
Vlll Simp. de Arg. de Computadores e Proc. de Alto Desempenho

Parallel Virtual Memory for
Time Shared Environments *

Verônica L. M. Reis, Luis Miguef Campos and lsaac D. Scherson

{veronica,lcampos,isaac}Gics.uci.edu

Department of lnformation and Compu ter Science

University of California, Irvine,

Irvine, California 92717·3425, U.S.A.

Phone: 1-714-824-7713 FAX: 1-714-824-4056

Abstract
This paper analyses the issues involved in providing virtual distributed

shared memory for time-shared parallel machines. We study the performance
of two different page management policies, namely, static and dynamic page
allocation under two widely accepted scheduling policies: Gang scheduling and
independent processor scheduling. The performance of each page management
policy is studied under different replacement scopes (local versus global replace
ment).

ResuJts obtained after extensive simulations show that dynamic page al
location performs better throughout ali the environments simulated. We also
observe a better performance of independent processor over gang scheduling
as well as a similar performance between local and global replacement scope.

Sumário

Este artigo analisa os problemas envolvidos em se realizar memória virtual
em ambientes distribuídos de memória logicamente compartilhada. (DSM) em
máquinas paralelas executando em tempo compartilhado. São analisadas as
performances de duas poüticas de gerenciamento de páginas: alocação estática
e dinámica sob duas poüticas de eScalonamento amplamente aceitas: grupo e
independente. Estuda-se ainda o desempenho dessas duas poüticas de geren
ciamento sob diferentes estratégias de substituição de página: local e globhl.

Os resultados obtidos após várias simulações indicam alocação dinãmica de
páginas como a melhor opção. Observamos também um melhor desempenho do.
escalonamento independente sobre o de grupo, e um desempenho equivalente
entre as duas poüticas de substituição de páginas estudadas.

223

•This research was supported in part by CNPq under grant number 200358-92.8, JNICT under
grant number BD 538, AFOSR under grant number F49620-92-J-0126, NASA under grant number
NAG&-2561 and NSF under grant numbers MIP-9106949 and MIP-9205737.

224 XVI Congresso da Sociedade Brasileira de Computação (SBC)

1 Introduction

Modero parallel machines, such as the CRAY T3D, do not provide virtual memory: it
is the programmer's responsibility to adapt the data to the physical memory available
or to code any required out-of-core space. Previous attempts to provide virtual
memory have not been successful [8). Severa! unsolved issues have prevented virtual
memory in parallel supercomputers from becoming reality. These issues include the
lack of a complete understanding of locality of reference in parallel programs, how to
effi.ciently manage the out-of-core data, and parallel I/ O scalability and performance.
In previous work [7), we proposed two strategies to manage public data pages in
a parallel virtual memory system and analyzed their performance in a single-user
environment. We now expand that analysis to a time shared environment.
In such an environment issues like job scheduling play a significant role in the def
inition of virtual memory policies. We study the influence of two widely accepted
scheduling policies, namely, gang scheduling and independent processar scheduling
on virtual memory policies. In this paper we analyze the performance of the previ
ously proposed page management policies under those two scheduling policies. Also,
in terms of page replacement strategies, we consider two replacement scopes: local
~placement, where the page to be replaced is chosen among the resident pages of
the process that generated the page fault, and global replacement, which considers ali
pages in main memory to be candidates for replacement, regardless of which process
owns a particular page.
Even though we are aware of the importance of application's page misses induced
by the OS itself as studied in [lO) we did not take this fact into consideration during
our simulations since reliable measurements of OS activity as related with cache
utilization can not usually be taken from machine simulators.
In this paper we concentrate our research efforts on the set of policies offered by the
eperaÜng system but we have to keep in mind that any virtual memory management
system needs both hardware and software support. Any unrealistic assumption about
the underlying hardware would undermine our conclusions and therefore we assume
only the existence of hardware support available in commercial systems in ali t he
algorithms presented.
The main contribution of this work is to show how different parallel virtual memory
policies perform in a time shared environment. The analysis was done through
simulation of public data access patterns of some parallel applications. Although we
have tried to use applications with different data access patterns, we do not claim to
have exhausted ali possible situations but rather to have used different applicàtions
to demonstrate the need of flexibility in an eventual parallel virtual memory system.
Our results show that dynamic page allocation seems to be a better choice when
implementing virtual distributed shared memory. This confirms ou r previous finding
when analyzing the single user case [7), therefore dynamic page allocation works
better both in single user and time-shared environments. We also observed a better
performance of independent over gang scheduling. It is important to notice, however,
that this result depends both on the availability of special features in the machine to
quickly context-switch between jobs and to buffer, for example, incomming messages
for a job not currently executing.

