
VII Simpósio Brasileiro de Arquitetura de Computadores-Processamento de Alto Desempenho 151

lntegrating Message-Passing with
Vector Architectures

Celso L. Mendes•

Department of Computer Science
University o{ Dlinois at Urbana-Champaign

Urbana, Dlinois 61801
E-mail: mendes@cs. uiuc.edu

A.b•traet

Vedor architedure8 proride exeellent computational thronghput, while successfully
tolerating memory latency by pipdining memory acce81e8. In this paper, we propose a
generalintion ofnctor architecture8 to message-passing multicomputers, which combines
the efliciency of nctor computation with the acalablity of distributed-memory systems.

In our propo8ed architecture, each: D~Í8 a connntional nctor procesaor (with chain
ing capability and pipelined functional unit.) augmented by native instructions to send
and recein mess&ge8 through vector repten. In this scheme, inter-node communica
tion caD be performed YÍa Yector·leDd/recein wtructiou, gaini.ng the benelita of com
munication pipdining, reduced memory copies (memory~to-repter-to-regüter instead of
memory-to-memory-to-cache), and lower communication latency (dueto tight processor
communication coupling). We ahow that this atrong integration between functional and
communication unita can lead to sub.tantial performance i.mprovement over conventional
message-pauing multicomputen.

We model pipelined computation-communication ayatems both analytically and with
a detailed wtruction-level si.mulation, and compare this si.mulation data with empirical
le8ult. from an Intel Paragon. Preli.minary data Crom a matrix multiplication example
indicate8 our propo8ed vector-parallel architecture oft'en significant scalability benelits
over wting message-passing systems.

1 Introduction

High performance has been the major motivation for parallel processing. Vector architectures
provide excellent computation thoughput and have been a natural choice for sicentific appli
cations in the past. However, these architecturea are optimized for single node performance,
and thus do not scale appropriately with an increasing number of processors; their overall
performance is constrained to within a limited range, determined by the individual processor
speeds.

On the other hand, multicomputers, consisting of a large collection of autonomously
processing nodes that communicate by passing measages across a high-speed interconnec
tion network, have demonstrated their potential to achieve the highest leveis of performance

"Supported by CNPqjBruil, proccu 280005/94-&(NV).

152 XV Congresso da Sociedade Brasileira de Computação

among current machines. Neverthelesa, their widespread adoption hu been hindered by
some factors. One of these ia their performance variabllity. AJ problem ai.ses or ayatem con·
figurations grow, some applications yield only a anall fraction of peak ayatem performance,
whereaa othera approach the ayatem'a theoretic:al peak. Such relatively lower performance
ia often aasociated to a poor matching between the application'a communication model and
the machine'a interconnection mecbaniama. It ia generally accepted that the performance of
multicomputera ia atrongly dependent on their communication infraatructure.

We propoae a new parallel architecture, which combines the high computation perfor·
mance of vector architectures with the acalabllity of multicomputers, and overcomes the
communication bottleneck by atrongly integrating the computation and communication mech
anisma. Thia architecture implementa message-pasaing as native proceasor operations, and
changes the memory-to-memory communication paradigm of current ayatema into a new
form, with data B.owing directly between the vector regiatera of communicating procesaors.
These communication operations can be fully chained to regular computation instructions,
in a pipelined fashion. Our goal ia to ahow that thii integrated architecture provides much
better ac:alabllity than conventionalayatema for a large variety of acientifi.c applications.

To implement our propoaed architecture, we need to extend a vector processor with
certain reaources in i ta datapath and control unit, and also add an appropriate interconnection
network, with corresponding interface modules. We willlimit our diacuaaion to the required
datapath additions. Becauae the communication bottleneck of current multicomputera is
uaually cauaed by the network acesa mecbaniama inside the node, not by network contention,
we assume a simple network model, without contention, where message transfer time follows
a coat model that ia a linear function of message length.

We model the behavior of our ayatem analytically, and validate our model with a detailed
instruction-level aimulation. The aimulation infrastructure also enablea ua to compare the
behavior of our architecture with currently exiating ayatema. Our preliminary resulta ahow
that the propoaed architecture can achieve both better aingle processor performance (due
to vector procesaing) and, moat importantly, better ac:alabllity (due to lower communication
overhead) than a conventional multicomputer.

The rest of this paper ia organised as followa. In §2 we analyse the behavior of current
message-passing systems, observing some of their problema. Then we present our proposed
design in §3, describe our simulation environment in §4, and show performance resulta from
a matrix multiplication example in §5. We review related work in §6, and conclude in §7,
pointing to our next planned steps in this ongoing study.

