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Abstract The Scalable Coherent Interface {SCI) is an IEEE/ ANSI standard that 
defines a hardware platform for scalable shared-memory multiprocessors. This pa­
per contains a quanti tative performance evaluation o f SCI-connected multiprocessors 
that assesses both the communication and cache coherence subsystems. 1D, 2D and 
3D tori with 16 and 64 nodes are investigated. For the architecture {100MHz Sparc, 
2 leveis of caches) and workload simulated, it was f ound that raw network band­
width seen by a processing element is under 100Mbytes/s. The 3-D toros is 10-15% 
fast er than the 2-D toros for programs that generate high leveis of network traffic. 
Otherwise, the differences in performance between 2-D and 3-D tori are negligible. 

1 Introduction 

One of the architectural difficulties involved in the constr~ction of efficient logically­
shared physically-distributed memory multiprocessors is the interconnection system 
between processors and memory. Such interconnect must provide a low-latency high­
bandwidth path between processors and memory in addition to efficient support to 
the physically-distributed logically-shared memory model. 

The Scalable Coherent Interface (SCI) is an ANSI/ IEEE standard [8) for a coher­
ent memory interface to as many as 65520 processing nades and defines a network 
that, in theory, satisfies the above criteria. SCI defines a physical layer (cabling, 
clock frequencies), a logical communication protocol (unidirectional point-to-point 
links) and a cache coherent protocol (invalidation-based distributed directory). The 
performance of the communication layer of SCI has been thoroughly investigated, 
both analytically and by simulation [14, 15, 2) and, it does satisfy the high-bandwidth 
low-latency requirement. 

Bogaerts et. ai. , in [2) evaluate the performance of large SCI fabrics to be used in 
data gathering and preprocessing in CERN's Large Hadron Collider. The technolo­
gical parameters used are the same as here and their results are in broad agreement 
with those in [14), i.e., ser provides a low-latency high-bandwidth interconnect. 
Kofuji et. ai. , in [11), report on simulation experiments with medium-sized multi­
processors using the parameters of a current implementation of a subset of the SCI 
standard (125Mbytes/ s per link). [12) contains simulation results on page migration 
in an SCI-based multiprocessor. [7) presents simulation results that relate cache 
coherency and interconnect traffic for SCI rings. 
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SCI provides a simple yet efficient synchronization mechanism called Queue on 
Lock Bit (QOLB). Its implementations and performance are compareci to other syn­
chronization mechanisms in [18, 1). As they report, QOLB fits quite naturally with 
SCI's distributed sharing-lists. Kãgi et. ai. present simulation results of an architec­
ture and workload similar to those discussed here [10) . They study the interactions of 
techniques to reduce the overheads associated to physically distributed memory. The 
techniques investigated are synchronization with QOLB, weaker memory consistency 
and cache coherence protocol optimizations for pair-wise sharing, ali of which are 
supported by SCI. 

The performance of shared-memory multiprocessors depcnds on a fast network 
as well as on efficient implementation of the shared-memory abstraction. One tech­
nique widely employed in implementing shared-memory is to use a cache coherence 
protocol to keep the physically distributed memory in a coherent state. This pa­
per investigates the interactions between cache coherence and network latencies on 
an SCI-based multiprocessar executing real programs. Some of the questions we 
attempt to answer are "what is the cost of sharing data using SCI's distributed 
directory protocol under differing patterns of sharing?" and, "how efficiently does 
coherency related traffic uses SCI's high bandwidth network?". Answers to these 
questions can be fóund by looking at the behavior of a machine, with processors 
and a memory hierarchy, executing real code, since in such a system ali of SCI's 
components interact in a realistic manner. 

This paper contains a performance evaluation of a family of multiprocessors 
based on SCI interconnects where the influence of the cache coherence protocol on 
performance is investigated. The experiments also relate the performance of the 
memory hierarchy to that of the interconnect. The topologies studied are lD (rings) , 
2D (meshes) and 3D tori (cubes) with 16 and 64 processors. The architecture simu­
lator is driven with address sequences generated as a by-product of the execution of 
real programs. The workload consists of two programs from the SPLASH suíte [16) 
(MP3D and Water) and three parallel loops (Gaussian elimination, matrix multi­
plication and ali-to-ali minimum cost patl1s). The simulation environment and the 
workload used to drive the architecture simulator are described in Section 2. Sec­
tion 3 discusses the overheads imposed by the cache coherency protocol. Section 4 
discusses the network performance of SCr 1D, 2D and 3D tori. Section 5 presents 
our conclusions. 