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 225

The paper is organized as follows. Section 2 defines the target environment for
the proposed virtual memory systems (physical machine, operating system and pro
gramming model). Section 3 presents the two parallel virtual memory management
strategies. Those strategies define how a program's public data is divided among
and managed by the processors executing that program. This section also describes
the issues involved in implementing the proposed paraltel virtual memory in a time
shared environment. Definition of th~ scheduling, page replacement and resident set
management strategies under study are presented. The performance of the different
policies are analyzed in Section 4.

2 Background

The target architecture is MIMO, with physically distributed memory. Among the
available commercial machines, CRAY T3D, Thinking Machines CM-5 and IBM SP2
fali in this category. The programming model is data-parallel and a globally address
able space (distributed shared memory), bigger than t he available core memory, is
provided by the parallel virtual memory system.
The virtual memory system divides a program's data in two categories:
- private data: the data that is accessed by one processor only. We include here
one copy of the code and ali local variables;
- public data: the data that is shared by more than one processor.
Because virtual memory for private data may be implemented in the same way as
sequential virtual memory (as longas each processor has independent access to disk) ,
we consider only public data (PD) throughout this paper. The problem of managing
the PD space cannot be resolved in the same way as private data since PD will be
used by more than one processor. This fact raises more complicated issues, as will
be seen in the next section.
We evaluate the schemes proposed through event-driven simulations using perfor
mance figures from the CRAY T3D [6}. We simulate applicatwns from the SPLASH
benchmark (9}, whose traces were taken from the literature [1) added with profiling
done by us.

3 A Parallel Virtual Memory

lmplementing parallel virtual memory cannot be done by simply expanding sequen
tial virtual memory. For instance·, data-patallel programs do not have the same
locality of reference characteristics as sequential programs do. Sequential programs
present two types of hcality: temporal and spatial. Temporallocality means that if
one address is referenced, it is likely to be referenced again in the near future. Spatial
locality means that if one address is referenced, another address nearby is likely to
be referenced in the near future. The main cause for both localities are loops: a
loop will cause an instruction to be referenced many times (temporal locality) and
will generally loop through some organized structure, element after element (spatial
locality). When a data-parallel program is executed, loops are fl.attened across pro
cessors, loosing most of its locality. On the other hand, although public data uses up

226 XVI Congresso da Sociedade Brasileira de Computação {SBC)

the majority of the program's memory, it only accounts for a small number of the ref
erences (1, 3]. These references, however, are much more time consuming, given that
they usually imply inter-processor communications, therefore justifying any attempt
to optimize them. It has also been observed that some parallel programs do present
another type of locality: inter-processor locality. Inter-processor locality means that
although multiple processors may reference addresses that are not contiguous, the
aggregate requests reference to a contiguous space (4].
Other important issues when implementing parallel virtual memory are the man
agement leveis of such a system and the data migration policy. Management levei
addresses the data search strategy. For example, i f a· cache-miss occurs, where should
the data be searched for next? Local main memory, some remote main memory or
disk?
Data migration addresses the inter-processor communication problem and is tightly
connected with management levei. It must be decided whether PD pages are allowed
to migrate among processors or should remain bounded to one processar.
In previous work, we suggested two management policies to implement parallel vir
tual memory (7]. THey are:

• Static page allocation: the PD space is divided among processors such that
each processar is responsible for fetching any of its assigned pages every time the
page is requested and not found in its memory. For example, if any processor
needs page P, and page P is under responsibility of processor A, then page P
is either in processor A main mémory or processor A must Joaci it from disk. Jf
a processo.r other than A needs data from page P, once P is loaded, A forwards
the requested data.

• Dynamic page allocation: the responsibility of knowing the present location
of a page is divided among processors. For example, if processor B needs page
P, and page P is not in processor B's main memory, B will query that page's
manager. Suppose the manager for page P is A. A will check its manager
table and locate P . If P is swapped out, A will tell B to load the page and will
update its manager table, showing B as the current owner of page P . Contrary
to the previous scheme, pages will migrate across processors as they are needed.

