VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 193

Network and Memory Analysis in Distributed Parallel
Generation of Pat Arrays

Jodao Paulo W. Kitajima
Ber_hhier Ribeiro
Nivio Ziviani

Departamento de Ciéncia da Computagao
Universidade Federal de Minas Gerais
e-mail: {kitajima,berthier,nivio}@dcc.ufmg.br

Abstract

The performance of parallel and distributed algorithms for generation of large pat
arrays is analyzed. These algorithms are evaluated taking into account a high-bandwidth
network of workstations, a TCP/IP-based network and an heterogeneous network with
different memory sizes. In the first case, performance of the parallel versions are signif-
icantly better. In the second case, the sequential algorithm is clearly the best. In the
third case, different memory sizes will hardly improve execution times significantly.

1 Introduction

The traditional model of text in information retrieval (IR) is that of a collection of documents
indexed by keywords. In this model, the user specifies his information need by providing sets
of keywords and the information system retrieves the documents which best approximate the
user query. Further, the information system might attempt to rank the retrieved documents
using some measure of similarity. Representing the content of a document and of a user query
by a set of keywords was necessary in the early seventies due to performance constraints.
Nowadays, the advent of powerful workstations has allowed the consideration of alternative
models for IR. One such model which is gaining popularity is the full text model. In this model,
documents are represented by either their complete full text or extended abstracts. The cost
of searching the full text is usually high but the method presents important advantages [3].
First, no structure in the text is needed which broadens the scope of applications of full text
search. Second, no keywords are used which broadens the domain of queries the user might
specify. Third, the model is simpler and can be easily grasped by a common user. The
emergent ATM technology provides fast message exchanges (155 Mbps, megabits per second,
is a commercial reality these days) between any pair of nodes (without contention) which is
a requirement for efficient parallelism. However, this is not enough. Besides low latency in
the network, the overhead involved in packing, shipping, and unpacking messages must be
small in a user-to-user .nessage exchange. This overhead is CPU time which is unavailable
for computation. To reduce this overhead in a conventional workstation one has to deal with
the delays imposed by the operating system. The user must transmit directly into and receive
from the network without interference from the operating system. This can be attained by
mapping data directed to the network interface into the user address space directly. Such

194 XVI Congresso da Sociedade Brasileira de Computacio (SBC)

task involves the redesign of a portion of the operating system and the design of specialized
network hardware. While such designs are not a reality yet, efforts are under way [1, 4].
The NOW project [1] aims at performing user-to-user communication of a small message (48
to 192 bytes) among 100 machines in 10us. Such goal is technologically feasible and should
become a reality in a few years. In this paper we investigate (a) the impact of the TCP/IP
protocol, and (b) the impact of heterogeneity on the performance of the parallel versions of an
algorithm for pat arrays generation presented in [3]. “Heterogeneity”, in our context, means
machines with different memory sizes. Memory availability is one of the main concerns when
developing applications that build indices for large texts (greater than 1 gigabyte).

2 Basic Definitions

In full text retrieval, the entire text is viewed as one very long string. In this string, each
position k is associated to a semi-infinite string which initiates at k and extends to the right as
far as needed or to the end of the text. Such semi-infinite strings are called sistrings [3]. The
user specifies his information need by referring to the sistrings he is interested in. The task
of the information system is to search the full text for the occurrences of the user specified
sistrings. To perform this search efficiently our information system uses a pat array (generated
for that text) as the indexing structure.

A pat array is a linear structure composed of pointers to every sistring in the text. These
pointers are sorted according to a lezicographical ordering of their respective sistrings. Further,
each of these pointers can be viewed simply as the offset (counted from the beginning of the
text) of the sistring in the text.

3 The Patseq and Patsegpar Algorithms

3.1 The Sequential Version — Patseq

The Patseq algorithm considers that a single machine is used to build the pat array. This
machine must have enough disk space for storing the whole text and its pat array. For
instance, the disk space required for storing a text of size 1 gigabyte and its pat array is
roughly 2 gigabytes (for a text containing 25% of sistrings).