2 Motivation

Our previoua research on performance prediction on multicomputers (9] showed that increas
ing the number of proceasors in the syatem may often produce diminishing performance
returns. Thia ia dueto a combination of severa! factora. Firat, there ia Amdhal'alaw, which
statea that the serial component of a program will become a bottleneck when more proceaaors
are uaed. Also, with more processors, the new balance between communication and compu
tation may become poor, becauae of the communication structure in the underlying machine.
We now explicitly show how this aecond factor can degrade performance on current aystema.
Next, we suggeat an alternative approach, uaing the concept ofvector based message-passing,
from which we will derive our propoaed architecture.

VII Simpósio Brasileiro de Arquitetura de Computadores -PrOcessamento de Alto Desempenho 153

Numbero! Tilne (m.ee)
Segmenb iPSC/880 Paragon

1 470.2 102.9
2 422.9 97.9
4 399.9 96.2
8 389.5 95.6

16 386.8 95.8
32 390.2 97.2
64 401.2 100.0

Table 1: Execution times for optimi.zed receivejd4zpy fragment.

2.1 Problema with Current Systems

We present an example with a vuy aimple code fragment that illustrates some of the problema
with mesaage-passing on current ayatems. In thia code fragment, a processor waita for a
mesaage and then uses the incoming data to compute a d4zpy operation, typical of many
acientific applicationa. The major part of the code for the receiving processor is as follows:

double y[J] • x[l] • if. ;

receive(.. g_type,x,J•sizeof(double))
for (i•O; i<J; i++) y[i] +• a • x[i]

A common optimization to thia code consista of decompoaing the original mesaage and
loop aectiona into a programmable number of smaller segmenta, so that computation on one
aegment overlapa with communication of data for the next aegment. Thia ia poaaible with the
use of non-block.ing meaaage-pa11ing calla, and the inlertion of appropriate aynchronization
between segmenta. Table 1 ahowa the resulting execution times for the optimised fragment
on an Intel iPSC/860 and on an Intel Paragon, with a data aet si.Je of N=217 anda varying
number of segmenta. The fust row in that table (one aegment case) corresponda to the
non-optimi.zed mesaage-passing acheme. On the iPSC/860, using aixteen segmenta improves
performance by as much as 18 percent, while on the Paragon the best improvement ia on the
order of 7 percent, for eight segmenta.

In general, we can determine an optimal pumber of segmenta by using a model that
representa the communication and computation times for a data aet aize • as followa

The coat for execution of the optimised veraion of our fragment with K segmenta ia

and aaauming that the communication time ia greater than the computation time, it becomes

154 XV Congresso da Sociedade Brasileira de Computação

Table 2: Parameters for computation and communication models.

The optimal value for K ia the one such that TJra.-nt is minimum, or

By executing the non·optimised clazpy fragment with the same data set size o f N =217
,

we observed the following values:

iPSC/860: Tcommun(N) = 374.8 msec, T....,.p(N) = 95.4 msec
Paragon: Tcommun(N) = 21.4 msec, Tcomp(N) = 81.5 msec

We can obtain the value of c directly from Tcomp(N). To determine a and b, however,
we repeated the non-optimized execution with a different data set size (N'=214), obtaining
Tcommun(N')=187.6 msec on the iPSC/860 and T....,.,..,..(N')=10.9 msec on the Paragon. The
resulting parameters are in Table 2. Taking these values into our iPSC/860 model yields

/cN
Kopt = v-;- = 15.44

and thus K = 16 is the closest option, confirming our measurements on the iPSC/860.
When the computation time ia greater than the communication time, as in the Paragon,

there ia lesa potential gain from the optimized approach. To understand why it is so, we con
sider the case of the optimized clazpy fragment on the Paragon with four segmenta. Table 3
shows the detailed timing of the receiving processor across each phase of the execution (the
synchronization time is accounted as communication). The duration ofthe last computation
segment, which does not overlap with communication, ia about one forth the duration of the
computation interval Tcomp(N) in the non-optimised execution, as expected. However, the
first three computation segmenta are extended, simply because there is simultaneous commu
nication (reception of the incoming data for the next segment), and so there exists contention
for the local memory. 1 That causes an overhead of up to 17 percent in the computation
intervals. Such overhead hinders the gains obtained from the overlapping between computa
tion and communication, and is the reason for the relatively lower improvement achieved on
the Paragon with the optimized IÜJ.zpJI example.