This scheme is an extension of the virtual shared memory management pro
posed by Kai Li (5] .

Figure 1 outlines the two management policies proposed.
In previous work, we analyzed those policies in a single-user environment and com
pared results against a system with virtual memory disabled (in which pages were
rolled-in before computation started). We now expand our experiments to a more
realistic situation (and one in which virtual memory is more desirable!): a time
shared environment. Here, we are required to schedule more than one job at a time,
so we must decide how to do it. Currently, most MIMO parallel machines use ei
ther gang scheduling (CM-5 and Intel Paragon) or independent processor scheduling
(Meiko/ts), so we tested our policies under both scheduling strategies. Another issue
is to decide the page replacement scope: if some page is to be swapped out, which

Vlll Simp. de Arg. de Computadores e Proc. de Alto Desempenho 227

•• Dlci* ,. -·-(A) (B)

Figure 1. Parallel virtual memory management policies: static (A) and dynamic (B) page
allocation.

pages should be considered? Only the pages of the job requiring space or ali pages
from ali jobs? Again, we tested our policies under the two possibilities.
Next section describes the simulations performed and presents the results obtained.

4 Sh:nulating Time Shared Virtual Memory

In order to evaluate the different virtual memory policies proposed in the previous
section, an event-driven simulator was built. This simulator allowed us to compare
the efficiency of different policies for different types of application in terms of public
data access pattern and locality, but also for different scheduling policies.
The next subsection describes the simulator structure, assumptions and strategies.
Subsection 4.2 presents the results, that are further analyzed in subsection 4.3.

4.1 Description

Macbine assumptions and OS environment: An MIMD, constànt network de
lay, 16 processor machine was simulated. The performance figures of the T3D, such
as I/ 0 latency and memory access times were used (for a complete list see Table 2).
Each processor has equal access to ali 1/ 0 nodes. Requests received by I/ 0 nodes
are processed in a first-come-first-served basis. 1/ 0 nodes have ã<:nnstant delay in
serving each request (the average. delay of the T3D).
The simulations performed time shared among 2, 3 or 4 jobs at a time. Each job
loaded had one virtual process (VP) 1 "executing" in each processor~ VPs were
interrupted due to end of time sli~, synchronization or PB:ge faults.

1 We eall a virtual proeesa the aubeet of a par aliei program running on one eomputing node. A
VP ia eompoaed of a eopy of the data-parallel program, a eopy of the private data eet and aome
sub-eet of the publie data.

228 XVI Congresso da Sociedade Brasileira de Computação (SBC)

Barrier syncbroniza.tion was used: ali VPs synchronized after executing for some 6T
time (common to ali). This 6T was ra.ndomly defined at the end of the previous
synchronization a.nd was proportional to the percentage of public data access a.nd
the memory requirement of the job.
Page faults happen to both private and public data.. Page faults to public data
interrupt both the processor requesting the page and the page owner (static policy)
or the page ma.na.ger a.nd page owner (dynamic policy).
In the static case, the requesting VP will block, waiting for its data while the owner
will either send the data (if present) or page fault .
In the dynamic case, the requesting processor will first try to locate the page in its
local memory. lf it page faults, the manager is triggered while the requesting VP
blocks. If the manager has the page, it sends it over. If a third processor has the
page, it receives a message from the ma.nager with instructions to send the page over
to the requesting processor. Finally, if the page was never loaded, the requesting
processor is told, by the ma.nager, to do it.
Public data. virtual address is represented as a triple (PE, Page, Offset), were PE is
either the pa.ge owner (sta.tic policy) or the pa.ge ma.na.ger (dynamic policy), Page
is the pa.ge offset inside a. block assigned to a. PE a.nd Offset is a.n address inside a.
pa.ge. Ea.ch VP stores its last public data. a.ccess. When next a.ccess is to ha.ppen,
its address is caiculated based on the locality informa.tion of the application. Next
a.ccess time is decided ra.ndomly and it is a function of the percenta.ge of reference to
PD of the a.pplication being simula.ted.
We need next to qua.ntify locality. Again, we define locality as the probability of the
next reference to public data. to fali into the same page as the last one. The va.lues
used in the simula.tion were deterrnined empii:ically a.nd ca.n be seen in Ta.ble 1.
Release consistency is assumed in the dynamic-page case. Every time a synchro
nization. ha.ppens, ali the copies of a. pa.ge are removed a.nd only the one tha.t was
fetcheà last is maintained. This was done to keep the two policies compatible: in
the sta.tic case, if ma.ny processors request the sa.me data. a.t the same time, ea.ch one
will receive one copy, so the same should be true to the dynamic case. We assume,
therefore, release consistency (2), in which multiple copies are allowed until next
synchronization point, when only the last upda.te will be maintained a.nd ali other
copies will be invalidated.
Only the fetching of pa.ges (both local a.nd public data.) was simula.ted. A small
overhea.d was considered when a. page was copied ba.ck to disl< (to upda.te system
ta.bles).
The simula.tions ca.n be divided in terms of scheduling stra.tegy, page repla.cement
scope, number of jobs time shared, virtual memory ma.na.gement policy-and applica
tion type.
Two scheduling stra.tegies were simula.ted: ga.ng a.nd independent processor. In gang
scheduling, ali processors are given to the same job per time slice. If some of the VPs
of tha.t job happen to be blocked, the processors responsible for executing t hose VPs
will remain idle. In independent processor scheduling, ea.ch processor may execute
VPs from different jobs as they become available to run. See figure 2.
In terms of page replacement scope, our LRU varied between considering only pages
o{ the job that page faulted (local) or ali pages from ali jobs (global).