If all the text and its pat array fit in main memory, the problem becomes one of sorting the
pat array (according to a lexicographical ordering of its corresponding sistrings) in primary
memory and can be solved trivially using (for instance) quicksort. For large texts, however, the
text must reside on disk and one cannot avoid accessing the secondary memory for retrieving
text sistrings. Since accesses to secondary memory are dominated by the seek time, one must
minimize the number of seek operations when accessing a large file. This is the main concern
of algorithms which perform ezternal sorting.

Let T be the length of the whole text in bytes and M, M < T, be the memory available
for generation of the pat array. We break up the text in blocks of size B bytes such that
3 x B = M. The reason for the constant 3 will become clear ahead. Let N, be the number of
blocks contained in the full text (i.e., Ny = [%]). For each block b; do: (a) load the block b;
sequentially into main memory; (b) using quicksort, generate (in main memory) the pat array
pi corresponding to the block b;; and (c) store the pat array p; sequentially on disk (this phase
corresponds to the generation of small pat arrays - one for each text block). The phases (a)
and (c) require a single seek operation at the beginning. After this seek operation, the access
is purely sequential. The merging of the IV, pat arrays is then initiated. Unfortunately, such
merging operation is more involved than it seems at first glance.

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 195

A very simple (and naive) approach to merge the N} pat arrays is as follows (specified in
a C-like language):

Algorithm 1 Naive algorithm for merging partial pat arrays.
P = py; /* P is the resullant pat array */
/* merge the small pats with the large partial pat which is already sorted */
for (i=2;1< Ny;i++) P=merge(P,p);

The key problem is the implementation of the function called merge. Let bp be the portion
of the text (composed of one or more blocks of text) corresponding to the pat array P. To
merge the pat arrays P and p;, it is necessary to access the sistrings in bp and b;. Since these
accesses are non-sequential (they follow the pat array pointers), the text blocks bp and b; must
be in main memory (otherwise, too many seek operations would be required). Unfortunately,
as P grows bp becomes too large to fit in main memory. If we attempt to access the sistrings
in bp directly from disk, the execution time becomes unacceptable due to the large number of
seek operations.

To avoid the seek operations, the Patseq algorithm always accesses the text sequentially
(i.e., subsequent disk accesses refer to contiguous disk sectors). This is accomplished by
maintaining auxiliary counters which indicate the number of sistrings, pointed by elements of
a pat, which fall between any two consecutive sistrings pointed by elements of another pat in
a lexicographical ordering of the sistrings. These counters allow merging the two pat arrays
through strictly sequential accesses (with no need to further inspect text sistrings). Most
important, these counters can be generated by always accessing text sistrings sequentially.
Thus, the whole process can be completed through strictly sequential disk accesses. Counters
generation is done as follows.

Consider two pat arrays p; and p; and let n; be the number of elements in p;. The counters
which indicate how to intercalate p; into p; are maintained in an array C;; containing exactly
n; + 1 integers. Let p;[k] be a reference to the kth pointer in the pat array p;. The element
C: ;[k] counts the number of sistrings reachable from p; which lie between the sistring pointed
by p;[k] and the sistring pointed by p;[k + 1] (assume the presence of two sentinels p;[0] and
pi[nj+1]). To generate C;; the following three data structures are kept in main memory: the
pat array pj, its block of text bj, and the array C;; itself (this is the reason for dividing the
primary memory in blocks of size %’}). The sistrings pointed by the pat p; (i.e., the text block
b;), i < j, are then retrieved sequentially from disk and processed as follows.

Algorithm 2 - Computing the array of counters C; ;.
foreach “sistring S,S € b;, retrieved sequentially from disk” do {
k = “position of S in p;”;
Ci;[k] + +; /* increment the counter */
}

The “position of S in p;” is determined through an indirect binary search in the pat array
p;- This search reveals a pair of pointers pj[k] and p;[k + 1] which point to the two sistrings
of b; surrounding § (S is in &) in a lexicographical ordering of them. The counter C;;[k] is
incremented to reflect this fact.