2 Simulation Environment 
The architecture simulator consists of an approximate model of the SCr link in­
terfaces and of a detailed model of the distributed cache coherence protocol. The 
model of the ring interfaces is described in [6) . The traffic conditions are meas­
ured at 101ls intervals and network delays are estimated from these measurements. 
The model of the cache coherence protocol mimics the "typical set coherence pro­
toco!" as defined in [8). The simulator consists of two Unix processes: the memory 
reference stream generator and the architecture simulator. The reference stream is 
piped to the architecture simulator which computes the latency of each (simulated 
processor) reference to memory. T his latency is used by the reference stream gen­
erator to choose the next simulated thread to run. The address sequences used to 
drive the simulator are generated by instrumenting parallel programs with Symbolic 
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Parallel Abstract Execution (SPAE) [5). SPAE is based on the GNU gcc compiler 
and allows for tracing parallel programs at any desired levei of detail. Typically, a 
simulation run takes from 1 to 100 CPU hours on a lightly loaded Sparcstation2. In 
order to simplify the simulator, it is assumed that on data accesses the concurrent 
instruction fetch bits in the primary cache and, accesses to local data and instruc­
tions do not cause any traffic on the ring. It is also assumed that page faults have 
zero cost. 

The Simulated Multiprocessor The f!1Ultiprocessor consists of a number of pro­
cessing nodes interconnected by SCI links. The CPU is a 32-bit lOOMHz SPARC 
processar that performs an instruction fetch and possibly a data read/write access 
on every clock cycle. The simulated processors always stall on memory references 
(both read and write) , thus the memory model is sequential consistency [13) . The 
memory hierarchy comprises three leveis: split primary caches, unified secondary 
cache and main memory. The primary caches are 8 Kbytes each, direct mapped. 
The data cache is write-through with no block allocation on write misses. The sec­
ondary cache is direct mapped and, for private data references it is copy-back with 
no block allocation. The secondary cache size is 256 Kbytes. On ali three leveis of 
the memory hierarchy, cache and memory !ines (blocks) are 64 bytes, as per the SCI 
standard. The memory hierarchy satisfies the multilevel inclusion property and the 
SCI coherency protocol actions affect only the secondary caches. The access latency 
for the secondary caches is 3 processar cycles. Loading a line from the secondary 
cache into the primary caches or SCI controller costs 3 processar cycles plus 2ns per 
64 bit word (16ns). Loading a line fromfto memory costs 120ns of access latency 
plus 10ns per 64 bit word (SOns}. 

The 1-, 2- and 3D k-ary n-cube networks are implemented by baving one or more 
pairs of SCI links on each node, with each pair belonging to a different ring. Each 
ring in the network is modeled independently. The cost of switching dimension is tive 
extra network cycles (lOns). The cost of a transaction is computed by adding up the 
memory and network delays on ali rings in the path from requester to responder. The 
router employed in the simulator is based on the e-router [3). The e-router is sbown 
in [9) to be deadlock-free on SCI-based k-ary n-cubes. The path from source to 
destination. is always chosen by inserting the packet at the highest dirnension, where 
it travels as far as possible before being switched onto the next lower dimension. 
Deadlock avoidance is ensured by the partitioning of network queues into a set of 
ordered classes, with the queues in each dimension comprising each of the classes. 

The Workload The workload used to investigate the behavior of SCI multipro­
cessors consists of three parallel loops and two real programs. The parallel loops, 
based on doall loops are small and exhibit a well defined pattem of memory refer­
ences. The real programs are much larger and are part of the SPLASH suite [16). 
A detailed description of mp3d() and vaterO can be found in [16). mp3d0 is sim­
ulated for 50 time steps and vaterO for 4 time steps. The arrays and variables 
that hold shared data are allocated to a specific range of addresses. The architecture 
simulator treats references to these addresses as references to shared data. 

ge () solves a system o f linear equations by Gaussian elimination and backwards 
substitution. It is assumed that the system of equations hãs some property that makes 
Gaussian elimination without pivoting numerically stable (e.g. diagonal dominance). 
The algorithm runs through severa! elimination stages. Each stage consists of a 
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vector scale operation of the form (xk+1 = cxk) followed by a (rank-1) update of 
the matrix (A.t+l = Ak + d.xy) where x and y are vectors, c and d are scalars. At 
the k-th stage, matrix A has dimension ((n- k) x (n- k + 1)). mmult O computes 
C = A x B for square matrices A and B. The algorithm consists of three nested loops 
and each processor computes a slice of the result matrix. paths O is a member of 
the class of transitive closure algorithms. For a graph with N nodes, paths () finds 
the lowest cost path from each node to every other node [4). The vertices are labeled 
with the distance between the nodes they join andare stored in the matrix D. Thus, 
D[i, j) is the distance between nodes i and j and, absence o f a vertex is represented 
by infinite cost. The simulated graph is a random graph with out-degree 6. The 
three loops are O(n3) and input data-set sizes are scaled as 1.26 x nodes. 

