
VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 193

Network and Memory Analysis in Distributed ParalleJ

Generation of Pat Arrays

Joã.o Paulo W. Kitajima
Berthier Ribeiro

Nivio Ziviani

Departamento de Ciência da Computação
Universidade Federal de Minas Gerais

e-mail: {ki taj i ma, berthier , ni vi o }Cid c c. ufmg . br

Abstract

The performance of parallel and distributed algorithms for generation of large pat
arrays is analyzed. These algorithms are evaluated taking in to account a high-bandwidth
network of workstations, a TCP / IP-based network and an heterogeneous network with
different memory sizes. In the first case, performance of the parallel versions are signif
icantly better. In the second case, the sequential algorithm is clearly the best. In the
third case, different memory sizes wiU hardly improve execution times significantly.

1 Introduction
The traditional model of text in information retrieval (IR) is that of a collection of documents
indexed by keywords. In this model, the user specifies bis information need by providing sets
of keywords and the information system retrieves the documents which best approximate the
user query. Further, the information system might attempt to rank the retrieved documents
using some measure of similarity. Representing the content of a document and of a user query
by a set of keywords was necessary in the early seventies due to performance constraints.
Nowadays, the advent of powerful workstations has allowed the consideration of alternative
models for IR. One such model which is gaining popularity is the full tezt model. In this model,
documents are represented by either their complete full text or extended abstracts. The cost
of searching the full text is usually high but the method presents important advantages [3).
First, no structure in the text is needed which broadens the scope of applications of full text
search. Second, no keywords are used which broadens the domain of queries the user might
specify. Third, the model is simpler and can be easily grasped by a common user. The
emergent ATM technology provides fast message exchanges (155 Mbps, megabits per second,
is a commercial reality t hese days) between any pair of nodes (without contention) which is
a requirement for efficient parallelism. However, this is not enough. Besides low latency in
the network, the overhead involved in packing, s.hipping, and unpacking messages must be
small in a user-to-user .n~sage exchange. This overhead is CPU time which is unavailable
for computation. To reduce this overhead in a conventional workstation one has to deal with
the delays imposed by the operating system. The user must transmit directly into and receive
from the network without interference from the operating system. This can be attained by
mapping data directed to the network interface into the user address space directly. Such

194 XVI Congresso da Sociedade Brasileira de Computação (SBC)

task involves the redesign of a portion of the operating system and the design of specialized
network hardware. While such designs are not a reality yet, efforts are under way [1, 4).
The NOW project [1) aims at performing user-to-user communication of a small message (48
to 192 bytes) among 100 machines in lOJAS. Such goal is technologically feasible and should
become a reality in a few years. In this paper we investigate (a} the impact of t he TCP /IP
pr~tocol, and (b) the impact of heterogeneity on t he performance of the parallel versions of an
algorithm for pat arrays generation presented in (3). "Heterogeneity", in our context, means
machines with different memory sizes. Memory availability is one of the main concerns when
developing applications that build indices for large texts (greater than 1 gigabyte).

2 Basic Defi.nitions

In full text retrieval, the entire text is viewed as one very long string. In this string, each
position k is associated to a semi-infinite string which ini'tiates at k and extends to t he right as
far as needed or to t he end of the text. Such semi-infinite strings are called sistrings (3) . The
user specifies his information need by referring to the sistrings he is interested in. The task
of the infor.mation system is to search t he full text for the occurrences of the user specified
sistrings. To perform this search efficiently our information system uses a pat array (generated
for that text) as the indexing structure.

A pat array is a linear structure composed of pointers to every sistring in the text. These
pointers are sorted accorqing to a lexicographical orderingof their respective sistrings. Further,
each of these pointers can be viewed simply as the offset (counted from t he beginning of the
text) o f the sistring in the text.

3 The Patseq and Patseqpar Algorithms

3 .1 The Sequential Version - Patseq

The Patseq algorithm considers that a single machine is used to build the pat array. This
machine must have enough disk space for storing the whole text and its pat array. For
instance, the disk space required for storing a text of size 1 gigabyte and its pat array is
roughly 2 gigabytes (for a text containing 25% of sistrings).