Vlll Simp. de Arg. de Computadores e Proc. de Alto Desempenho 229

3 3 3 3 3 3 3
T' T T' T T' i' .. i"'
'2' '2' '2' ':f '2' 2' '2'

TTTTTT'T'
'2' '2' '2' '2' '2' '2' '2'
)))))):)
..! . ..! . ..! . ..! . ..! .. !.. .! ..
2 2 2 2 2 2 2
TTTTTT'T.
O I 2 3 ... N

processors
(A)

2 3 3 2 2 3 3
} ::C :i ::C ::C T :i:
..! .. ~ . . ~ .. ~ .. ~ .. ~ .. !..
J. ,;}, J. ,} ,;}, .~ .. ~ .
..!. J . ..!. J . ..! .. !.. } ,
2222222

time TTTTTTT
O I 2 3 N

processors

(B)

Figure 2. Gang (A) and lndependent Processar (B) Scheduling.

Simulations were done for the following number of time sharing jobs: 2, 3 and 4.
The two virtual memory management policies simulated were static and dynamic
page allocation, as previously defined.
Application characteristics: Three types of applications, whose traces were ob
tained from the literature, were simulated: WATER, MP3D and CHOLESKY(from
the SPLASH benchmark (9]). From those applications we consider two characteris
tics: public data access pattern and public data locality of reference. Access pattern
is the percentage of public data references out of ali references.
The WATER problem simulates the evolut ion of a system of water molecules. This
is done through short-range N-body (9]. The volume of water considered in the
application is divided among processors and each processar works on the molecules
in one region. Public data sharing happens in the "borders", when a processar
needs data from the other side of the border in order to calculate its molecules
movement. WATER presents no locality in terms of public data. Access to public
data corresponds to 18% of ali references (1].
MP3D simulates rarefied fluid flow, done through particle-in-cell, Monte Carlo meth
ods (9]. Each processar is responsible for a subset of molecules and "follows" its
subset through space. The aclive space considered is divided in "cells", for the pur
pose of efficient collision pairing: molecules can only collide with other molecules
in the same cell at the same time. Public data sharing happens during collisions
and during accesses to the space array. Because the partitioning of molecules is not
related to their position in space, which changes considerably, each processar will
acccss the space array in a non-regular pattern, many times sharing space cells with
other processors. T herefore MP3D presents racing conditions, some locality, and its
access rate to public data is 40% (1].
CHOLESKY factorizes a sparse positive definite matrix A into a lower triangular
matrix L such that A = LLT (9]. The non-zero elements of the matrix are stored in
an array with pointt'rs to the first non-zero element of each column, with an auxiliary
array storing the row number of each element. Sets of columns with similar non
zero structures are clustcred into supernodes, the "data element" of this application.

