
VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho

Parallel Branch-and-Bound: Design and
Performance Understanding *

Wagner Meira, Jr.
Dept. Computer Science
University of Rochester

Rochester, NY, USA

Annibal Sodero Andréa Tavares Márcio Carvalho
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais
Belo Horizonte, MG, Brazil

{meira,annibal,iabrudi ,mlbc}Gdcc.ufmg.br

Abstract

Branch-and-Bound techniques have been successfully used to solve com
binatorial optimization problems. One common approach to improve the ef
fectiveness of these techniques is via parallelization. The parallelization of
Branch-and-Bound computations, however, is not trivial and programmers
may experiente difficulties both in terms of correctness and efficiency of the
parallelized applications. In this paper we present an environment that helps
programmers in developing efficient parallel Branch-and-bound applications.
This environment integrates two tools: (1) Sabor, which aids in designing
those applications, and (2) Carnival, which is a performance measurement and
analysis tool that helps the programmer in understanding the performance
of those applications. We also present the Carnival user interface and illus
trate its usefulness and functionality by identifying and expla.ining sources of
overhead in example applications.

Resumo

Técnicas de Branch-and-Bound têm sido usadas com sucesso para a solução
de problemas de otimização combinatória. Essas técnicas podem se tornar
ainda mais eficientes quando paralelizadas. A paralelização da computação
associada a técnicas Branch-and-Bound, entretanto, não é trivial e progra
madores podem ter dificuldades tanto em termos de correção quanto eficiência
das paralelizações resultantes. Neste trabalho apresentamos um ambiente que
auxilia programadores no desenvolvimento de aplicações paralelas de Branch
and-Bound que s~am eficientes. Esse ambiente integra duas ferramentas: (1)
Sabor, que auxilia no desenvolvimento daquelas aplicações e (2) Carnival, uma
ferramenta de análise e medição de desempenho que provê ao programador
recursos para o entendimento do desempenho daquelas aplicações. Também
apresentamos a interface da Carnival e ilustramos sua utilidade e funcional
idade através da identificação e análise das fontes de degradação de desem
penho em aplicações.

119

•This work ia partially supported by CNPq-PERl' Grant No. 490.039/96-2 and Grant No.
200.862/93-6

120 XVI Congresso da Sociedade Brasileira de Computação (SBC)

1 Introduction

There are many combinatorial optimization problems that cannot be solved in poly
nomial time. In order to solve these problems within reasonable t ime, we use tech
niques that aim to find optimal solutions while minimizing the number of solutions
investigated.

Branch-and-Bound (B&B) (4) is the most successfull of these techniques and has
been applied to solve problems such as the Traveling Salesman, Knapsack, Vertex
Covering, and Integer Programming. A B&B algorithm partitions the search space
recursively into smaller sub-spaces until it is possible to determine a solution or
the unfeasibility of a possible solution. A B&B algorithm is characterized by three
rules: (1) branching, (2) walking, and (3) bounding. The branching rule specifies
how a problem is partitioned into subproblems. During this branching process,
the bounding rule determines the subproblems t hat will not generate an optimal
solution and can be discarded. The walking rule determines the order of expansion
of subproblems. The algorithm ends when t here is no more subproblems to expand.
Note that branching and bounding rules are problem dependent, while walking rule
is algorithm dependent. B&B computations are usually very intensive and there
are two basic ways of reducing the execution time of B&B algori thms (3, 6): (1) by
improving the effectiveness of bounding rules, what requires deep knowledge about
the problem and (2) by parallelizing efficiently the computation, what requires the
user to have expertise in parallel programming.

In this paper we present an environment that facilitates the implementation of
efficient parallel B&B programs. This environment results from the integration of
two tools: Sabor (8) and Carnival (7). Sabor is a tool that provides infrastructure
for the implementation of parallel B&B applications. Carnival is a performance
measurement and analysis tool that automates the process of understanding the
causes of idle times in parallel programs, which are called waiting times. This
integrated environment helps a programmer in ali phases of the development of
parallel B&B applications, from the design of the algorithm to the analysis and
understanding the performance of the parallelizations.

We describe Sabor in the next section . Section 3 describes Carnival and Waiting
Time Analysis. We then present the integration details and describe the Carnival
user interface in Sections 4 and 5, respectively. Section 6 presents some examples of
the utilization of the environment in understanding parallel B&B implementations
for tlte TSP.