If ali the text and its pat array fit in main memory, the problem becomes one of sorting the
pat array (according to a lexicographical ordering of its corresponding sistrings) in primary
memory and can be solved trivially using (for instance) quicksort. For large texts, however, the
text must reside on disk and one cannot avoid accessing the secondary memory for retrieving
text sistrings. Since accesses to secondary memory are dominated by the seek time, one must
minimize the number of seek operations when accessing a large fi le. This is t he main concern
of algorithms which perform externa/ sorting.

Let ·r be the length of the whole text in bytes and M, M « T, be the memory available
for generation of the pat array. We break up the text in blocks of size B bytes such that
3 x B = M. The reason for the constant 3 will become clear ahead. Let Nb be the number of
blocks contained in the full text (i.e., N6 = r~l). For each block b; do: (a) load the block b;
sequentially into main memory; (b} using quicksort, generate (in main memory) the pat array
p; corresponding to the block b;; and (c) store the pat array p; sequentially on disk (this phase
corresponds to the generation of small pat arrays- one for each text block). The phases (a)
and (c} require a single seek operation at the beginning. After this seek operation, the access
is purely sequential. The merging of the N6 pat arrays is then initiated. Unfortunately, such
merging operation is more involved than it seems at first glance.

VIII Simp. de Aro. de Computadores e Proc. de Alto Desempenho 195

A very simple (and naive) approach to merge the Nb pat arrays is as follows (specified in
a C-like language):

Algorithm 1 Naive algorithm for merging partia/ pat array8.
P = Pt i I* P is the resultant pat array *I
I* merge the sma/1 pats with the large partia/ pat which is already sorted *I
for (i= 2; i :S Nbi i++} P = merge(P,p;);

The key problem is the implementation of the function called merge. Let bp be the portion
of the text (composed of one or more blocks"of text) corresponding to the pat array P .. To
merge the pat arrays P and p;, it is necessary to access the sistrings in bp and b;. Since these
accesses are non-sequential (they follow the pat array pointers), the text blocks bp and b; must
be in main memory (otherwise, too many seek operations would be required). Unfortunately,
as P grows bp becomes toe large to fit in main memory. If we attempt to access the sistrings
in bp directly from disk, the execution time becomes unacceptable due to the large number of
seek operations.

To avoid the seek operations, the Patseq algorithm always accesses the text sequentially
(i.e., subsequent disk accesses refer to contiguous disk sectors). This is accomplished by
maintaining auxiliary counters which indicate the number of sistrings, pointed by elements of
a pat, which fali between any two consecutive sistrings pointed by elements of another pat in
a lexicographical ordering of the sistrings. These counters allow merging the two pat arrays
through strictly sequential accesses (with no need to further inspect text sistrings). Most
important, these counters can be generated by always accessing text sistrings sequentially.
Thus, the whole process can be completed through strictly sequential disk accesses. Counters
generation is done as follows.

Consider two pat arrays p; and Pi and let n; be the number of elements in Pi· The counters
which indicate how to intercalate p; into Pi are maintained in an array C;.; containing exactly
n; + 1 integers. Let p;(k) be a reference to the kth pointer in the pat array Pi· The element
C;.;(k) counts the number of sistrings reachable from p; which lie between the sistring pointed
by p;(k) and the sistring pointed by p;(k + 1) (assume the presence of two sentinela p;(O) and
p;(n; + 1]). To generate C;.; the following three data structures are kept in maio memory: the
pat array p;, its block of text b;, and the array C;.; itself (this is the reason for dividing the
primary memory in blocks of size /f). The sistrings pointed by the pat p; (i.e., the text block
b;), i< j, are then retrieved sequentially from disk and processed as follows.

Algorithm 2 . Computing the array o f counters C;.;.
foreach "sistring S ,S E b;, retrieved sequentially from disk" do {
k = "position o f S in Pi ";
C;.;(k) ++;I* increment the counter */
}

The "position o f S in Pi " is deterrnined "through an indirect binary search in the pat array
Pi· This search reveals a pair of pointers p;(k) and Pi(k + 1) which point to the two sistrings
of bj surrounding S (S is in b;) in a lexicographical ordering of them. The counter C;.;(k) is
incremented to reflect this fact.