Scalability of data sets For a given program, an architecture is said to be scal­
able ·under corutant work per processar if the execution time remains roughly con­
stant as more processors are added and the data-set size is increased 50 that the 
work per processor remains constant. One way of ensuring a uniform distribution 
of work across processors is by keeping the number of references to shared data 
(roughly) constant. By choosing a large enough number of references, the caches 
can be fully and equally exercised, thus minimizing distortion caused by cold starts. 
Data-set sizes were chosen 50 that there are at least one million references to shared 
data. Detailed reference counts for the simulations reported here can be found in [6). 
Table 1 shows, for the programs in the workload the number of molecules simulated 
(mp3d0, vaterO), the size of the matrices (ge(), mmultO ) and the size of the 
graph (paths O). 

program data .l. procs. ~ 1 16 64 
mp3d0 molecules (103) 3.0 15.2 34.2 
vater() molecules 54 237 512 

ge() matrix rows 136 343 545 
mmultO matrix rows 100 252 400 
pathsO graph vertices 70 176 280 

Table 1: Data-set sizes for the workload. 

3 Cache Coherency 

This section compares the performance of the three topologies and relates perform­
ance to sharing behavior and cache coherence activity. Since the simulated machine 
sizes are not ali the same on the three topologies, comparisons are drawn for same­
sized multíprocessors. 10 tori were simulated with 16 nodes, 20 with.l6 (4x4) and 
64 nodes (8x8) and, 3D tori with 64 nodes (ilx4x4). Detailed statistics for bit, ftush 
and purge ratios can be found in [6). The flU8h ratio is the number of cache !ines 
fiushed for each reference to the secondary caches. The purge ratio is the number 
of sharing-lists purged per write to shared-data and, the sharing-list length is the 
number of copies in the sharing-list that have to be purged prior to updating the 
ca.ched line. 

Figure 1 compares the performance of the workload on 16- and 64-node tori. 
Execution time is split into six types of activity: (1) the time spent fetching and 
executing instructions, (2) time spent on references to private data, (3) time spent on 
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references to node local shared-data, ( 4) time spent on references. to remote shared­
data, (5) time spent on network delays (netwrk) and, · (6) time spent waiting at 
barriers and locks (syncr). Time spent on references to remote data include the cost 
of purging sharing lists. References to instructions and private data that miss in the 
secondary cache may cause the flushing of a shared line; otherwise, these references 
do not cause any network activity. References to node local shared-data that miss 
in the secondary cache may cause a line to be flushed to local or remote memory; 
the former does not cause network traffic. 

16-node 64-node 

mp3d·r mp3d·m 
mp3d·m mp3d-c 

water·r watec-m 
c::::::J instr watu·m water~ 
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&•·m -I &C-1: -sb.nd --mmult-r mmult·m 
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Figure 1: Performance of 16- and 64-node multiprocessors. The suffixes -r, -m and 
-c stand for ring, mesh and cube, respectively. Data sets scale up with machine size. 

As can be seen in Figure 1, the performance of mP.3d0 is limited by network 
delays and references to shared data. Molecule data in this program is migratory (17] . 
At any simulation step, data for a given molecule are mostly used by one processor 
but as simulation progresses those data migrate from processor to processor. At the 
beginning of each simulation step, many cache !ines are flushed and replaced and this 
involves 1 or 2 coherency protocol transactions to flush the old line pl~s 1 or more 
to fetch the new line. Towards the end of the steps, as data are updated, stale 
read-shared copies have to be invalidated and sharing-lists purged, with 2 or more 
transactions if copies exist. On a 16-node ring, every reference to the secondary 
cache causes an average 0.41 !ines to be flushed and, every shared-data write causes 
an average 0.99 sharing-lists to be purged by invalidating 1.2 copies. On 16-node 
meshes, mp3d0 displays virtually the same behavior (the above figures are 0.40, 
0.99 and 1.2 respectively) but the higher network capacity yields a performance gain 
of 11%. In some of the workload, the variation in the time spent referencing private 
and shared data stems from the changes in the mapping of pages to nodes. 