2 Sabor

Sabor (8) is a system that aids in designing and analyzing of the distributed 8&8
algorithms. It is motivated by the fact that the development of optimization appli
cations is a task complex by itself, and the parallelization of these applications can
be overwhelming to a programmer. Sabor aims at releasing programmers from the
difficulties that arise in the process of parallelizing an application, both in terms of ef
ficiency and correctness. In Sabor, the optimization software developer is not aware
of the specific parallelization mechanisms. He implements application-dependent
subroutines (i.e., branching and bounding rules) and the system provides to him

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 121

Centralil.ed Controlhr

I nstrumentalion

I Clott

I CGenR«rt

I CfJnnl

High-kvel A.lgorilhm

lnilializalion
Root Generation
Wltile there is work

Ir there is work to be dlslribuled
• Select next subproblem

Send itto worker
Ir lhcre is answcr rrom workcr

Rcc:eive answer
UpdalC solulion

Finalizalion

I Wk>l!

I WFM

Cetúmliud Worbr

lnitializalion
Wltile lhere is work

Rcc:elve work
Selcc:t nextsubproblem
Expand subproblem
Send answer 10 controller
fTmallzation

Figure 1: High-level algorithms of Centralized mode

various approaches (i.e., walking rules) to execute the algorithm in parallel.
Sabor is composed by two major subsystems: optimization and visualization.

The optimization system is concerned with the implementation of the algorithms.
It is composed by a collection of classes, which define the framework needed to
generate Branch-and-Bound algorithms. These classes implement parallelization
modes (distributed and centralized), walking strategies, and also provide a tem
plate for application specific classes, which are the only piece of code that must be
implemented by the user. The visualization subsystem provides an interface with
facilities for configuring, compiling, and running applications. It also provides some
basic performance visualization that includes graphical and alphanumerical infor·
mation about the amount of work performed by each processor and the coverage of
the search space.

Sabor parallelizes B&B computation by adopting a controller-worker model,
where the controller starts the workers and coordinates the execution of the al
gorithm. Sabor provides two parallel operation modes: centralized and distributed.
In the centralized mode, the controller process implements a version of the sequential
B&B algorithm, which is modified so that the expansion tasks are divided among
the workers. During each iteration of the algorithm, the controller, instead of ex
pansion node on its own, sends it to a worker and continues its execution, keeping
track of worker's responses. Each worker task consists of receiving work (i.e., nodes
to be expanded), performing the expansion, and returning the resulting children
to the controller. The centralized mode is characterized by an even distribution of
work among the workers, since they rely on a central queue of subproblems to be
expanded, but at a high communication cost, caused by the successive synchroniza
tions. The high-level algorithms of the controller and worker of tlie centralized mode
are presented in Figure 1. Sabor provides three selection schemes that define the
order of work distribution in centralized implementations: (1) best-first, (2) depth
first, and (3) breadth-first. Best-first selection chooses subproblems that have the
best bounding values, what usually reduces the number of expansions necessary to
find an optimal solution. Depth-first approaches select for expansion the problem
state of greatest depth in the tree. On the other hand, breadth-first strategies cause
the expansion to be performed on a levei by levei basis.

In the distributed operation mode, the controller is responsible for the initial
distribution of workload between the workers and for the termination control. Each
worker implements a modified version of the sequential B&B, which is augmented

122 XVI Congresso da Sociedade Brasileira de Computação (SBC)

Distrlbuted Conlrolhr DisbibutedlVorker

I cwt
I cr.,am

lnllialiulion
Ocncntion of llnt solutlon
Woder distributlon
While wOIXer processina

Receive wOIXer swe
Oleclc lerminalion

Finaliwlon

I WWt

I WHfíbi

lnilialiulion
While tbere ls wodc

Jr tbere are subproblems to expand
Selecl next subproblem
Expand subproblem
lf new solution is beltu

Update solution
Exchange worlc anel solutlon

Receivc info from Olhcr wodccrs
Jr tbere is statc requcst

Handle ~ucst
I f there is no subproblcms or msas

Wait ror mcssaae
Finalization

Figure 2: High-level algorithms of Distributed mode

with procedures to exchange work and new solutions. The amount of communication
in distributed implementations is smaller than in centralize<! implementations, but
the overall program performance is usually affected by Joad imbalance among the
workers. The high-level algorithms of the controller and worker of the distributed
mode are presented in Figure 2. Sabor provides some balancing strategies for dis
tributed implementations such as static distribution (i.e., each worker receives a set
of subproblems generated by the first expansion) and randomized distribution [1),
which redistributes subproblems generated in the Jast expansion by sending them
to randomly-chosen workers.