Figure 1 illustrates the data structures used by the Patseq algorithm for merging the N,
pat arrays.

The merging is done as follows. Firstly, the array of counters C,z is computed and stored
on disk. This array allows merging the pat array p; into the pat array p; to generate the
resultant pat array pi4+2. Secondly, the arrays C; 3 and Cz 3 are computed and summed up on
the fly to yield the resultant array of counters Cy42,3 which is stored on disk. This resultant

196 XVI Con| da Sociedade Brasileira de Compul SBC

p,
T, I:cl Step 1
1.2
3 —
v, T CT3T Step 2
e c
Y e
r, [] [] [) [] Step 3
S c:.c S
L]
L
L]
p"ﬁl:'l
T%::E::j ses [Step N -1
C1.nb cz.uh c”h cub-x,uh

Figure 1: Data structures used by the Patseq algorithm for merging the N, pat arrays.

array allows merging the composed pat array p;4; into the pat array ps. In the jih step, the
array Cyy. 4(j-1),; is computed and stored on disk. Once all counters have been computed,
the algorithm is ready to conclude the merging of the pat arrays which is accomplished as
follows.

Algorithm 3 Using the arrays of counters to merge the partial pat arrays.
P=p;
fo" (J =2 J < Nb;j + +) mcrge-using-caunter(P, Pj, Cl+---+(i-l)J);

The procedure merge_using_counter simply accesses the two pat arrays sequentially and
merges them guided by the array of counters. Since P becomes larger and larger it is kept on
disk. That is not a problem because P is always accessed sequentially.

3.2 The Parallel Version — Patsegpar

The Patseq sequential algorithm is composed of two main tasks: (1) task counter_computing
which generates the counters and (2) task pai_merging which produces the resultant pat
Pi+..+N,- Unfortunately, this merging task has an inherently sequential nature. The com-
putation of the partial pat pi4243 can only be initiated after the pat p;42 has been computed.
In general, computation of p; .. 4+; can only be done after p;..4(j-1) has been computed. Since
the whole pat_merging task has a complexity given by O(NZM) (see Subsection 3.3.2), this is
the complexity of any parallel version of the Patseg algorithm. Thus, no matter how many
machines are available, the complexity of Patseq can not be improved. However, the expected
execution time can be improved by parallelizing the counter_computing task.

We consider that our high-bandwidth network contains at least /N, machines available
and that each of them has a free space of size M bytes in its primary memory (non-virtual).
Furthermore, we assume that there is disk space available in each machine’s local disk. The
key insight for a good parallelization of Patseq is noticing that the counter_computing and
the pat_merging tasks can be run in parallel. This is accomplished by (1) restricting the
counter_computing task to retrieve data from local disks and (2) restricting the pat_merging
task to retrieve data from the aggregate memory. The result is that the data access patterns
of the two tasks do not interfere with each other.

Given the above considerations, Patsegpar, our parallel implementation of Patseq, comes
up very naturally. The blocks of text are replicated in the local disks of the various machines

197

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho

as follows: machine 1 stores the block of text b;, machine 2 stores the blocks of text b, and bs,
and so on. Following, the N, machines compute, in parallel, the initial pat arrays p,, ps, ...,
pn,. The machine 7 is in charge of computing p; which it accomplishes as follows: (a) read b;
from disk and (b) compute p; using quicksort. After this step, the machine ¢ holds in its main
memory the pat p; and its corresponding text block b;.

