VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho

USING RISCS ON DIGITAL SIGNAL PROCESSING

Eduardo B. Wanderley Netto Celso L. Mendes Osamu Saotome
eduardo@ctfrn.br celso@dpi.inpe.br osamu(@ita.cta.br
ETFRN-CEFET/RN INPE ITA
Av. Sen. Salgado Filho, 1559 Caixa Postal 515 Pga Mal. Eduardo Gomes, 50
Natal / RN S#o José dos Campos / SP Sio José dos Campos / SP
Abstract

RISC processors have proved fo be efficient for processing general purpose tasks.
Recently, RISCs have been successfully used also on some Digital Signal Processing
(DSP) applications. This work shows how a generic RISC processor (DLX) performs on
DSP algorithms, in comparison to a conventional digital signal processor, the TMS-
320C25. As a contribution of this work, we propose and evaluate a RISP (RISC
dedicated for DSP) processor: dfxdsp. To measure performance, we use DSP kernels
with simulators of the three processors. Our simulation results show that slight
modifications on modern, general purpose RISCs can promote better performance for
some kernels, even in comparison to a dedicated processor.

1. INTRODUCTION
Since the last decade RISC processors have been studied and present good

performance characteristics in comparison to its counterpart family, the CISC
processors (a good introduction to RISC processors can be found in [5]). The RISC
philosophy was fastly spread among scientists and manufacturers. In 1992, a new
approach to using RISC processors on Digital Signal Processing (DSP) has been taken.
Some compelling advantages of modern RISC processors match DSP requirements, like
fast instruction cycle, efficient use of pipeline, zero branching overhead, and floating
point capabilities. These factors provided RISC processors with a good performance’
when dealing with DSP.

In this paper, we present some measurements on performance and instruction set
usage of a typical digital signal processor (Texas Instruments’ TMS-320C25) and of a
generic RISC processor (DLX) proposed by Hennessy and Paterson [2]. Then we
propose the architecture of a new RISC processor designed for DSP — the dlxdsp,
including its performance characteristics in comparison to the other processors studied.

The rest of this paper is organized as follows. In Section 2 we present the
programs and the metric used in our performance study, and in Section 3 the simulation
infrastructure in which we conducted our experiments. Section 4 contrasts the behavior
of a dedicated digital signal processor and of a general purpose RISC processor. In
Section 5 we introduce an enhanced RISC processor, and show corresponding
simulation results in Section 6. Finally, Section 7 contains our conclusions and future

work.

100

XVI Congresso da Sociedade Brasileira de Computagio (SBC)

2. BENCHMARKING AND METRICS

The benchmarking methodology and the metrics used determine the reliability
of the results shown in this work. The following subsections detail the methods applied.

2.1. Benchmarks
The best benchmark is the application itself, but sometimes it is not possible (or

desirable) to use it. In these cases the choice is to use an application similar to that will
be really used. Another approach is to use fragments of code which are frequently used
in the application area (called kernels). Some advantages of using this last method in
DSP are [3]: relevance; easy of specification; easy of optimization; and easy of
implementation. To compose the set of algorithms used in this work, the base was the

DSPstone [7]. The considered fragments were:

e 67 taps, low pass, FIR Filter, o 6" order, low pass, 1R filter —
cascadable implementation;
e 6™ order, low pass, IIR filter - o Adaptive FIR filter, order 67,
canonic implementation; with LMS adaptation;
o 8th order discrete cosine transform; e Two 8x8 matrix multiplication;

e 256 point complex DIT FFT.

2.2. Metrics frame
The metrics used was composed by the following CPU time equation [2]:

Cycles Time
Instructions Cycles Eq. 1

Time, = Intructions x

The number of instructions used in an algorithm depends, among other factors, on the
ability of the compiler to schedule the right instructions at the right time. So, the
compiler technology strongly determines the code size. To minimize the compiler’s
influence on the architectural parameters measured, all the algorithms were hand-coded
like in [3].