In choosing a parallelization scheme, the programmer must consider the gran
ularity of the application in the execution environment. We define granularity as
the ratio between computation and communication costa in the target execution
environment. Thus, in execution environments with relatively low communication
costs such as shared-memory machines, the granularity of the applications tends to
increase (i.e., the computation performed by B&B computations is more significant
when compared to the cost of communication operations). Fine-grain applications
are more suitable for distributed' approaches, where the occurrence of load imbal
ance affects less the application and communication costs are kept low. On the other
hand, coarse-grain applications are more suitable for centralized approaches, since
synchronizations are less frequent and the computation is well-divided among the
processors. Note that variations in either the execution environment or the applica
tion affect this notion of granularity. Thus, in determining the best parallelization
scheme the programmer needs tools and techniques that help him in assessing the
granularity oHhe application.

3 Waiting Time Analysis and Carnival

Many of the overheads associated with parallelization ultimately manifest themselves
as waiting time (WT); a processor is idle while it waits for another or more. Waiting
time can be introduced at any synchronization point, includi~g locks, barriers, and
message exchanges. We can define (both symbolically and quantitatively) the cause
of waiting time between two processors to be the differences between the execution

Vlll Simp. de Arg. de Computadores e Proc. de Alto Desempenho 123

paths followed by the processors since the last time the two processors synchronized
and one waited for the other, hence both processors were known to be at the same
place at the same time. 1 We assume that ali processors execute instructions at
the same rate, and therefore attribute the difference in time required to reach the
synchronization point to differences in the instructions that were executed.

In order to understand the cause of waiting time between two processors at a
particular synchronization point in the program, we compare the execution paths of
the two processors between that synchronization point and the last point at which
those processors were known to be át the same place at the same time (as recorded
in an event trace), and determine why one path is longer than the other (thereby
causing the waiting time) (7]. Anything the two paths have in common is removed
as a potential cause of waiting time, leaving only the differences between the two
paths as an explanation for waiting time, which is called a characterization. Since
a synchronization statement may be executed multiple times, there may be severa!
such characterizations for each source of waiting time, corresponding to altemative
execution paths. Taken together, these characterizations are the cause of waiting
time at one particular synchronization point in the program.

Carnival is a performance measurement and visualization tool for message-passing
programs that automates the cause-and-effect inference process for waiting time.
The tool uses detailed event traces to gather performance information, which it
presents both as global summary statistics and as localized performance profiles,
facilitating top-down performance analysis. The user interface presents performance
information together with the source code, creating a link between the observed
phenomena and the code. Most important, Carnival supports waiting time analysis,
an automatic inference process that ezplains each source of waiting time, instead of
simply identifying where it occurs. Carnival is under development at the University
of Rochester and the initial implementation is targeted at data-parallel applications
running on distributed-memory machines using message-passing for communication.
Carnival runs on IBM SP2, SGI Challenge 2

, and networks of workstations. As
described in Section 4, Carnival was integrated with Sabor without major changes,
what illustrates the generality and applicability of the tool.

4 Integrating Sabor and Carnival

The integration requires changes in both tools. Sabor must be instrumented to gener
ate static (i.e., program structure) and dynamic (i.e., execution events) information
about the programa. Carnival must present information about the p_rogram in a more
abstract levei than source code 3 , since the presentation of ali source code embedded
in a program generated by Sabor can be very confusing to the progiarnmer, who is
not aware of implementation details and of the whole code structure.

10ur discussion ia in terms of pair-wise synchronization, but tbe techniques extend to the
analysis of waiting time for synchror.ization operations between many proceseora. In particular,
we characterize waiting time in barriers as a set of pair-wise aynchronization operations between
each waiting procesaor and the last processar to enter the barrier.

2Although the SGI Challenge ia a DSM, we can use it as a message-passing machine by em
ploying packages auch as PVM.