To compute the counters, the algorithm associates to each step 7 in Figure 1 processor i +1.
Thus, processor 2 is responsible for computing C 2, processor 3 is responsible for computing
Ci42,3, and so on. The computed counters are kept in main memory. During this phase, all
processors execute Algorithm 2 (which requires only local disk accesses) and operate fully in
parallel. As soon as C)z is computed, processor 2 can initiate the pat_merging task (there is
no need to wait for the other processors). It does so by retrieving the pointers of p; (across the
network, from the memory of the machine 1) and by merging them into p, (guided by C;)
to generate py;2. Since C); and p; reside locally in the memory of the processor 2, no disk
accesses are made. The resultant pat p4. is stored in the aggregate memory of the machines
1 and 2 (in the space previously occupied by the text block b; in machine 1 and the text block
bz in machine 2). In general, after computing the counter C'y4_4(j-1); the machine j needs
to wait only for the computation of py4..4(j-1) by the machine j — 1 to enter the pat_merging
task. The overall effect is that the counter_computing and the task_merging tasks march in
parallel.

A drawback of this approach is that it requires extra space in disk which is proportional
to Eﬂ“}*‘”—'l * B. For T = 1 Gbyte, M = 64 Mbytes, and N, = 48, approximately 24 Gbytes
of extra disk space is required.

3.3 Modeling the Execution Times
3.3.1 Physical Parameters

According to our previous considerations (Section 2), text blocks, pat arrays, and counter
arrays are roughly the same size. Further, T, M, and N, stand for the full text size, the
memory available in each machine, and the number of text blocks, respectively. Clearly,

T
N5=E
3

Let,

bwymem: memory bandwidth in bytes per second

bwgsy: disk bandwidth in bytes per second

Lwordmem: time to retrieve a 4 bytes word from memory (4 x bw,,‘,.,,.)
tworddsk: time to retrieve a 4 bytes word from disk (4 x ML =)

spk: size of a text block in bytes (= %)

spke: size of a network packet in bytes (= 48, ATM technology)

tpke: time in seconds to move a user-to-user packet from one machine to another
tnet: time in seconds to move a text block from one machine to another

t44: time in seconds to read/write a text block from a local disk

{mem: time in seconds to read/write a text block from local memory

Then,

Spik 4 * tpke Shik Shik
tnet = _4_ X —; dsk = —— X tuorddsk; tmem = — X twordmem
Spkt 4 4

Consider the following configuration.

198 XVI Congresso da Sociedade Brasileira de Computagdo (SBC)

Configuration

T = 1 Gbytes; M = 64 Mbytes; N, = 48; sy = %

Spkt = 48; tpe = 10pus; bwy, = 5 MBps (SCSI-2)
For these physical parameters, we have that ¢4, = 4,26s and .., = 4,44s. Thus, the time to
retrieve a text block from disk (sequentially) is identical to the time to retrieve a text block
across the network. Further, this is also true if (a) s, = 96 and bwye = 10M Bps (fast
SCSI-2) or (b) spr = 192 and bwg,, = 20M Bps (fast-wide SCSI-2). Since network bandwidth
is increasing faster than disk transfer rate, we should expect that t,.; < ¢4, in the near future.

For our analysis in this paper, we assume that t,. = t4.k.
Let,

nyip: number of sistrings in a text block or pat array (n,;, = &)

tocx: average time to generate (in memory) a pat array for a text block
thsearch: time to search (in memory) for the position of a sistring in a pat array

The parameter tyyeqrch accounts for the time to determine the position in a pat array of a given
sistring. The pat array and its corresponding block of text are assumed to be resident in the
local memory.- This binary search reveals the position in the pat array for inserting a pointer
to the given sistring (such that the pat property of lexicographical order is not violated). In
the best case, this search requires a single comparison of sistrings. In the worst and average
cases, log, n,i, comparisons are required. To simplify our analysis, we assume that comparing
two sistrings requires comparing simply their first 4 characters (i.e., the first four bytes in
the sistring). Given these considerations, each comparison requires retrieving 8 bytes from
memory (4 for the pat array pointer and 4 for the first four characters of the sistring). Thus,

; _ (44 4)log, n,i,
bsearch = '_'_E'—

Consider the configuration above. Typical memory bandwidth nowadays is 200 MBps
(megabytes per second) [5]. In this context, tsearcs = 900ns (nano seconds) which is larger
than the time tuorddsk to retrieve a 4 bytes word from disk (800ns for SCSI-2 at typical
transfer rate) or from a remote memory across the network (833ns). This shows that #4,.aren
is significative and can not be ignored (as one might be inclined to do by considering that the
binary search involves solely local memory accesses).