230 XVI Congresso da Sociedade Brasileira de Computação (SBC)

Workload Characteristics DisLribuLion
Job Ideal execuLion time(per VP) Normal avg 450 secs, std deviation 75 secs
Total Public Data Space (Size) Uniform (512 M , 50 G] pages
PercenLage of public data access 18 (WATER), 29 (CHOLESKY), 40 (MP3D)
LocaliLy of reference of public data O% (WATER), 2% (CHOLESKY), 1% (MP3D)
Time between barrier synchs F\mcLion of (% PD Access , PD Spacc)

Ta.ble 1. Sta.tistical distributions used in the a.pplica.t ions workloa.d.

Machine Characteristics
Memory per PE for PD 8192 pages (8Mb)
Page size 128 words (IKb)
Cache size 16 words
Number of PEs 16
Maio memory latency 52 ns per word
Other PE memory latency I ps per word
1/ 0 bandwidLh 20 JJS per word
1/ 0 laLency 5.56 ms
1 word 8 bytes
I clock cycle 6.6 ns
OS overheads
Context swiLch 8x main memory latency
Table update (ps per entry) betwecn 1.4(local) and 3.4(remote)
Enqueue delay 2.1ps per object Uob or VP)
To fetch a line from main memory and updaLe table 2.232 x 10- • secs.
To fetch a line from other PE m. memory and update table 1.880 x I0-5 secs.
To fetch a page from other PE m. memory and update table 1.315 x I0- 4 secs.
To fetch a page from disk and update table 8.1249 x I0- 3 secs.

Table 2. Hardware and Operating System numbers used in the simulation.

Only one st ep of the algorithm is used in the SPLASH benchmark, namely, the
elimination of non-zero ele ments of certa.in rows in order to obtain a lowe r t riangu lar
mat rix. In that step , a supernode may be modi fied by many processors unt il ali
modificat ions to that supernode are complet e. It will b e the n placed in a "task
queue" from whe re it will be removed and used by only one processor to modi fy
othe r supernodes. C HOLESKY p resents a little racing but good locality, a nd its
access rate to public data is 29% (1).
Each a pplication type was simulated separately for six simulation hou rs and d iffere nt
program sizes in res'pect to execution t ime and public da ta space. Table I depic ts
the distribut ions used .

4.2 Results

Simula tions ra n fo r six simulat ion hours. The first hour was disconsidered in order
to avoid initializa t ion e ffects, there fore t he results presented here re flect a 5-hour

window of the environments simulated.

VIII Simp. de Arg. de Computadores e Proc. de Alto Desempenho 231

T.S. Static Dynamic
Independent Gang lndependent Gang

WATER 2 968.85 1250.88 961.21 1167.63
3 1438.83 1886.22 1427.10 1737.63
4 1913.62 2548.81 1891.04 2314.69

CHOLESKY 2 971.32 1370.35 965.99 1303.12
3 1447.22 2079.87 1430.82 1951.38
4 1927.98 2761.08 1892.18 2595.57

MP3D 2 964.70 1517.54 985.06 1476.44
3 1437.65 2281.29 1433.44 2191.16
4 1913.84 3060,68 1896.39 2924.82

Table 3. Average completion times in seconds.

Dynamic Page Allocalion • lndependent Proceuor Schcduling

20

~ 18

.!!.
16

~
14 :;

tl:
" 12 ..
ó!

lO

............ ~~:.:::::,.-+::::::::::::~:::::::::::~ ...

6

2 3 4

Nwnber of lobs Time Sharins

Figure 3. Average number of page fa.ults per processor.

Ta.ble 3 shows the a.verage completion time for ali programs in ali environments, for
lhe global page replacemenl. We did not include lhe local page replacement values
because they are very close lo lhe global ones. We observe that dynamic allocation
gives better results in ali experiments. We also observe that lndependent Processor
is a more eflicient scheduling strategy. Figure 3 depicts the average number of page
faults per processor under dynamic allocation and independent processor scheduling
for different number of time sharing jobs. We observe that there is a big increase in
the number of page faults between one job executing alone and two jobs time sharing,
but that this increase is not that big between two and three jobs time sharing and
almost inexistent between three and four jobs time sharing.
Figure 4 shows lhe number of memory references for the CHOLESKY application,
for both slatic and dynamic allocation. Notice that the number of disk accesses is
much smaller in the dynamic case.