Figure 1 illustrates the dat<~; structures used by the Patseq algorithm for merging the N&
pat arrays.

The merging is done as follows. Firstly, the array of counters C1,2 is computed and stored
on disk. This array allows merging the pat array Pl into the pat array P2 to generate the
resultant pat array Pt+2· Secondly, the arrays C1,3 and C2,3 are computed and summed up on
the fly to yield the resultant array of counters Ct+2.3 which is stored on disk. Thi• resultant

196 XVI Congresso da Sociedade Brasileira de Computação (SBC)

p 2 c::::::J
T 2 c::::::J 9
pl c:::J

1. 2

T 3 c::::::J c::::::J c::::::J
c c

P, c::::::J l,l 2.3

T • c::::::J c::::::J c::::::J c::::::J

• • •

c c c
l ,t 2,4),4

p c::::::J
T '\, c::::::J c::::J c::::J c::::J

c c c
l , Nb 2 , Mb l , Nb

•••

Step 1

Step 2

Step 3

c::::J Step Nb-1

CNb-l.Nb-----

Figure 1: Data structures used by the Patseq algorithm for merging the Nb pat arrays.

array allows merging the composed pat array P1+~ into the pat array Pl· In the jth step, the
array C1+ ... +(j-t)J is computed and stored on disk. Once ali counters have been computed,
the algorithm is ready to conclude the merging of the pat arrays which is accomplished as
follows.

Algorithm 3 Using the arrays of counters to merge the partia/ pat arrays.
P = Pti
for (j = 2; j ~ Nb; j + +) merge_using_counter{P, Pi• Ct+ ... +(i-t).;};

The procedure merge_using..caunter simply accesses the two pat arrays sequentially and
merges them guided by the array of counters. $ince P becomes Jarger and Jarger it is kept on
disk. That is not a problem because P is always accessed sequentially.

3.2 The Parallel Version - Patseqpar
The Pat~eq sequential algorithm is composed of two main tasks: (1) task counter_computing
which generates the counters and (2) task paLmerging which produces the resultant pat
Pl+ ... +No· Unfortunately, this merging task has an inhere~tly sequentiaJ nature. The com
putation of the partia! pat Pt+2+3 can only be initiated after the pat P1+2 has been computed.
In general, computation of Pt+ ... +i can only be done after Pt+ ... +(i-l) has been computed. Since
the whole paLmerging task has a complexity given by O(N~ M) (see Subsection 3.3.2), this is
the complexity of any parallel version of the Patseq algorithm. Thus, no matter how many
machines are available, the complexity of Patseq can not be improved. However, the expected
execution time can be improved by parallelizing the counter_computing task.

We consider that our high-bandwidth network contains at least Nb machines available
and that each of them has a free space of size M bytes in its primary memory (non-virtual).
Furthermore, we assume that there is disk space available in each machine's local disk. The
key insight for a good parallelization of Patseq is noticing that the counter_computing and
the pat..merging tasks can be run in parallel. This is accomplished by (1) restricting the
counter..computing task to retrieve data írom local disks and (2) restricting the paLmerging
taak to retrieve data from the aggregate memory. The result is t.hat the data access patterns
of the two tasks do not interfere with each other.

Given the above CO!lsiderations, Patseqpar, our parallel imglementation of Patseq, comes
up very naturally. The blocks of text are replicated in the locaf disks of the various machines

VHI Simp. de Arg. de Computadores e Proc. de Alto Desempenho 197

as follows: machine 1 stores t he block of text bt. machine 2 stores the blocks of text ~ and b,,
and so on. Following, the Nb machines compute, in parallel, the initial pat arrays Pt. P'J, . . . ,
PN•· The machine i is in charge of computing p; which it accomplishes as follows: (a) read b;
from disk and (b) compute p; using quicksort. After this step, the machine i holds in its maio
memory the pat p; and its corresponding text block b;.