Our experimental resulta from Table 1 reveal performance degradation when we increase
the number of segmenta above a certain threshold. This is due, in part, to the fu:ed latency
cost that ia present on each communication operation; when we use more than a given number

1To nrify lhia in praclice, we conduc&ed addiliolllll leo&a, ..vyiDc lhe ICD&lh of lhe iDcomiDs meuase, and
ob.ened lhat the amount oC perlurbation wu proportiolllll to the meoaa&e ICD&th

VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 155

Segmem Time (m.ec:)
Nwnber Communication Computation

1 5.4 23.6
2 0.08 23.5
3 0.08 23.3
4 0.03 20.2

Table 3: Timing of optimised dozpy execution with four segmenta on the Paragon.

of segmenta, the total coat of the latencles for all segmenta becomes so high that it offsets
the gains achieved by the overlapping between computation and communication. Thus, we
can conclude that any reduction in latency will bring an improvement in performance for the
optimiled approach.

Another point to mention ia the infiuence of memory-baaed communication. We showed
that the use of memory buffers for holding mesaage data degraded performance in this exam
ple. Computation times were extended becauae there was contention for the local memory.
The model of communication baaed on memory buffers may be convenient for the sending
processor, but it ia usually not necessary in the receiving aide: the incoming message is oft~
conaumed by ongoing computation, and does not need to be stored in the receiver's memory
after that. Thia tranaient traffic of incoming data through the local memory of the receiver
can be potentially damaging to ita performance, as demonatrated by the results from Table 3.

2.2 Advantages o(a Vector Approach

Sclentific applications have been effectively using vector architectures for quite a long time.
Such architectures have proven very convenient to manipulate the regular data structures,
llke arrays or matrices, that are common in numeric algorithma. Alao, compilation techniques
for vector machinea are now at a reasonably mature atage, and compilers can often create
efficlent vector code for a given applicationfayatem pair.

Moat vector architecturea provide some form of ch4ining, where the intermediary resulta
from a fundional unit are immediately uaed by another functional unit executing the next
vector inatrudion. Thia feature of aynchrom.ed, aimultaneous operationa, impliclt in vector
architecturea, ia a key fador in allowing us to overcome the communication bottleneck in
a parallel machine. If we conaider that communication and computation are handled by
separate "functional uni ta," then we can also chain those two tasks: data arriving in a
meaaage can be immediately conaumed by computation, in a pipelined fashion.

In thia acenario, it seems natural to conaider communication simply as another vedor op
eration; it is a apeclal type of operation in the senae that it ia not executed by any functional
unit inaide the proceasor, but in the network that interconnects the processing nodes. Assum
ing a vector proceasor on each node, mesaage-pasaing can occur between vector regiaters of
the communicating proceasors. Like regular vector operations, communication operationa can
atall on data or functional hasarda. A vector-receive, for example, could atall until the corre
aponding meaaage arrives at the node, while a vector-add followed by a chained vedor-send
would cause the aend to atall until the firat operand of the addition ia produced.

This acheme can bring several benefi.ts, as compared to current mesaage-passing multi
computers. Firat of all, meaaage latency ia clearly lower, becauae mesaage operationa become
native inatructiona of the proceasor, and it is no longer neceasary to invoke the operating sys-

156 XV Congresso da Sociedade Brasileira de Computação

tem or to spend extra proceasor cyclea managing the network interface. Most importantly,
message data would reside inside the proceasor, not in memory. That might reduce the time
to acceas such data, and make this acce11 time more determini.atic as well. With the current
model of memory-based measagea, acceas time ia atrongly dependent on factors like memory
speed, memory bus traffic, cache organisation, etc.

3 Parallel Vector Architecture

Our proposed architecture consista of a collection of nodea, with each node comprising a
vedor proceasor and some number of local memory banb. The node al.so has an interface to
an interconnection network, that it uses to exchange measagea with other nodea. In addition
to the usual vector operationa that are present on moat vector proceasors, we al.so have vector
instrudiona for handling communication. This ia, in fact, one of the unique featurea of our
design: a high degree of integration between the communication and computation structures.

3.1 Node Arcbitecture

It ia a well known fact that vector proceasors must contain fast scalar functional units, ao that
the serial program components do not impose a severe bottleneck during execution. For this
reason, we chose a RISC architecture as the basic building block in our design. We selected
the DLX architecture, as presented in the book by Henneasy and Patterson [5), and extended
it to a vector architecture, DLXV, following the auggeationa in that same book.

DLXV is a vector proceasor that has both scalar and vector functional units. The non
pipelined scalar units were already preaent in DLX, whereas the vector Cunctional units,
exclusive of DLXV, are fully pipelined and allow chaining between vector operationa.