3 The initial implementation of Carnival handles only real aoouce code.

124 XVI Congresso da Sociedade Brasileira de Computação (SBC)

Figure 3: Carnival visualization of B&B TSP

We instrumented Sabor by inserting instrumentation directives, which are applied
right before the code compilation. These directives are inserted in pairs , creating
scopes where the specified action happens. Also, these instrumentation scopes can be
nested and are distinguished by unique identifiers. Note that this approach facilitates
the extraction and handling of static information about code that is shared among
implementations. Figures 1 and 2 show the scopes generated by the instrumentation
at the left of each high-level algorithm. These scopes and their description are
presented in the visual interface of Carnival.

5 Visualizing Performance with Carnival

In this section we present the visual interface of Carnival and discuss how it can be
used in understanding the performance of parallel B&B applications generated by
Sabor.

The primary Carnival display window (Figure 3a) is divided into two parts. The
structure of the source code is presented on the right; information about each in
strumentation scope appears on the left. The line numbers are presented in a grey
scale, where the intensity of the scale represents the percentage of execution time
(summed up across ali processors) spent on a given portion of source code. Users
can quickly identify places in the code where most of the time is spent by scrolling
down the line numbers and looking for the darkest portion of the scale. The left
side of the display identifies the scopes in the program. As described in Section 4,
scopes are delimited by instrumentation directives, and have unique identifiers4

• A
grey scale bar is draw,n from the beginning to the end of every scope; the intensity
of the scale indicates tbe cumulative execution time (across ali processors) spent in
that scope. Unlike the grey scale used for line numbers, this scale includes the time
spent in nested scopes; therefore, the outermost scope always has the darkest bar.
Clicking on the vertical bar for a scope yields the per-processor percentage of the
scope's execution time in a pop-up window (Figure 3c). The colors in the horizontal
bar at the top of each scope describe a breakdown of the execution time spent in
the scope in to categories. Clicking on the bar produces a histogram of the overhead

4The names inside Lhe aeopes in Figures 1 and 2 are idenLifiers.

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho

·-·-·-a
• -.. _
• -71-·-

··-

• .. ---

• ---d -
Figure 4: Carnival visualization of B&B TSP

125

categories in a pop-up window (Figure 4b). In order to facilitate the navigation in
the main window, a Profile Map (Figure 4c) is also provided. This map presents
t he horizontal colored bar and grey scale vertical bars in a condensed form with
cumulative time spent in each scope, its location, and its processing category. By
using this Profile Map, the user can easily identify the important scopes of thc ap
plication, and access them by clicking on the corresponding horizontal bar of the
lnap, what causes the main window to be scrolled to that scope.

Two additional pop-up windows are used for waiting time analysis. The WT
Map (Figure 4d) provides a global perspective of ali sources of waiting time; the
Characterization Map (Figure 4a) presents an explanation for a single source
of waiting time in terms of the two execution paths involved. The WT Map lists
each source of waiting time, lhe line number where the waiting occurred, the scope
identifier, and lhe percentage of the total ·waiting time associated with that opera
tion. This map is used to navigate within the source code window and to initiate
waiting time analysis. Clicking on an entry in the WT Map causes the main display
window to be shifted to the relevant portion of the source code, and the WT Map
presents statistics about each cause of that waiting time. These statistics include
the percentage contribution of each cause to the total waiting time experienced at
that statement, as well as the total waiting time explained by each cause. Click
ing on a characterization in the WT Map produces ao explanation for that waiting
time in the Characterization Map. Color-coded operations for the longer of the
two paths are presented on the right side of the window, operations for the shorter
path are on the left. The number of occurrences of each operation is given, as is

126 XVI Congresso da Sociedade Brasileira de Computação (SBC)

the percentage of the waiting time associated with each operation. Clicking on an
operation shifts the source code window to the relevant portion of the code. Since
the number of occurrences of each operation is also presented, we can distinguish
between a difference in the number of operations versus a difference in t he time
spent on the same operations.

To illustrate the use of Carnival for performance visualization and tuning, we
· present the analysis of a B&B program generated by Sabor that solves the Traveling
Salesman Problem (TSP). This problem can be modeled as a graph where the ver
tices represent the n cities to be visited by a salesman and the edges represent links
between pairs of cities. Each edge has a weight that express the cost of traversing
it (i.e., the cost of traveling between the cities that it connects). The salesman
wishes to make a tour, visiting each city exactly once and finishing in the city he
starts from, with minimum cost (i.e., summation of the weights of the edges that
are ttaversed in the tour).