To compute the counters, the algorithm associates to each step i in Figure 1 processar i+ 1.
Thus, processar 2 is responsible for computing C1,2, processar 3 is responsible for computing
Cl+2,3 , and so on. The computed counters are kept in maio memory. During this phase, ali
processors execute Algorithm 2 (which requires only local disk accesses) and operate fully in
parallel. As soon as C1,2 is computed, processar 2 can initiate the pat_merging task (there is
no need to wait for the other processors). It does so by retrieving the pointers of p1 (across the
network, from the memory of the machine 1) and by merging them in to P2 (guided by C1,2)

to generate P1+2 • Since C1,2 and P2 reside locally in the memory of the processar 2, no disk
accesses are made. The resultant pat p1+2 is stored in the aggregate memory of the machines
1 and 2 (in the space previously occupied by the text block b1 in machine 1 and the text block
b, in machine 2). In general , after computing the counter Cl+ ... +(j-l),j the machine j needs
to wait only for the computation of p1+ ... +(i-l) by the machine j - 1 to enter the pat...merging
task. The overall effect is that the counter_computing and the task...merging tasks march in
par aliei.

A drawback of this approach is that it requires extra space in disk which is proportional
to N•·'~•+ll * B. For T = 1 Gbyte, M = 64 Mbytes, and N6 = 48, approximately 24 Gbytes
of extra disk space is required.

3.3 Modeling the Execution Times
3.3.1 Physical Parameters

According to our previous considerations (Section 2), text blocks, pat arrays, and counter
arrays are roughly the same size. Further, T, M, and Nb stand for the full text size, the
memory available in each machine, and the number of text blocks, respectively. Clearly,

Let,

T
Nb=-,;:r

3

bwm.,.: memory bandwidth in bytes per second
bwa.k: disk bandwidth in bytes per second
twordmem: time to retrieve a 4 bytes word from memory (4 X bw~.m)
t-·•••k= time to retrieve a 4 bytes word from disk (4 x L .

1
)

(TUld.flr

Swk: size of a text block in bytes (= *)
Spkt: size of a network packet in bytes (= 48, ATM technology)
t,k1: time in seconds to move a user-to-user packet from one machine to another
Lnet= time in seconds to move a text block from one machine to another
ta.k: time in seconds to readf write a text block from a local disk
Lmem: time in seconds to readf write a text block from local memory

Then,

swk 4 * tpkt
tn<l =-X---;

4 Spkt

Consider the following configuration.

198 XVI Congresso da Sociedade Brasileira de Computação (SBC)

Configuration
T = 1 Gbytes; M = 64 Mbytes; Nb = 48; Sbtk = 6~M
Spkc = 48; tplrl = 10ps; bwd•k = 5 MBps (SCSI-2)

For these physical parameters, we have that td.k = 4, 26s and t net = 4, 44s. Thus, the time to
retrieve a text block from disk (sequentially) is identical to the time to retrieve a text block
across the network. Further, this is also true if (a) Spkc = 96 and bwd•k = 10M Bps (fast
SCSI-2) or (b) Spkc = 192 and bwd•k = 20MBps (fast-wide SCSI-2). Since network bandwidth
is increasing faster than disk transfer rate, we should expect that tnee < td.k in the near future.
For our analysis in this paper, we assume that tnec ::::: td•k·

Let,

n,;,: number of sistrings in a text block or pat array (n,;, = ~)
t9_.: average time to generate (in memory) a pat array for a text block
theorch: time to search (in memory) for the position of a sistring in a pat array

The parameter tb .. orch accounts for the time to determine the position in a pat array of a given
sistring. The pat array and its corresponding block of text are assumed to be resident in the
local memory .. This binary search reveals the position in the pat array for inserting a pointer
to the given sistring (such that the pat property of lexicographical order is not violated). In
the best case, this search requires a single comparison of sistrings. In the worst and average
cases, log2 n,;, comparisons are required. To simplify ou r analysis, we assume that comparing
two sistrings requires comwu-ing simply their first 4 characters (i.e., the first four bytes in
the sistring). Given these considerations, each comparison requires retrieving 8 bytes from
memory (4 for the pat array pointer and 4 for the first four characters of the sistring). Thus,

(4 + 4) log2 n,;,
l boeoreh = bw

mem

Consider the configuration above. Typical memory bandwidth nowadays is 200 MBps
(megabytes per second) (5). In this context, tb.eorch = 900ns (nano seconds) which is larger
than the time twtwdd•k to retrieve a 4 bytes word from disk (800ns for SCSI-2 at typical
transfer rate) or from a ·remote memory across the network (833ns). This shows that tb•eorch

is significative and can not be ignored (as one might be inclined to do by considering that t he
binary search involves solely local memory accesses).