In addition to the sameregister set ofDLX (general-purpose regiaters RO-R31 and floating
point registers FO-F31), DLXV has a vector register file composed of a group of vector
registers. Each vector regiater has aixty-four 64-bit elements. There are alao two special
registers, VLR (Vector-Length Regiater) and VMR (Vector-Mask Register). The contenta
of VLR may vary between O and 64, defining the length of any vector operation; VMR ia a
64-bit regiater, which can be used to disable operationa on particular elements of a vedor
(by atoring the value O in the coneaponding bit of VMR). There are 64-bit pipelined buses
between the vector regiater file and memory, in both directiona. Each vector register has one
write port and a configurable number of read porta, so that more than one vector functional
unit may receive data from the same vector regiater simultaneously, using the independently
addreasable read porta. We assume that each vector functional unit can be connected to any
vector register, by means of crossbar switchea [7).

3.2 Message-Passing Structure

In our architecture, nodes exchange data by measage-pasaing. Measage data originate in a
vector regia ter of the sending proceasor, and eventually reach a vector regia ter of the receiving
processor. The length of a measage is defined by the value in VLR of the aending proceasor
at the moment that the measage-pasaing instruction ia iuued. Thus, the maximum message
length ia given by the maximum vector length, which ia the size of a vector register. Every
message is tagged by an integer number representing the measage' s twe. We added to DLXV
three instructiona supporting message-passing:

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 157

SeDd Baffct I

I
I
I,. ,... . -- i 1----------- I

1----------- N - p

r--
Rccci.ve Buffct

Voaa
~ Voaa

Pile ~
u.w.

Figure 1: Organisation of the 1end and receitJe buft'ers in the network interface.

• 1endv R,., 14, Yc: Send a me11age with type given by the contenta of regiater 14 to the
deatination node indicated by regiater R .. ; measage data will come from vector register
Yc;

• rect1t1 V.,, R,.: Receive into vector regiater v., a measage of type given by register Rei

• 1m1g R,, R., value: Set regiater Rt ü a measage with type given by (R,) + value has
arrived in the node and is ready to be proceased by a rect1t1 instruction.

Our network interface deaign includea a 1end bvf/er and a receive lw.f/er. The send buft'er
can atore one message, and ita main goal ia to prevent the aending proceasor from stalling
when data ia temporarily blocked from fl.owing into the network. A vector-aend operation
normally cauaea data in the underlying vector regiater to be transferred to the send buft'er,
and from there to the network. H the aend buft'er ia full, the vector-send atalh the processor.

The receive buft'er can contain a given number of incoming measages. Its main function
is to atore measagea that arrive at the node before the correaponding recw instruction has
been iuued by the local proceaaor. When the rect1t1 instruction ia isaued, and the message
haa already arrived in the node, the measage contenta are tranaferred from the receive buft'er
to the deaignated vector regiater. H the measage haa not yet arrived, the rectJtJ will stall the
proceaaor. Thua, both 1endv and recw are blocking operationa. Figure 1 ahowa the send
and receive buft'era with their connection to the vector register file. In practical terms, these
buft'ers simply work as a "communication functional unit." When no stalh occur, the aendv
and rect1t1 operations can be chained to regular vector instructiona.

3.3 Flow Control

We implement flow control for data exchange between nod.ea by using two special types of
ayatem-level control measagea, named pf'Obe and aclmo1oledgement measages. When a node
issuea a vector-aend instruction, and the aend buft'er is free, besides starting to transfer the
data to the aend-buft'er, the node alao senda a pf'Obe measage to the deatination, to check
ü there ia apace for the data in the remote receive buft'er. Upon receiving such probe, the
network interface in the deatination will try to allocate a free buft'er entry in its receive buft'er

158 XV Congresso da Sociedade Brasileira de Computação

-dolo -type timeaamp

Figure 2: Structure of an entry in the receive buffer.

and, upon doing so, aend baclt to the source node an aánmoledgement message. When the
acknowledgement returns, the source node ataria aending the data in ita aend buffer.

We aaaume that control me11agea have higher priority than regular data messages. With
thia protocol, data measagea are not tranamitteà ü we cannot enaure that the deatination has
apace for them. The aendv inatruction atalla ü the aend buffer ia already full, while the recw
instruction atalls when no measage with the given type ia avallable in the receive buffer. The
amag can be u.sed to chedt for measage arrival, avoiding the bloc:king caused by a recw stall.