We implemented the B&B algorithm for the TSP devised by Little et ai. [5],
which breaks each unsolvable problem into two subproblems representing tours that
must include or exclude a particular edge. The intuition behind the algorithm is
that subproblems are easier to solve than the original problem because they contain
additional constraints. The exclusion of an edge, for example, reduces the number of
edges that may be added to a solution. We choose the edge to be used as a constraint
so that the lower bound on the cost of the solution of the subproblem excluding that
edge is maximized. We executed a centralized best-first implementation on a 35-
city problem using seven processors (six workers and one controller) on the SGI
Challenge. The Carnival visualization of the execution is shown in Figures 3 and 4.

The pri{nary display window (Figure 3a) shows the structure of the source code
on the right and execution time profiles for each nested scope on the left. In this
example, the colored bar associated with the outermost scope (Figure 3b) shows a
significant amount of waiting time (the dark blue portion of the bar). Clicking on
the colored bar for that scope produces the pop-up window with a color histogram
for each category of execution time, and the processor efficiency for that scope
(Figure 4b). As seen in the figure, efficiency is only 20%, and waiting time accounts
for more than half of the total cumulative execution time.

The WT Map (Figure 4d) shows that there are four sources of waiting time,
but most of WT (96%) occurs while receiving work (identified by WExtra). Each
of these sources of waiting time is explained by one or more characterizations. We
can iterate over the characterizations for a specific source of waiting time (in t he
order defined by their relative contribution) by clicking on the colored bar in the
WT Map, which produces an explanation in the Characterization Map. Also, we
can obtain a global summary of the characterizations by clicking on the grey-scale
square at the left of the color bar. In our example, the global summary of the char
acterizations of WExtra (Figure 4a) shows that the WT is caused by cost differences
between code executed in the controller and the worker. More specifically, the se
lection (WSelection) and expansion (WExpansion) costs are smaller than the costs
of distributing work (CDistWork) and updating solutions (CUpdateSol) . Thus, we
can conclude that there is contention in obtaining work from the controller, since
workers spend significant time waiting (57% of the cumulativeexecution time) while
the controller is distributing work for other processes and doing local work.

VIII Simp. de Arg. de Computadores c Proc. de Alto Desempenho

B&tB lmp. Cent BF Cent DF Dist Statie Dist Rand
Workers 2 4 6 2 4 6 2 4 6 2 4

RunTime 9.1 6.8 6.4 9.4 6.9 7.6 20.7 18.7 19.1 6.5 7.3
(RunTime 27.2 33.9 43.7 28.1 34.6 53.5 62.0 93.6 133.9 19.4 36.6
CComp. 11.4 8.8 9.4 11.5 10.7 11.1 16.1 29.9 42.8 5.8 7.3
C Extra 8.4 9.7 8.9 8.4 9.7 11.6 11.8 22.5 33.5 7.0 11.4
CWaiting 7.3 15.4 25.4 8.2 14.2 30.7 34.1 41.2 57.6 6.6 17.9

Table 1: Execution profiles of B&B TSP - 35 cities (Seconds)

6 U nderstanding the performance o f TSP

6
6.4

45.0
8.6

14.0
22.5

127

In this section, we compare and understand four parallel B&B implementa.tions
tha.t solve the TSP, with two executing in centra.lized mode and two executing in
distributed mode. In our exa.mple, the centra.lized implementations adopt different
selection strategies, na.mely: best-first and depth-first. In the distributed implemen
ta.tions we a.dopted two different ba.lancing stra.tegies: sta.tic and ra.ndomized.

These four implementations were executed on a. SGI Cha.llenge with 2, 4, and 6
workers. Execution time results5 are presented in the Ta.ble 1. We can see tha.t the
distributed sta.tic implementation is a.lwa.ys slower than the other implementa.tions,
a.nd the centralized best-first implementa.tion outperforms the centra.lized depth
first in ali cases (by checking RunTime). Also, some configura.tions presented a.
detrimental a.nomaly [2], such as the the distributed ra.ndomized implementa.tion
tha.t took longer to execute using four workers instea.d of two. The sa.me ta.ble also
presents the brea.kdown of cumulativeexecution times (CRunTime) into computation
(CComp), extra. computation (CExtra) introduced by the paralleliza.tion, and wa.iting
time (CWaiting). The amount of computation performed in centra.lized a.pproa.ches
is roughly the same, despite the number of workers employed, which confirms the
intuition of a better work ba.lancing in these approa.ches. On the other hand, we can
observe a.n increase in the timings of a.ll ca.tegories in the distributed approa.ches,
that clearly shows waste of computa.tion beca.use of la.ck of global knowledge a.bout
partia.! solutions. Also, wa.iting time is significa.nt in ali implementa.tions, a.ccounting
from 27% to 58% of the cumulative execution time.