mp3d0 displays the same type of behavior on 64-node systems as in 16-node 
systems but, because of the larger data sets, the shared-data hit ratios are lower ( < 
0.58). Thus, processors spend m<;>st of the time waiting for the completion of remote 
shared-data references. As before, the larger network capacity o f the 3D torus yields a 
performance gain of 15%. v ater O ge O and mmuit O .do not make many references 
to remote shared-data and do not use much interconnect bandwidth. Hence they 
show only .slight improvements in performance in the higher dimensionality network. 
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When comparing to 16-node systems, these programs spend more time on references 
to shared-data because the data sets scale up with machine size, hence the bit ratios 
decrease because of the higher number of capacity, compulsory and coherency misses. 

The algorithm used in paths O is not well suited to physically distributed 
memory because the processors scan the entire graph matrix when computing the 
minimum cost paths. This causes the setup of long sharing-lists whicb bave to be 
purged on updates to the cost of patbs. In the mesb, tbe sbared-data read bit 
ratios at secondary cacbes is 0.65. Eacb write to shared-data purges an average 
0.995 sbaring-lists, invalidating an average 9.3 copies per purge. Besides the higb 
leveis of write-sharing, there are many cache-line mapping conflicts since each refer­
ence to secondary caches causes an average 0.90 !ines to be flushed. For the cube, 
the above figures are: bit ratio 0.65; 0.994 sbaring-lists purged with 10.4 copies each; 
0.89 !ines flusbed per reference. Because of the increase in data set size, on 64-node 
machines, paths O spends a large fraction of the time waiting for the completion of 
sbared-data references. 

The cost of cache coherency In order to assess the overheads imposed by the 
SCI cache coherence protocol and interconnection network, simulations were run on 
an ideal shared-memory multiprocessor. The IDEAL multiprocessor has a network 
with zero propagat.ion delay and a coherence protocol whose actions have zero latency. 
Wben a cache line is flushed or purged, the coherence protocol actions take effect 
instantaneously. The results for mp3d (), water O and paths O are shown in Figure 2. 
For each of the three programs, tbe results for IDEAL are shown above those for the 
SCI-based machine. In IDEAL, the segments labeled shared account for references 
to shared data in local as well as remote memory. References to local or remote 
shared-data have the same cost. 
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mp3d·r ~~llil!!:z;::~ 
mp3d·m~ 
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Figure 2: Performance of IDEAL verstl3 SCI multiprocessor. For each program, the 
idPal performance is shown above the simulated performance. The suffixes -r, -m and 
-c stand for ring, mesh and cube respectively. 

In IDEAL, there is a good degree of overlapping between executing an instruction 
and a data reference in the same processor clock cycle (p-cycle). The referen·ces 
that miss in either of the caches incur in the cost of a memory access (13 p-cycles). 



VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 53 

Because the Sei-based multiprocessar lacks any latency hiding devices, the latencies 
of each and every cache miss are fully exposed e.g. references to remote data cost 
at least two round-trip delays (2 x 10-20 p-cycles) in addition to cache and memory 
accesses. For the programs shown in Figure 2, the combination of miss, flush and 
purge ratios makes the fraction of time spent on shared-data references be about 
double that in IDEAL. This doubling accounts for the protocol actions involved in 
flushing stale data, purging sharing-lists and fetching fresh data. 

4 Bandwidth and Latency 
In the Sei-based multiprocessor studied here, programs that endure low hit ratios 
and/or have much write-sharing will be slowed down by network congestion. Read 
misses may cause the flushing of shared lines; write misses may cause both a flush 
and the purging of the sharing-list in addition to fetching the missed line. Each of 
these events might trigger one or more protocol transactions across the network and 
each transaction consists of one request plus its echo and one response plus its echo to 
cross the network. For the workload simulated, the percentage of packets that carry 
64 bytes of data is under 10-13%. One half of ali packets are echoes (8 bytes/packet) 
and the remaining 37-40% packets carry cache coherency information such as list 
pointers and invalidation requests (16-32 bytes/packet). 

The underlying transport mechanism in Sei is the asynchronous insertion ring. 
The transmission of a packet is completed when its echo is received by the t rans­
mitter. The time lapse between the insertion of a packet into the output buffer and 
the receipt of its echo is defined as the round-trip delay of the network. Latencies 
incurred in accessing memory and caches are not included. T he static (no traffic) 
latency for a 16-node ring is 116ns, for an average packet size of 22 bytes. 