Becauae the receive buffer may contain severa! measagea at a given moment, when the
recvv inatruction ia iaaued we need to do type matching between the type designated in the
recvv and the types of messagea in the buffer. Among those entries with the appropriate type,
ideally we would select the oldeat message. For this reaaon, each entry in the receive buffer ia
timeatamped with the time of arrival. Figure 2 ahowa the varioua fielda for each entry in the
receive buffer. There ia also a atatu field that indicatea when the entry containa valid data,
or when the entry ia not yet valid but allocated for an expected message.

The apecific number of entriea in the receive buffer ia a deaign parameter. Aa the number
of entriea increaaes, more measagea can be accepted before a recvv instruction ia executed,
thua req1ÜriJJ8 looser coordination between senda and receives, but the hardware costa for
type chedting and tim.estamp comparison also increase. Aa atated in [4], any message-paasing
acheme haa to assume that the uaer program ia "well-behaved," to some erlent, in i ta buffering
requirementa. The selection of the number of entriea ia a tradeoft' between the coordination
flexibllity for the programa and the aasociated hardware costa.

4 Simulation Environment

In order to allow an evaluation of our deaign, we im.plemented a simulator of ita datapath,
uaing aa a atarting point the DLXaim aimulator [6] avallable for the original DLX architecture.
Firat, we extended DLXaim to simulate the uniproceasor vector architecture (DLXV), as we
reported in [8]. This firat erlenaion implementa ali the DLXV inatructions. lt also reproduces
po11ible conflich for memory ban1t acceaaea.

We then added to our DLXV aimulator the three message-paaaing inatructions (aendv,
recvv, and amag), the atructurea correaponding to the aend and receive buffers, and the rest
of the infraatucture for communication. By replicating thia enhanced aimulator, ao that each
node waa aimulated by a dift'erent proceaa, we achieved aimulation of our complete vector archi·
tecture with integrated measage-paaaing, and we named this finalaim.ulator aa DLXVMPsim.
Currently, DLXVMPsim ia running in a diatributed form on an Intel Paragon1 where each
phyaical node executes a copy ofthe enhanced DLXV simulator,and thua simulates one node
of our proposed architecture. Although thia acheme1 in principie, would limit the number of
proceasors in the virtualaystem to the number of nodea in the real machine where simulation
ia running, we can use our simulator on top of other aimulation pacbgea that provide an
environment with more logical nodes than physically avallable [2].

ÁJ with any parallel aimulation, we muat enforce some form of aynchronisation between
the severa! procesaes, so that the aimulation accurately reproduces the behavior of the cor·

VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 159

matrixB
mattixA

:MP
matrix C=AxB

LI

PE~
PE-0 tLP

LI

PE~ tLP
PE-1 PE-1 PE-1 M
PE-2 PE-2 PE-2
PE-3 PE-3

PE-3

M N
N

Figure 3: Data distribution for matrix multiplication ex.ample with four processors.

respondiq target ayatem. We follow the aame conaervative aynchroniaation mec:ha.nism uaed
in the WWT projed (11], where aimulation on each proceasor is allowed to proceeed for a
fi.J:ed number of cyclea, known as quant•m, in aimulated time. The quantum must be leas
than or equal to the latency of the target ayatem, ao that ali eventa originating on a remote
node that can affeet a node in a given quantum are known at the quantum beginni.ng.

5 Application Example

We illuatrate the use of our architeeture with a matrix multiplication ex.ample. As Figure 3
showa, we use the aame networlt topology independent algorithm Crom [3), changing only the
_data diatribution to bloelts of rowa, instead of columna. Eaeh proceasor computes a region
of the produet matrix uaing ita local rowa of matrix A and either local or remote rows Crom
matrix B. Thua, data Crom matrix B ia communicated among proceasora. The original
algorithm ia such that each meaaage would contain exac:tly one row of matri.x B. In our
vedor implementation, however, the meaaagea contain segmenta of a row, with a aegment
length of 64, correapondiq to the si.se of a vector register. Initially, we derive a model for
the exeeution time in our architeeture, to get a firat eatimate of the achievable performance
in this particular case. Then we compare the expeeted behavior predicted by the model with
simulation resulta obtained with dift'erent matrix ai.sea. Finally, we compare our resulta to
the performance observed on a real ayatem, an Intel Paragon.