Computation of an entire array of counters requires executing the above binary search n,;,
times. Let,

tbin: time to perform n,;, binary searches in a pat array

Since n,;, = ~'

3.3.2 Execution Time for the Patseq Algorithm

The total execution time lp41,.9 for the Patseq algorithm is composed of t he following t imes:

tpoc: time to retrieve the text blocks from disk, generate the pat arrays for each of
them, and store these pab on disk
tc:ovncer...<:Omputing: time to generate the arrays of counters and store them on disk
lpounerging: time to merge the pat arrays into the full (and final) pat

The total execution time for Patseq is given by

3 * Nl Sbtk Nl Sbtk
lPot•<q ::::: - 2- * 4 * lwordd•k + 2 * 4 * tb•eorch

Vlll Simp. de Arg. de Computadores e Proc. de Alto Desempenho 199

3 .3.3 Execution Time for the Patseqpar Algorithm

The execution time tp.t,cqpar for the Patseqpar algorithm is composed of the times t 1
tcountcr...computing, and t,.uncrging with the following differences: (a) t,.,.1 is cut by a facto;
of Nb (because ali pats are generated in parallel), and (b) except for the first step of the
counter_computing task (which computes C1,2) and the last step of the pat..rnerging ta.sk
(which computes Pt+ ... +N.) , these two tasks are ruo in parallel (see Figure 1). Thus, the
execution time for the Patseqpar algorithm is composed of

t,.,. •• ucl..pot.: time to compute the pats in parallel (no need to store them ba.ck to
d~~ .
tcountcr_t_pat...N: time to compute Ct,2 plus time to compute the pat Pt+ ... +N•
tcountcr..pot..por: time to compute the remaining portions of the counter_computing
(no need to store counters back to disk) and the pat..rnerging ta.sks in parallel

These times are given by

tparollcl.poll

tcountcr _!..pot...N
td1k + 2 * tmtm + iqck

= (td,k + tbin) + (2 * (Nb- 1) * tnet)

max ((Nb- 2) * (td,k + tbin), ~
1

(2 * (j -1) * tnet))

N 2 Bblk 4 * tpkt
~ 1>·-·---4 Spkt

The total execution time is given by

4 Patpar: A Distributed Parallel Mergesort for Gen-
erating Pat Arrays

4.1 A New Algorithm- Patpar

The Patpar algorithm works as follows. The text is partitioned in Nb blocks of size swk· Ea.ch
text block b; is assigned to a distinct workstation such that the corresponding pat arra.y p; ca.n
be generated locally (using, for instance, quicksort). After the generation of these pa.t arrays,
the ith machine contains the block of text b; and its pat a.rray p; in its main memory. Our idea
is to merge these pat arrays by moving sistrings solely in the aggrega.te memory (i.e., without
ever storing them on disk). Since ea.ch pa.t array is alrea.dy sorted, we adopt the mergesort
algorithm to perform this distributed merging.

Figure 2 illustrates the merging procedure. At the bottom levei (i.e., levellog2 Nb), we
group the machines in pa.irs. The lowest numbered machine in ea.ch pai r controls the merging
operation. The resultant pat arrak is stored in the aggregate memory of this pair of machines.
The total number of merges is T and they ca.n ali be done in parallel. We assume that
the pat array pointers are words of 32 bits which alrea.dy include absolute text offsets such
tha.t they do not need to be a.djusted when they are moved from one ma.chine to another.
At the immediately above levei (i.e., levei (log Nb)- 1), we group two pairs of ma.chines into
qua.druples. At the next above levei, eight ma.chines are grouped together, and so on. At the
root node, the final merge is done and the pat array Pt+2+ ... +N• generated.