Node throughput is the number of symbols inserted by the node per time unit and 
is a measure of the amount of coherence-related traffic generated by the processor 
and cache/memory controllers. Note that the measured throughput includes packet 
header overhead. Data-only throughput is about 20 to 30% of raw throughput. 
Given that under 14% of ali packets injected into the network carry 64 bytes of data 
while ali except echo packets carry cache coherency information, raw throughput 
is a better measure of overall system performance. In a mesh, a single processar 
request can generate up to two packets, one on each network dimension. The first 
packet is injected by the processar and the second by the ser interface of the node 
where the change of dimension occurs. Similarly for cubes. Processor throughput 
is thus computed by taking only traffic generated by the on-board processor and 
cache/memory controller, and dividing it by the execution time. 

The number of packets a node can transmit per time unit depends on the traffic 
on the network. The traffic seen by a node at its ring interface(s) is defined as the 
number of symbols per time unit that is output by the ring interface(s). It consists 
of the packets inserted by the node itself plus the packets passing through that node 
towards downstream nodes. Traflic leveis around 600 Mbytes/s are a limiting factor 
in the performance of Sei-connected rings since, at these leveis, network delays 
are holding down the rate of network requests by processors. Bypass buffers have 
utilisations of over 50% and that leaves few opportunities for injecting packets into 
the rings. 
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Throughput versus Latency A plot of throughput versus latency for a given 
network shows how well processors can use the available bandwidth. Figure 3 shows 
the plots for the three topologies discussed here. The data for each of the programs 
keep their relative position on ali four topologies. Network saturation is evident 
from the slope of the line on the plot for 16-node ring. mp3d() causes the highest 
traflic and endures the longest delays. The traffic leveis on the mesh are much lower 
because of its larger network capacity. Hence, mp3d() does not drive the 16-node 
mesh into saturation. However, on the 64-node mesh, this program starts to saturate 
the mesh. The higher capacity and smaller distances of the cube yield lower delays 
on the programs that cause high leveis of traffic. 

The !ines of throughput versus latency for 16-node machines show a marked 
improvement in the 20 torus relative to the 10 torus. This stems from the increased 
network capacity and a lessening of contention for the insertion of messages in to the 
rings. The sarne effect can be seen on the 64-node machines, since the data sets 
séale up with machine size, the effects of increasing network capacity are readily 
apparent on the 20 and 30 tori. With the data sets used in the simulations, there 
would be little to be gained from using higher dimensional networks (~ 4) since the 
delays incurred in changing dimension would offset gains from increased capacity 
and smaller diameter. 

In terms of overall performance, cubes are 1Q-15% faster than meshes with pro­
grams that generate high leveis of network traffic, that is, can drive the network 
closer to saturation. For programs that produce low leveis of traffic, the differences 
between meshes and cubes are negligible. One has to balance the additional cost of 
increasing the aimensionality of the network against the potential improvement in 
performance. On the 64-node systems, this means using 64 additional SCI interfaces 
if a 30 torus is employed - by adding 50%" more link interfaces the speed increases 
by 15%. Considering the small increases in performance with the workload used 
herE:, the 20 torus is a better choice given the price-performance differences. 
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Figure 3: Plots of throughput versus latency for rings, meshes and cubes. 

5 Conclusion 

This paper presents a performance evaluation study of SCI-based shared memory 
multiprocessors. Previous studies of SCI-based systems have concentrated on net-
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work performance and to some extent ignored the influence of the cache coher­
ence protocol. Here, the interactions between interconnection network and cache 
coherence protocol are investigated. A multiprocessar system was "implemented" 
in the simulator with components compatible with the current leveis of perform­
ance. Two architectural parameters were investigated, namely machine size, and 
interconnection topology. Machines were simulated with sixteen and sixty-four 
100MHz Sparc processors connected in 1D, 2D and 3D tori. 

In arder to assess the overheads imposed by the cache coherency protocol, the 
simulated multiprocessar was compared to an ideal machine with zero latency coher­
ency protocol and interconnect. For tire workload simulated, it was found that the 
cache coherence protocol increases the fraction of execution time spent on references 
to shared-data by between 40 and 160%. On top of that, network latencies should 
be considered as well. Latency tolerating mechanisms, write buffers as a minimum, 
should be implemented in the nades. Otherwise, not unlike other distributed memory 
systems, performance would be- rather poor. 
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