5.1 Modeling of Expected Performance

The original matrix multiplication algorithm, exeeuted by each node in an SPMD fashion,
can be repreaented in a condenaed form as ahown in Figure 4. In thia original scheme, the
sendiq of a given row is exeeuted nearly at the same time as the receive, and we only start
the computation in the inner loop after the remote row arrives. There is a trivial optimization
for thia algorithm, which consista of aending the rowa in advance, on a previoua iteration of
the outer loop. Thua, instead of aendiq row k%Mp, we aend row (k + 1}%Mp, and the
measage containing data for iteration k + 1 ia overlapped with computation of the inner loop
on iteration k. In our vector architeeture, we muat proceaa the whole body of the outer loop
by segmenta of length 64, the ai.se of our veetor registers.

With the optimiaation deaeribed above, and defining Kn = N/64, we can express the
operationa in terms of vector instructiona as indicated in Figure 5. We derive the expected

160 XV Congresso da Sociedade Brasileira de Computação

tor :t • all 11 ro•• ot -trix B

I• &•t acc••• to a row ot -triz B •I
it (row :t not local)
{

}

••D.Cl local row :tXIIp ot -triz B
recei •• rUIOte row B [t .1 :I]

I• u~t• local ro•• ot -triz C •I
tor 1 • all Lp local row• ot -triz C
{

}
}

C[i.1:1] +• a(i.:t) X B[t.1:1]

Figure 4: OrigiDal matriz multiplication algorithm.

execution time (in number of cycle.) for thia optim.ised version u

TloCGI = MKn(T,_, + T;,_)

where T,_, i. the time to load vector register VO, either with local or remote data from
matrix B, and T;,_ ia the time of the computation loop.

A.auming that all the vector operationa are chained, and that there ia perfect overlap
between computation and communication (which ia true when the time for the inner loop is
greater than the time for tranamiaaion of a me.aage, ao that the vector-receive does not stall),
T,_, will repreaent only the atartup costa for the operationa, and ia given by

7i0Gd!:!! Tfioocl- ot<artvp + Tocnd-ot<artvp + Trear-ot<artvp•

A.auming T.,_,_...,,,.,. = 12, T.....,_.,.,,.,. = 1 and T,..,_.,.,,.., = 1 (no atalls), we have

T,_, = 14.

With ch&ining between all vector operationa in the the inner loop, we eatim.ate ita execu
tion time u

T;,_ = Tloop- Htvp + TJu- •14rtvp + 64L,

where Tloop-HC.., ia the overhead to aet up the loop, and TJu-•l4•tUJ> ia the atartup cost for all
the involved functional unih, given by

TJu-ot<artvp = T~or-IOGCI + rnm: {T...,..,It - 1, T.,_,} + T.....u + T.,.too-. =
2 + rnm:{7- 1, 12} + 6 + 1 = 21.

Assuming T,__ .. ,.,. = 10, we have

T;.....,. = 31 + 64L,

and the total execution time becomea

MN (64L) TloCGI = MKn(14 + 31 + 64L,) = 64 45 + p .

VII Simpósio Brasileiro de Arquitetura de Computadores · Processamento de Alto Desempenho

tor k • all R rowa of aa~rix B
for a • all In ••..-n~a
{

}
}

~ •••• IS4
if ~row k no~ loeal)
{

load-vee~or row B[(k+1)1Kp,~e:~e+63] in~o VO
aend.-vee~or VO
reeeive-vee~or r.-o~• row B[k,~e:~e+63] in~o VO

}
tl••

load-vee~or row B[k,~e:~e+63] in~o VO

lor i • all Lp loeal rowa of aa~rix C
{

}

load-aealar value a(i,Jt) into PO
vector-.altiply aealar x vee~or: V1 <-
load-vee~or C[i,~e :~e+63] in~o V2
add-vee~or: V3 <-- V1 + V2
a~ore-vee~or V3 in~o C[i,~e :~e+63]

PO x VO

Figure 5: Optimised matrix multiplication algorithm with vector operations.

161

Thus, the expression for the execution time· o(the optimised matrix multiplication pro
gramis

Tt<oeo~ = MN (0.7 + ~) CJicle•

This expreuion shows that the problem has a cost complexity o(O(LMN/P), as expected
when communication is not a bottlened.

5.2 Simulation Experimenta

We started our experimenta by simulating a non-optimised version o(this algorithm in our
architecture, with matrices o(sise 64I64. We assume in our network modela message latency
of20 processar cycles, anda network ~dwidth o(one cycle per byte; these would correspond,
on a system with a 50Mlb clock, to a 400 17sec latency anda 50 MB/sec bandwidth. Table 4,
in ita fi.rst column, shows the simulation resulta for a varying number of processors. Using
data provided by the simulator, we can confi.rm the non-optimal behavior of this version
o(the program: Figure 6 shows some o(the output information for a particular execution
(four processara), indicating that a significant number of cycles were lost dueto the wait for
message arrival (Vrecv Stall.s).

