Computers, C-28(9):690- 691, September
1979.

[14] S L Scott, J R Goodman, and M K Vernon. Performance of the Sei ring. In Proc.
19th Intl. Symp. on Computer Architecture, pages 403- 414. AeM SIGAReH
eomp Arch News 20(2), May 1992. ·

[15] Steven L Scott and James R Goodman. The impact of pipelined channels
on k-ary n-eube networks. IEEE 1Tans. on Parallel and Distributed Systems,
5(1):2- 16, January 1994.

[16] J P Singh, W-D Weber, and A Gupta. SPLASH: Stanford ParalleL Applica­
tions for SHared-memory. Technical Report eSL-TR-91-469, eomputer Science
Dept, Stanford Univ, April 1991. Also in AeM SIGAReH eomp Arch News
20(1).

[17] Wolf-Dietrich Weber and Anoop Gupta. Analysis of cache invalidation patterns
ln multiprocessors. In :Jrd Intl. Conf. on Architectural Support for Progr. Lang.
and Oper. Sys. , pages 243- 256. AeM SIGAReH eomp Arch News 17(2), April
1989.

[18] Philip J Woest and James R Goodman. An analysis of synchronization mechan­
isms in shared-memory multiprocessors. Tech Report 1005, eomputer Sciences
Dept, Uni v of Wisconsin- Madison, April 1991.