By checking the cha.racteriza.tions provided by Carnival, we first noticed tha.t the
characterizations for implementations tha.t ha.ve the sa.me opera.tion mode (i.e., cen
tralized, distributed) are very similar. In the centra.lized approa.ches, WT arises in
the workers beca.use of contention in getting work from the controller, as described
in Section 5. On the other ha.nd, WT in distributed implementations is expla.ined by
work imbalance a.mong workers. For instance, the distributed randomized implemen
ta.tion with 4 workers, where wa.iting time accounts for about half of the cumula.tive
execution time, has five ma.in sources of WT, but two of them a.ccount for more than
96% of the total WT in the program (CCtrloop and WWait). The cha.ra.cterizations
for both sources are similar and show that waiting time arises because of differences
in the execution times for expanding (WExpand), selecting (WSelec), and exchanging
work (WExchange). Note tha.t the Wa.iting Time Analysis not only determines the
causes of wa.iting time but a.lso quantify the importa.nce of these causes, and thus
guide the user in improving his a.pplica.tions a.nd using parallel resources efficiently.

5 Note that these timings may vary significantly for different problema, although the observed
behaviors will be similar for the various configurations.

128 XVI Congresso da Sociedade Brasileira de Computação (SBC)

7 Conclusions and Future W ork

In this paper we presented an environment that helps programmers in implement
ing, analyzing, and understanding the performance of parallel Branch-and-Bound
applications. The environment has been shown to be a valuable resource, since it
not only relieves the user from the burden of parallelizing B&B computations, but
also helps him in identifying and understanding the performance characteristics of
implementations, as illustrated by the examples presented.

There are many future directions of work. We plan to continue the development
of the environment by designing techniques that link characterizations to implemen
tation decisions (e.g., selection or balancing strategy). Also, we are implementing
other B&B applications that will be used to validate the integrated environment.
This experience will serv~ as a basis for the implementation of similar environments
t'argeted to other classes of applications, such as neural networks.

Finally, we would like to thank Tom LeBianc, Alex Poulos, and Cláudio Amorim
for many critiques, discussions, insights, and suggestions on the Carnival work. Also,
we wish to thank the Computer Science Department of the University of Rochester
for the use of Íhe SGI Challenge.

References

[1) R. M. Karp and Y. Zhang. Randomized parallel algorithms for backtrack search
and branch-and-bound computation. Journal of the Association for Computing
Machinery, 40(3):765- 789, July 1993.

[2) T. Lai and S. Sahni. Anomalies in parallel branch-and-bound algorithms. Cm
munications of the ACM, 27(6):594- 602, June 1984 .

[3) P. S. Laursen. Simple approaches to parallel branch and bound. Parai/e/ Com
puting, 19:143- 152, 1993.

(4) E. L. Lawler and D. E. Wood. Branch-and-bound methods: a survey. Operations
Research, 14:699- 719, 1966.

(5) J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm to
the traveling salesman problem. Operations Research, 11 (6) :972- 989, No vem ber
December 1963.

(6) G. P. McKeown, V. J. Rayward-Smith , and S. A. Rush. Advances in Para/lei
Algorithms, chapter 5 - Parallel Branch-and-bound, pages 111- 150. John Willey
and Sons, Inc., 1992.

(7) W. MeiraJr., T. LeBlanc, andA. Poulos. Waiting time analysis and performance
visualization in carnival. In Proc. of SIGMETRICS Symposium on Parai/e/ and
Distributed Tools, Philadelphia,PA, May 1996. ACM.

(8) A. I. Tavares. Um sistema para implementação e análise de técnicas de branch
and-bound em redes de estações de trabalho. Master's thesis, Universidade Fed
eral de Minas Gerais, Belo Horizonte, MG, Brazil, Fevereiro 1995.