As a next step, we simulated the optimised version of the matrix multiplication algorithm,
with two different matrix sises, obtaining the resulta in the last two columns of Table 4.
Figure 7 compares the observed simulation resulta and the expected values derived Crom our
model, showing that the model indeed captures the behavior o(the optimised program.

Finally, we executed the same optimised program on an Intel Paragon and in our simu
lator, with a matrix sise of 256x256. On the Paragon, we implemented the dazpy function

162 XV Congresso da Sociedade Brasileira de Computação

Numberof Execution Time (c:yc:lea)
Proc:es110n Non-Opt.84xM Optim.84xM Optim.128xl28

1 267533 268685 2119181
2 157725 141837 1087501
4 102808 78413 571661
8 75369 46701 313741

16 61643 37801 184781

Table 4: Simulation resulta for matrix multiplication program.

with a commerciallibrary routine, to maximise performance, and u.sed the nonblocking ilend
c:allJ. Figure 8 shows the speedup obtained on the two architectures, where one can see that
our system clearly achieves better sc:aling.

Part of the reason for the better performance on the vector architecture comes from the
numbers on Table 5, showing the time, in cycles, for the uniprocessor execution on both
systems. For a 256x256 matrix multiplication, there are 2 x 256' or 33.6 x 105 fl.oating-point
operations. The vector architecture, with independent multiply and add functional units,
achieves nearly two resulta per cycle. The Paragon, however, despite having independent
multiply and add unita, takes five times longer, probably because of memory access delays
for non-c:ached data.

For the parallel execution on the Paragon, as the number of processors increases, the
operating system ~verhead involved in the message-passing calls becomes significant, as com
pared to the computation for each node. Hence there ia severe performance degradation. On
the vector architecture, however, there ia no operating system overhead, and communication
remains, for the most part, "hidden" inside the computation intervals. Even with sixteen
processors, we observed no stalls due to communication. In this case, the deviation from
ideal speedup ia due simply to the fact that the startup costa for the vector operations are
no longer negligible in compariaon to the reduced execution time.

The superior single node performance (obtained with the pipelining ofmemory accesses),
associated to the effective chaining between computation and communication (represented by
the absence of communication stalls), allowed our vector architecture to achieve much better
scalabillty than the Paragon.

Load ~~all• • 5936
Ploa~1DI Poin~ S~all• • 2976
V•ead S~all• (Send-Buffer full): O
Vrec:v S~all• (.. 1 no~ in a.c:v-Buffer):
To~al Vec:~or S~all• • 38744
To~al S~all• • 47666
To~al in~•1•r opera~ion. • 60666
To~al floa~inJ poin~ opera~ion. • 240
To~al ~rivial vec:~or opera~ion. • O
To~al full vec:~or opera~ion. • 4266
Vec:~or el...n~•i•• opera~ion. • 272293
To~al tn.~ruç~ion. • 66162
To~al opera~ion. • 323189
To~al c:yc:l•• • 102808

26088

Figure 6: Simulation resulta (PE-0) for non-optimised matrix multiplication, four processors.

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 163

rr---,---r----.--.~ ... ~

....
••
••
•• ...
••
.... -... ..

'-... '------',.---_..__ __ _.u .. -~ --

(a) 64x64 matrices (b) 128x128 matrices

Figure 7: Comparison between simulation and prediction results on matri.x multiplcation.

6 Related Work

There have been recent debates on the effectiveness of vector and massively parallel architec
tures on scientific applications [10) [12]. Indeed, vector processing capability exista on some
current parallel systems. On the CM-5 [13], there are separate scalar and vector proces
sors on each node, whereas the Fujitsu VPPSOO [14) uses a traditional vector processor with
scalar and vector functional units. To our knowledge, however, none of the existing systems
provides communication support as a native processar feature. They all implement interpro
cessor communication of vector operands by moving data across memories of the underlying
nodes. The J-Machine [1) has processou with native communication instructions, but the
system ia not targeted at scientific applications; there ia no fioating-point hardware support.

Shlomo [15) compared vector and superscalar architectures, in terms of resource utiliza
tion for execution of a vectorisable code fragment. Ris main conclusion was that current
superscalar architectures are inferior because of their limited memory bandwidth, and be
cause of the implicit prefetching of memory data into vector registers occurring in vector load
instructions of vector architectures. That study did not address the use of such architectures
in parallel systems.