232 XVI Congresso da Sociedade Brasileira de Computação (SBC)

2 4 2 4

Number of jobs time sharing

Figure 4. Total number of references of the CHOLESKY application (Average per proces
sor).

4.3 Analysis of the Results

R.esults obtained thus far point to dynamic allocation as a marginally better option.
The performance increase of the dynamic page allocation over the static one is usually
not more than 10%, we believe, because of the low latencies observed in the CRA Y
T3D. On the other hand,·we believe this pedormance increase is dueto the fact that
each processor is responsible for fetching the pages it is going to use next, instead of
interrupting some other processor and have that other processor fetch the page (as
!s the tase in static allocation). Also, we observed that the number of disk accesses
is smaller in the dynamic case. This is 50 becau5e pages are tran5ferred to a new
owner whenever necessary, 50 the pages needed locally will not compete and di5place
the pages needed remotely.
As expected, gang is not as efficient as independent processor scheduling. However,
it is more widely used by commercial machines for practical reasons such as the fact
that many parallel programs are written with the assumption that it own5 the entire
machine, and that view is maintained by gang scheduling. Also, independent pro·
cessor scheduling puts an extra burden on the operating system in terms of buffering
and managing incoming messages for VPs not currently executing.
As already stated, the results for local and global page replacement were very similar.
In practical terms, local replacement is more often utilized because lt i5 easier to
manage and less prone to cause starvation.

5 Conclusions

This paper described and analyzed the simulations performed to evaluate the behav
ior of two proposed parallel virtual memory policies in a time shared environment.

.;

VIII Simp. de Arg. de Computadores e Proe. de Alto Desempenho 233

The results demonstrated a better performance of the dynamic page allocation, which
is similar to the results obtained in a single user environment. We also showed
that independent processor scheduling performs better across the board than gang
scheduling, which was already expected. We must notice, however, that independent
scheduling incurs extra burden on the operating system and that it may not perform
as good in environments with big context-switch overheads.
We intend, next, to analyze the two page management policies presented in anot her
platform, such as a network of workstations.

References
[1] Luiz Andre Barroso and Michel Dubois. The Performance of Cache-Coherent

Ring-based Multiprocessors. In The 20th Annual International Symposium on
Computer Architecture, pages 268- 277, May 1993.

[2) J. K. Bennet, J. C. Carter, and Z. Zwaenepoel. Munin: Distributed Shared
Memory Using Multi-Protocol Release Consistency. Lecture Notes on Computer
Science 569, pages 56 - 60, July 1991.

(3] F. Darema-Rogers, G. F. Pfister, and K. So. Memory Access Patterns of Parallel
Scienti~c Programs. Performance Evaluation Review, 15(1):45 - 58, May 1987.

(4] Dror G. Feitelson, Peter F. Corbett, Sandra Johnson Baylor, and Yarsun Hsu.
Parallel 1/ 0 Subsystems in Massively Parallel Supercomputers. IEEE Parallel
and Distributed Technology, 3(3):33 - 47, Fali 1995.

(5] Kai Li. Shared Virtual Memory on Loosely-coupled Multiprocessors. PhD thesis,
Yale University, October 1986.

(6] Wilfried Oed. The Cray Research Massively Parallel Processor System CRA Y
. T3D. available by anonymous ftp from ftp.cray.com, November 1993.

(7) Veronica L. M. Reis and Isaac O. Scherson. A Virtual Memory Model for Parallel
Supercomputers. In Proceedings o f the 1Oth lnternational Parallel Processing
Symposium, pages 537 - 543, April 1996.

[8] Subhash Saini and Horst Simon. Enhancing Applications Performance on Intel
Paragon through Dynamic Memory Allocation. In Proceedings of the Scalable
Parallel Libraries Conference, pages 232 - 239. Mississippi State University,
October 1993.

[9] Jaswinder Pai Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stan
ford Parallel Applications for Shared-Memory. SlGArch Computer Architecture
News, 20(1), March 1992.

(10] Josep Torrellas, Anoop Gupta, and John Hennessy. Characterizing the Caching
and Synchronization Performance of a Multiprocessor Operating System. In
ASPLOS-V, pages 162 - 174, 1992.