200 XVI Congresso da Sociedade Brasileira de Computação (SBC)

/);__······· Level l

'• '• '• '•

Figure 2: Execution strategy for the distributed parallel mergesort algorithm.

4.2 Modeling the Execution Time
The execution time tp41""r of the Patpar algorithm is composed of the following two times:
(a} time to compute the pat arrays Pl , ... , PN, in parallel and (b) time to merge the pat
arrays in the aggregate memory. The first of these times is the t""rmllel..pmrll time computed
ÍJl Subsection 3.3.3. The second of these times depends heavily on the number of message
packets exchanged which means that care must be exercised.

We divide the available memory in 4 portions (instead of 3 as before) and reserve one of
t~m for text. Thus, the number Nh of text blocks is now given by 2" which implies t hat
our parallel algorithrp requires more machines than the Patseqpar algorithm. To make this
distinction clear we refer to the number of text blocks used by our algorithm as Nb. Clearly,
Nh = ~- Also, the block size changes. Let Sbtk be the block size used by our algorithm.
Then, Shtk = ~- The 4 portions of memory are used to hold: (1) a block-size portion of the
res~ant pat array which is currently been computed, (2) the pat array which is participating
in th& current merging operatioJ.l, (3) a block o f text b;, and (4) its respective pat array p;. The
pat array p; is kept in memory throughout the computation to allow accessing the sistrings
in b; in lexicographical order. Remote pat array pointers and sistrings are now retrieved
according to the following protocol:

(1) send out a packet requesting ~ adjacent pointers
(2) receive a packet with the 12 pointers requested
(3) for each of the received pointers do:
(3a) send out a packet (to the proper machine) requesting ~ sistrings of size 4
sorted lexicographically
(3b) receive a packet with the requested sistrings

A minimum extra buffer space (of size 48 • Nb) is required to hold the newly arrived data
(i.e., a buffer of size 48 bytes is reserved locally for each remote machine in the network). As
a result of the above protocol, the next 12 remote pointers (and their r!'spective sistrings)
are promptly available for the merging operation. Furthermore, since the sistrings in each
machine buffer are sorted lexicographically, they can be processed sequentia,!Jy as the merging
operation moves on.

A problem arises when the first 4 characters of a sistring are not enough to decide a
comparison. In this case, an extra request message is dispatched to the proper machine
requesting the whole sistring (which fits in a single packet). This event happens with a
probability q which is usually small ((il)~ in random texts with an alphabet size of 62) and
thus, the number of extra messages for retrieving full sistrings is expected to be small.

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 201

The time tparall<l.merging to conclude the whole merging task can be computed as

IogA'•

lparoll<l-merging = ~ [2 * {{2i- 1} * lnet + {2i- 1} * tnec) + {2i- 1} * tnec]
·=•

lo
.r Sbtk 4 * tpkt

~ *JVb *- * ---
4 Spkt

Since }/b = ~ and Sbtk = ~. the total execution time for our parallel algorithm is given
by

Sbtk 4 * tpkt
lPatpar:::;: 10 * Nb *- * ---

4 Spkt

It can also be shown that the extra time tu:tra spent retrieving full sistrings is given by

1 r q * Spckt
t e>:lra = JVb * --2- * tnet

which can be disregarded in tbe calculation of t he total execution time if q is not excessively
high.

5 Conclusion: Network and Memory Considerations

5.1 TCP /IP Net works

The high-bandwidth analysis considers user-to-user communication latencies in the order of
10 ps. Unfortunately, common Ethernet networks and even specialized switched networks
of machines like IBM SP systems do not provide latencies with this order of magnitude.
Experiences on the old IBM SP-1 and the more recent IBM SP-2 (or just SP) systems give
us times latencies varying from 2 miliseconds to 10 miliseconds (user-to-user latencies in the
worst case) (2, 6]. This means two to three orders of magnitude larger than latencies in a
high-bandwidth network. Naturally, the gains of one order of magnitude in high performance
networks are lost when working with conventional technology: Patseq (the original sequential
algorithm) is the best algorithm under these conditions.