The second term on the right side of Eq. 1 is the CPI (average number of cycles
per instruction). This is a dynamically measurable parameter, which takes into account
factors like cache misses, pipeline stalls, interruptions, etc. The CPI has the most
complex determinants: the instruction set architecture is one of the most important. In
this work, the memory system was considered perfect. It means that cache miss
problems were not investigated and all data needed was immediately available. /O was

not considered either. Thus, the CPI presented here is in fact an approximation.

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 101

Nevertheless, those parameters that were not taken into account are not expected to
affect strongly the obtained results, because of the nature of the algorithms we are
dealing with: in most of them the data set sizes should fit a reasonable cache (see details
on [4]), and there is nearly no I/O involved after data are in memory.

3. SIMULATION ENVIRONMENT

The following subsections have brief descriptions of the studied processors.

3.1. Processors

The digital signal processor used was the Texas Instruments’ TMS-320C25, in
which we find multiply-and-accumulate instructions (MAC), three-stage pipeline,
Harvard architecture, on-chip RAM and ROM, fixed-point ALU and an auxiliary ALU
(ARAU) for pointer incrementation/decrementation, barrel shifters for adjusting results,
etc. There are special operand registers to evaluate MAC 6perations, to point to
memory pages, etc. This can be considered a limiting factor for temporary storage of
values. A complete description of the TMS-320C25 can be found in [6].

The RISC model used was the DLX. This processor has thirty-two 32-bit general
purpose registers and a set (of register) of equal size for floating point operations. There
are four specialized arithmetic units (FP multiplication, FP add, FP divide and Integer
operations), some control registers (PC = Program Counter, IAR = Interrupt Address
Register,...) and delayed branch is implemented.

Figure 1 presents a Kiviat graph with some architectural parameters of the
processors studied. The circle in this graph shows the usual parameters for RISC’s [1].

Pipeline Depth Number of
| Addressing
Modes

Number of "~.,
Integer Reg's Ny

Figure 1: Kiviat graph showing DLX and TMS-320C25 parameters.

102

XVI Congresso da Sociedade Brasileira de Computacio (SBC)

3.2. Simulators

To monitor the performance of these architectures, we used two simulators. The
first one was the TMS-320 simulator, available from Texas Instruments; it provides
detailed information about the execution of a given program, like number of executed
instructions, execution traces, etc. The second simulator was a public domain tool
called DLXsim, which provides complete information on the execution of a program by
DLX. In this tool, the source code is also available, thus making easy the task of
experimentation regarding modifications to the original DLX’s architecture.

4. INSTRUCTION SET USAGE
The following subsections show instruction set usage by the TMS-320C25 and

DLX processors on the selected kemels. This is quite important for a new instruction set
design suitable for DSP.

4.1. TMS-320C25

The TMS-320C25 instruction set has 133 instructions and 9 addressing modes
(considering 7 cases of indirect addressing). Figure 2(a) presents the most used
instructions: MACD and MAC (multiply-and-accumulate), SACH (store accumulator
high), APAC (add), and MPY (multiply). If the instructions are classified in Control,
Arithmetic and Memory, the kind of load submitted to the processor is highlighted as in
Figure 2(b). As we expect from a DSP load, the arithmetic instructions are predominant.
So, Figure 2 also shows how Arithmetic instructions are used. It is easy to realize how
important multiply-and-add instructions are.

15 30 45 60 75
(b)

‘Figure 2: Instruction set frequency of use on the TMS-320C25,

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 103

Table 1: Addressing Mode usage on the TMS-320C25.
Addressing Mode % Addressing Mode %
Post-decrement indirect 24,59 | Direct 19,44
Post-increment indirect 24,66 | Immediate 12,46

Table 1 refers to the addressing mode usage frequency. Post-increment and post-
decrement indirect addressing modes have a compelling role on this distribution. It
means that data items are regularly disposed in memory. Together, they represent
almost 50% of use.