Computation of an entire array of counters requires executing the above binary search n;,
times. Let,

tyin: time to perform n,i, binary searches in a pat array

Since n,;, = ze‘ul
Shlk
thin = thsearch X T

3.3.2 Execution Time for the Patseq Algorithm

The total execution time ¢py4.e, for the Patseq algorithm is composed of the following times:

tpar: time to retrieve the text blocks from disk, generate the pat arrays for each of
them, and store these pats on disk

tcounter _computing: time to generate the arrays of counters and store them on disk
tpat_merging: time to merge the pat arrays into the full (and final) pat

The total execution time for Patseq is given by

3xNZ s NE s
tPataeq R 3 b *‘i&*twwdbk+7b*%t*tbucurch

VII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 199

3.3.3 Execution Time for the Patsegpar Algorithm

The execution time {paseqpar for the Patsegpar algorithm is composed of the times tpat,
teounter computing; @Nd tpat_merging With the following differences: (a) #pa¢ is cut by a factor
of Ny (because all pats are generated in parallel), and (b) except for the first step of the
counter_computing task (which computes C);) and the last step of the pat_merging task
(which computes pi4..4n,), these two tasks are run in parallel (see Figure 1). Thus, the
execution time for the Patsegpar algorithm is composed of

fjﬁmi:“d _pats: time to compute the pats in parallel (no need to store them back to
15! "

Leounter1_pat_N: time to compute C 5 plus time to compute the pat pi4. 4w,
Leounter_pat_par: time to compute the remaining portions of the counter_computing
(no need to store counters back to disk) and the pat_merging tasks in parallel

These times are given by

tparnﬂef.pata = gk + 2 ¥ tmem + iqck
(tdnk + th'n) + (2 * (Nb == 1) * tne!)

tcounler-l.pnt.N
Np—-1
tmnnt«:r.pat_pnr = max (Nb & 2) * (tdak + tbl'n): E (2 % (J e 1) * tml))
=2
Nf e ——4 * Lokt
4 Spkt

14

The total execution time is given by

Sy 4 xtppe
Sl)

t.Pal.leqpnr = N: *
4 Spkt

4 Patpar: A Distributed Parallel Mergesort for Gen-
erating Pat Arrays

4.1 A New Algorithm — Patpar

The Patpar algorithm works as follows. The text is partitioned in N, blocks of size sy. Each
text block b; is assigned to a distinct workstation such that the corresponding pat array p; can
be generated locally (using, for instance, quicksort). After the generation of these pat arrays,
the ith machine contains the block of text b; and its pat array p; in its main memory. Our idea
is to merge these pat arrays by moving sistrings solely in the aggregate memory (i.e., without
ever storing them on disk). Since each pat array is already sorted, we adopt the mergesort
algorithm to perform this distributed merging.

Figure 2 illustrates the merging procedure. At the bottom level (i.e., level log, N;), we
group the machines in pairs. The lowest numbered machine in each pair controls the merging
operation. The resultant pat array is stored in the aggregate memory of this pair of machines.
The total number of merges is 5* and they can all be done in parallel. We assume that
the pat array pointers are words of 32 bits which already include absolute text offsets such
that they do not need to be adjusted when they are moved from one machine to another.
At the immediately above level (i.e., level (log N}) — 1), we group two pairs of machines into
quadruples. At the next above level, eight machines are grouped together, and so on. At the
root node, the final merge is done and the pat array p;42+..4+n, generated.