5.2 Infiuence of Memory Size

It is quite difficult to work in a totally homogeneous network of workstations, with the sarne
processo r, same memory sizes and even same operating system. In our analysis, CPU hetero
geneity is not a problem because the pat construction is an application typically 1/ 0-bound.
We remark that the quantitative analysis given by this paper ignores the processing overhead.
Disks unities can also vary from workstation to workstation but, due to &tandard interfaces
(e.g, SCSI), disk bandwidth is reasonably homogeneous in a network. _The exception here is
the case where file systems are mounted through the network. If network goes faster than
disk, the effective ba11dwidth is still given by the disk unit. In the contrary, network is the
bottleneck. However C')Otention exists and global bandwidth ls surely worse.

On the other hand, memory may vary from machine to machine. tp0 c.eqpar and tp4 cpar are
insensitive to memory access times when the number of blocks is high (e.g., superior to 10).
The parameter of importance is tnec· So, the only way memory can affect the performance when
exploring high parallel systems is when memory size is different from machine to machine. H
the proposed parallel algorithms work without changes, machine with larger memories will

202 XVI Congresso da Sociedade Brasileira de Computação (SBC)

suft'er of subutilization (in the case memory is totally given to the pat construction algorithm
and operating system).

In Patseqpar, larger memories can eventually support larger pieces of the•already sorted
partia! pat. In:

(

N•-1)
tcounter..pot..par = max (Nb- 2) * (td.k + tb;n), ?: (2 * (j- 1) * tned

J=2

the first argument of max is not affected by a larger memory: disk is still read sequentially
and binary searches are done also sequentially. One possibility is to perform in parallel, in
the same machine, binary search and disk access. td•k may, in this case, be transparent to the
machine computing C1+2+ ... +(i-t)j· Some gain could be also obtained if partia) sorted pats
do not go back to their original machines. They rest in the machine where merge has been
done. But gain is useless: dropping the second factor by half, for example, means that first
processar has no additional memory, second processar can support three original text blocks
plus one, third processar can support three original text blocks plus two, and so on. Fourth
processar and next processors will have at least double memory than the smaller machine. In
this case, half of the processors can be used because this half will surely have lwice primary
memory than the original configuration. In the above cases, complexity is not changed: the
algorithm remains quadratic in the number of blocks.

In Patpar, the same constraint is valid. If half processors has primary memory twice
larger than the other machines, it is better to use only these "larger" machines. If only
some machines are larger than others, these machines have to be the "master" processors
when merging pats. These machines can simulate virtual processors putting text and pats in
the additional memory. However, gain is limited due to the synchronization needed between
leveis 1, 2, ... , log2 Nb. If in Patseqpar we have an application typically sequential, in Patpar
however, we have leveis that are sequential. The additional memory will be source of load
imbalance with processors waiting for other processors. Finally, some "master" processors
do not remain "master" in the next levei. In the above scheme, additional memory of these
ex-"master" processors is useless.

References

[1) Thomas Anderson, David Culler, and David Patterson. A case for NOW (network of
workstations). IEEE Micro, 15(1):54- 64, February 1995.

[2) Laurent Azema. Evaluation de stratégies d'ordonnancement statique sur ordinateurs à
mémoire distribuée, June 1995. DEA thesis - Institut National Polytechnique de Grenoble
- Grenoble, France.

[3) Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New índices for text: Pat
trees and pat arrays. In Information Retrieval - Data Structures & Algorithms, pages
66- 82. Prentice Hall, 1992.

[4) Jeft'rey Kuskin et ai. ', The stanford FLASH multiprocessar. In Proceedings o f the !Jlst
International Symposium on Computer Architecture, pages 302- 313, Chicago, IL, April
1994.

[5) Sun Microsystems. Sun WWW home page, March 1996. http:/ / www.sun.com/.

(6) Ronald Mraz. Reducing the variance of point-to-point transfers for parallel real-time
programs. IEEE Parallel and Distributed Technology, 2(4):20-31, 1994.