4.2. DLX

The DLX measurements on instruction set usage are presented in Figure 3. The
most used instructions are: LD (load), BNEZ (branch), SUBI (subtract), ADDD (add),
and MULTD (multiply). Memory access is now highlighted because DLX is a
LOAD/STORE machine, so it can not execute arithmetic instructions with data in
memory like the TMS-320C25 does. Other instructions that are frequently used are
branches and subtractions. That is because DLX has only one addressing mode. Thus, to
implement access to neighbor positions in memory (remember that DSP has a good
uniformity on data access in memory), subtraction instructions are used to decrement
pointers inside a loop. This corresponds to a post-decrement addressing mode.

An interesting result is that about 60% of instruction set usage is distributed only
among five instructions. This is almost the same result for the TMS-320C25. As DLX is
a RISC, this result might seem not to be realistic. Nevertheless, it happens because DSP

problems are quite uniform [8].

20(fr

LD BNEZ SUBI ADDD MULTD

Asithmetic 52.10%

Memory 37.26%

Coatrol umfss : :
0 10 20 30 40 50
(b)
Figure 3: DLX instruction set usage frequency.

104

XVI Congresso da Sociedade Brasileira de Computagio (SBC)

5. RISP PROPOSAL: dixdsp

The motivation to look for a specialized architecture lies on the uniformity of
the problem. DSP presents this characteristic very impressively. dixdsp is a RISP (RISC
for Signal Processing) which is designed based on results presented here. dixdsp is an
extension to DLX, and thus maintains many of the characteristics that are present on
DLX (including its number of cycles per instructions). However, the architecture was
slightly modified to support essential DSP features.

The main modifications to the DLX architecture were a new Floating-Point
arithmetic unit, to provide multiply-and-add operation support, and a decrementer
connected to integer registers, to provide automatic decrementation of pointers. By
using adequate hardware support, such modifications would not cause any change in
the clock cycle relatively to DLX (for details, see [8]). With those architectural
modifications, five new instructions were added to the original instruction set of DLX:
DBNEZd and DBNEZ £ (Decrement (of 8 or 4 respectively)' and Branch if Not Equal to
Zero), CMv1lt (Compare and Modify if value is lower then 0), MACd and MACFE
(Multiply and ACcumulate for double and single precisions respectively).

The question is: ‘would these few modifications make a difference? To answer
this question, we conducted extensive simulations. In the next section, we show the
most important results.

6. PERFORMANCE EVALUATION
To have a basis for comparison between the architectures, we show in the

following subsections the results for the processors on each analyzed item of
performance. The assumed test conditions were: five clock cycles for dlxdsp’s MAC
(multiply-and-accumulate) unit and 40MHz of clock frequency.

6.1. FIR Filter

Figure 4 shows the obtained results. TMS-320C25 presents great facilities to
implement FIR filters. Basically, only two instructions are responsible for FIR
processing. Thus, the number of executed instructions is much smaller on TMS-320C25
than on the other processors, although the number of clock cycles is almost the same for
'C25 and dixdsp. This happens because each machine cycle on TMS-320C25 has four
clock cycles, while on DLX and dlxdsp it has only one.

" Eight bytes is the space between two consecutive double precision floating-point numbers in memory. For
single precision the spacing is four bytes.

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 105

Number of Instructi Executed Number of Clock C. C?l
cosliEle] | ‘25 TH R T
DiX DLX i ws—l

divdsp| diidsp [e B

100 200 300 400 500 0 100 200 300 400 500
words of code Program Memory size (in bytes)

'C25 24

‘25 |
DLX |
dixdsp

10 20 30 40 s;)
Figure 4: FIR filter performance of TMS-320C25, DLX and dlxdsp.