200 XVI Congresso da Sociedade Brasileira de Computagdo (SBC)

é ; oy 210w,

Figure 2: Execution strategy for the distributed parallel mergesort algorithm.

Lavel log J

P l'n. 1 Puy,

4.2 Modeling the Execution Time

The execution time tpapa, of the Patpar algorithm is composed of the following two times:
(a) time to compute the pat arrays py, ..., pn, in parallel and (b) time to merge the pat
arrays in the aggregate memory. The first of these times is the t,araitel_parts time computed
in Subsection 3.3.3. The second of these times depends heavily on the number of message
packets exchanged which means that care must be exercised.

We divide the available memory in 4 portions (lnst.ea.d of 3 as before) and reserve one of
tiem for text. Thus, the number N, of text blocks is now given by which implies that
our parallel algorithm requires more machines than the Patsegpar a.lgonthm To make this
dmtmctlon clear we refer to the number of text blocks used by our algorithm as Aj,. Clearly,
N = . Also, the block size changes. Let Sy be the block size used by our algorithm.
Then, Sm, = 22, The 4 portions of memory are used to hold: (1) a block-size portion of the
resujtant pat arra.y which is currently been computed, (2) the pat array which is participating
in the current merging operation, (3) a block of text b;, and (4) its respective pat array p;. The
pat array p; is kept in memory throughout the computation to allow accessing the sistrings
in b; in lexicographical order. Remote pat array pointers and sistrings are now retrieved
according to the following protocol:

(1) send out a packet requahng S adjacent pointers

(2) receive a packet with the 12 pomters requested

(3; for each of the received pointers do:

(3a) send out a packet (to the proper machine) requesting % sistrings of size 4
sorted lemcographjcall

(3b) receive a packet with the requested sistrings

A minimum extra buffer space (of size 48 * A}) is required to hold the newly arrived data
(i.e., a buffer of size 48 bytes is reserved locally for each remote machine in the network). As
a result of the above protocol, the next 12 remote pointers (and their respective sistrings)
are promptly available for the merging operation. Furthermore, since the sistrings in each
machine buffer are sorted lexicographically, they can be processed sequentially as the merging
operation moves on.

A problem arises when the first 4 characters of a sistring are not enough to decide a
comparison. In this case, an extra request message is dispatched to the proper machine
requesting the whole sistring (which fits in a single packet). This event happens with a
probability ¢ which is usually small ((3;)* in random texts with an alphabet size of 62) and
thus, the number of extra messages for retrieving full sistrings is expected to be small.

VIII Simp. de Arg. de Computadores ¢ Proc. de Alto Desempenho 201

The time {paraitelmerging to conclude the whole merging task can be computed as

log Ny

tpnrﬂ”cl..mcrging = Z: [2 * ((2' . 1) % tnet + (2' - 1) * tnel) + (2’ e 1) ¥ tn!!]
=1
~ 104N+ Sbue 4 x oy
Spkt
Since N = &% and Sy = sk the total execution time for our parallel algorithm is given

by
4%t
tpatpar 72 10 % Ny 4 22k, 2% Tpit
Spkt

It can also be shown that the extra time #,;:,, spent retrieving full sistrings is given by

q * Spckt
leztra = M % =Ry * net

which can be disregarded in the calculation of the total execution time if g is not excessively
high.

5 Conclusion: Network and Memory Considerations

5.1 TCP/IP Networks

The high-bandwidth analysis considers user-to-user communication latencies in the order of
10 us. Unfortunately, common Ethernet networks and even specialized switched networks
of machines like IBM SP systems do not provide latencies with this order of magmtude
Experiences on the old IBM SP-1 and the more recent IBM SP-2 (or just SP) systems give
us times latencies varying from 2 miliseconds to 10 miliseconds (user-to-user latencies in the
worst case) [2, 6]. This means two to three orders of magnitude larger than latencies in a
high-bandwidth network. Naturally, the gains of one order of magnitude in high performance
networks are lost when working with conventional technology: Patseq (the original sequential
algorithm) is the best algorithm under these conditions.