Number of instructions executed Number of Clock Cycles

0 40 80 120 160 200
Words of Code _Program Memory size (in bytes)

‘C25
DLX
Kicdsp BT

Figure 5: IIR cascade filter performance of TMS-320C25, DLX and dx/dsp.
Despite the variations in the number of instructions executed, the number of

words of code is almost the same for the three processors. The way the algorithm is
coded determines loops of different lengths, and thus the small static difference become
large in dynamic terms. Another comment is about program memory size. Most of the
instructions on TMS-320C25 are coded in 16bits, while on DLX and dixdsp all the
instructions are coded in 32bits. Because of this, the memory requirements (in bytes)
are bigger on dixdsp and DLX than on 'C25.

6.2. IR Filter

The set of results that typically represents the performance of the three processor
is shown in Figure 5. In this case TMS-320C25’s MACD instruction is not so
determinant in this implementation, and although the number of instructions executed is
greater on dixdsp and DLX than on TMS-320C25, the fast instruction cycle of RISCs
and RISPs maintains the number of clock cycles lower on dlxdsp and DLX than on

'C25. This yields a faster Execution Time for dixdsp.

106

XVI Congresso da Sociedade Brasileira de Computagdo (SBC)

Number of Instructions Executed Number of Clock Cycles CPI
L i i i . - 0

-

Execution Time

2259.5us

0 450 %00

1350 1800 2250

0 17 34 51 68 85«x10°

‘Figure 6: FFT performance of TMS-320C25, DLX and dxl/dsp.

Table 2: DLX, dlxdsp and TMS-320C25 performance for other Kernels,
Number of
Number of CcPl Code Memory
‘ernel Instruct .

L ’Zu;:::’ Clock Cycles | Estimation CPU Time Instrucrions | (in bytes)
IIR Filter | DLX 80 110 1,38 2,75ps 21 84
canonical | C25 26 124 4,71 3.10ps 16 38
dixdsp 63 77 1,22 1.93ps 18 72
DLX 811 1284 1,58 32,10 349 1396

Adaptiv E ,10ps
ml;'m:r 'C25 292 1188 4,07 29.70us 226 460
dixdsp 611 949 1,55 23,73ps 282 1128
DLX 466 589 1,26 14.73ps 23 92
pcT 'C25 138 704 5,10 17.60ps 19 52
dicdsp 339 371 1,09 92818 19 76
o DLX 4661 5193 1,11 129,83ps 3 136
Multiplication C25 1129 5456 483 136.40us 33 82
dixdsp 3149 2681 113 117,03 33 132

FFT results show an abnormal situation. TMS-320C25 has no resources to
improve performance considerably, thus a general purpose processor can easily reach
better results. That is the case for DLX. dixdsp has no special resources for FFT either,
except for the possibility of using two or more arithmetic units simultaneously, what
makes operations with complex numbers faster. Figure 6 shows the results for FFT.

6.4. Other Kernels

The results for the remaining kernels are depicted in table 2. By considering all
the algorithms studied, we can extract some typical patterns. A particular analysis
comes from program memory size: on DLX it was required 21.11% more words of code
then on ‘C25 and 110.44% more bytes to store programs (remember that DLX
instructions are coded in 32bits and most part for the ‘C25 in 16 bits). On dixdsp
10.88% of increased code and 92.68% of increased memory size was observed
relatively to the TMS-320C25. The way algorithms are coded strongly determines these

VIII Simp. de Arg. de Computadores ¢ Proc. de Alto Desempenho 107

parameters, and sensitivity is also critical. Former versions of these algorithms
presented 5% less words of code on dixdsp then on TMS-320C25 [9].

7. COMMENTS AND CONCLUSIONS

Execution time is still the best factor to consider a processor better then the
others. Figure 7 shows the speed-up (relation between execution times) of DLX and
dixdsp relative to *C25.

Taking all the results obtained and shown in this work, it is possible to realize
that the best characteristic inherited by RISP from RISCs is the fast instruction cycle.
An adequate instruction set is also viewed as a determinant factor for the good
performance of RISPs.