5.2 Influence of Memory Size

It is quite difficult to work in a totally homogeneous network of workstations, with the same
processor, same memory sizes and even same operating system. In our analysis, CPU hetero-
geneity is not a problem because the pat construction is an application typically I/0-bound.
We remark that the quantitative analysis given by this paper ignores the processing overhead.
Disks unities can also vary from workstation to workstation but, due to standard interfaces
(e.g, SCSI), disk bandwidth is reasonably homogeneous in a network. The exception here is
the case where file systems are mounted through the network. If network goes faster than
disk, the effective bandwidth is still given by the disk unit. In the contrary, network is the
bottleneck. However contention exists and global bandwidth is surely worse.

On the other hand, memory may vary from machine to machine. {patseqpar a0d #patpar are
insensitive to memory access times when the number of blocks is high (e.g., superior to 10).
The parameter of importance is ¢ne. So, the only way memory can affect the performance when
exploring high parallel systems is when memory size is different from machine to machine. If
the proposed parallel algorithms work without changes, machine with larger memories will

202 XVI Congresso da Sociedade Brasileira de Computagio (SBC)

suffer of subutilization (in the case memory is totally given to the pat construction algorithm
and operating system).

In Patseqpar, larger memories can eventually support larger pieces of the<already sorted
partial pat. In:

Ny—1
tcounter.pal.pur = max ((Nb i 2) * (tdak + tbl’n), Z (2 * (J - 1) * tnet))
=2

the first argument of maz is not affected by a larger memory: disk is still read sequentially
and binary searches are done also sequentially. One possibility is to perform in parallel, in
the same machine, binary search and disk access. 4,4 may, in this case, be transparent to the
machine computing Ci424. 4(j-1),;- Some gain could be also obtained if partial sorted pats
do not go back to their original machines. They rest in the machine where merge has been
done. But gain is useless: dropping the second factor by half, for example, means that first
processor has no additional memory, second processor can support three original text blocks
plus one, third processor can support three original text blocks plus two, and so on. Fourth
processor and next processors will have at least double memory than the smaller machine. In
this case, half of the processors can be used because this half will surely have twice primary
memory than the original configuration. In the above cases, complexity is not changed: the
algorithm remains gquadratic in the number of blocks.

In Patpar, the same constraint is valid. If half processors has primary memory twice
larger than the other machines, it is better to use only these “larger” machines. If only
some machines are larger than others, these machines have to be the “master” processors
when merging pats. These machines can simulate virtual processors putting text and pats in
the additional memory. However, gain is limited due to the synchronization needed between
levels 1,2,...,log, V. If in Patseqpar we have an application typically sequential, in Patpar
however, we have levels that are sequential. The additional memory will be source of load
imbalance with processors waiting for other processors. Finally, some “master” processors
do not remain “master” in the next level. In the above scheme, additional memory of these
ex-“master” processors is useless.

References

[1] Thomas Anderson, David Culler, and David Patterson. A case for NOW (network of
workstations). IEEE Micro, 15(1):54-64, February 1995.

[2] Laurent Azema. Evaluation de stratégies d’ordonnancement statique sur ordinateurs a
mémoire distribuée, June 1995. DEA thesis - Institut National Polytechnique de Grenoble
- Grenoble, France.

[3] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indices for text: Pat
trees and pat arrays. In Information Relrieval - Data Structures & Algorithms, pages
66-82. Prentice Hall, 1992.

[4] Jeffrey Kuskin et al." The stanford FLASH multiprocessor. In Proceedings of the 21st
International Symposium on Computer Architecture, pages 302-313, Chicago, IL, April
1994.

[5) Sun Microsystems. Sun WWW home page, March 1996. http://www.sun.com/.

[6] Ronald Mraz. Reducing the variance of point-to-point transfers for parallel real-time
programs. IEEE Parallel and Distributed Technology, 2(4):20-31, 1994.