Our experiments confirmed previous results indicating that general purpose
RISC processors can achieve the same performance levels of dedicated processors on
DSP applications. We have also shown that even better performance can be obtained
with small architectural enhancements to a general purpose RISC. Although we did not
consider any cost factors in our study, it seems reasonable to expect that these
enhancements would be cheaper than the development of a special purpose processor,
designed specifically for DSP. But, despite the advantages of using RISCs as DSP (e.g.
lower execution time), costs strongly affect decisions.

Of course, for a specific application one can always build a processor with
matching characteristics, which will be the ideal platform for that particular application.
As we observed with the FIR-filter results, the TMS-320C25 could be such an example.
However, for the execution of distinct types of DSP applications, our results show that
RISC processors provide, in general, equal or better performance than conventional
digital signal processors. With the present rate of improvements in RISC technology,

we can expect RISC processors to assume a predominant role on DSP area in the future.
318

Average speed-up for DLX: 1.09
Average speed-up for dixdsp: 1.50

& dixdsp
o DLX

Speedup

1.17

113 e “c25
0.93 1.0l 503
0.52
IIR filter Adaptive FIR filter IIR filter FFT DCT Matrix
canonical FIR filter cascadable multiplication

Figure 7: DLX and dx/dsp speed-up’s in relation to TMS-320C25.

108

XVI Congresso da Sociedade Brasileira de Computagéo (SBC)

7.1. Future work

We have shown that small architectural enhancements to a basic RISC
architecture provided significant performance improvements on DSP applications. One
can expect that even more improvements would be achieved with the use of superscalar
RISC processors. We intend to analyze how different architectural features of
superscalar processors would affect the execution of the kernels presented in this work.

Another interesting aspect is the processing of these DSP applications on
parallel systems (because code seems to fit parallelism), composed of a collection of

RISC processors that communicate by a high-speed interconnection network.
References

[1] ESPONDA, M. and ROJAS, R. A graphical comparison of RISC processors.
Computer Architecture News, v.20, n.4, p.2-8, Sept. 1992,

[2] HENNESSY, John. and PATTERSON, David A. Computer architecture: a
quantitative approach. San Marteo:Morgan Kaufmman Publishers, 1990.

[3] LAPSLAY, P. and BIER, J. DSP benchmarks: methodology and results. In:
INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING APPLICATION AND
TECHNOLOGY, 5, Oct. 18-21, 1994. Texas. Proceedings... Texas:[s.n.], 1994. p.871-
876.

[4] LEACH, R. Use of RISC processor in multicomputer environments. In:
INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING APPLICATION AND
TECHNOLOGY, 6, Oct. 24-26, 1995, Massachusetts. Proceedings...
Massachusetts:[s.n], 1995. P.698-700.

[5] PATTERSON, David A. and DITZEL, David R. The case for the reduced
instruction set computer. Computer Architecture News, v. 8, n. 6, p. 25-33, Oct.
1980.

[6] TEXAS INSTRUMENTS. 7MS320C 2x: user’s guide. [s.l.:s.n.], 1993.

[7) VELARDE, Juan M. et. al. DSPstone: a DSP-oriented benchmarking methodology.
In: INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING APPLICATION AND
TECHNOLOGY, 5, Oct. 18-21, 1994. Texas. Proceedings... Texas:[s.n.], 1994. p.715-
720.

[8] WANDERLEY NETTO, Eduardo B. {/ma arquitetura RISC' para processamento
digital de sinais, MSc thesis, Sdo José dos Campos:ITA. 1995.

[9] WANDERLEY NETTO, Eduardo B. OLIVEIRA, Rivanaldo S. and SAOTOME,
Osamu. RISC processor for digital signal processing purposes. In: INTERNATIONAL
CONFERENCE ON SIGNAL PROCESSING APPLICATION AND TECHNOLOGY, 6, Oct. 24-
26, 1995. Massachusetts. Proceedings... Massachusetts:[s.n.], 1995. p.805-810.