S:yatem 11 Time (c:yclea) I

Paragon 84725000
Vector Archit. 16857101

Table 5: Times for uniprocessor execution on 256x256 matrix multiplication.

164

-....
.,,
w
•• ..

XV Congresso da Sociedade Brasileira de Computação

rr----~------r-----,---,~ ·....-

L...L. ____ ___. ______ ..._ _______, --.. •• - .,.

Figure 8: Speedup eompariaon on 256x256 matrix multiplication.

7 Conclusions and Future Work

We have shown, with concrete e:umples, some of the problema of the memory-to-memory
communication paradigm used on existing multicomputers. Our approach, baaed on a tight
integration of the computation. and communication mechanisms of a vector architecture,
avoida auch problema by paasing data directly between registers of the underlying processors,
and by ebaining such message-paasing operations with regular computation in the proces
aors. Our preliminary simulation resulta on a matrix multiplication ex.ample show that this
approach ean acbieve better scalability than existing syatema, and ean be a viable alternative
to eonventional architectures in the cases where the communication behavior representa a
performance bottlenedc.

Our current research efl'ort ia focused on two major directions. The first is to extend
the testa of our architecture with more applications, and conduct detailed meaaurements of
reaource uti.lisation and degree of parallelism. We are particularly interested in observing the
performance implications resulting from variations in the hardware costa, like the capacity
of the receive buffer and the number of vector registers. Also, we will aasess the degree of
overlapping between computation and communication, represented by the number of commu
nications stalla, for this larger application suíte. The second goal is to contrast, in detail, our
design to a superscalar based multicomputer, specially in terms of memory behavior under
the presence of communication. We suspect that, on a superscalar based system, message
paasing c:alla to the operating system introduce signifieant cache pollution, causing severe
performance degradation on subsequent computation sections.

Acknowledgments

We would like to thank Prof. Daniel R.eed {University oflllinois) and Dr. Brian Totty (Silicon
Graphics Inc.) for their helpful suggestions and commenta about this work.

VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 165

References

[1] DALLY, w. J., FISKE, J. S., KEEN, J . S., LETBIN, R. A., NOAKES, M. D., NUTB,
P . R ., DAVISON, R . E ., AND FYLEJL, G . A. The Mesaage-Driven Processor: A mul
ticomputer procesaing node with efficient mec:haniama. IEEE Micro 12, 2 (April1992),
23-39.

[2] DICKENS, P. M., HEIDELBEJI.GEJI., P., AND NICOL, D. M . Parallel Direct Ezecu
tion Simtúation of Me••age-Pa.,ing Parallel Program.. ICASE/NASA Langley Research
Center, June 1994.

(3) EICKEN, T. V., CULLEJI., D . E., GOLDSTEIN, S. C ., AND SCHAUSEil, K. E. Active
mesaages: A mec:hanism for integrated communication and computation. In Proceeding11
ofthe 19"' International Svmpo•ium on Comp1'ter Architecture (Gold Coast, Australia,
May 1992), pp. 256-266.

(4] FJLANKE, H., HocascBILD, P ., PATTNAIK, P ., Pa.osT, J.-P., AND SNra., M. MPI
on IBM SPt/SP2: Current Statu and Futvre Directionll. ffiM T. J. Watson Research
Center, 1994.

(5) HENNESSY1 J. L., AND PATTEitSON, D . A. Compvter Architecture: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., 1990.

[6] HosTETLEil, L. B., AND MIIlTICB, B. DLX•im - A Simulator for DLX. University
of California, 1990.

(7] LEE, C . G., AND SMITB, J. E . A atudy ofpartitioned vector register files. In Proceeding11
of Svpercqmp1'ting'92 (Minneapolis, November 1992}, pp. 94-103.

[8] MENDES, C. L . Extending DLXsim for parallel architectures. In Proceeding11 of the 6th
Brazilian Svmpo•ium on Computer Architecture (Cax.ambu/ MG, August 1994).

(9] MENDES, C . L. , AND REED, D. A. Performance atability and prediction. In Proceeding1
of the IEEE/ USP Workllhop on High Performance Computing - WHPC'94 (São Paulo,
March 1994), pp. 1-15.

[10] MONTitY1 G. Panel: Massively parallel vs. parallel vector supercomputers: A user's
perspective. In Proceeding11 of Supercomputing'93 (Portland, November 1993), pp. 918-
920.

[11) REINBAilDT, S. K., HILL, M. D ., LAilUS, J. R., LEBECK, A. R ., LEWIS, J. C., AND
Wooo, D. A. The Wisconsin Wind Tunnel: Virtual prototyping of parallel comput
ers. In Proceeding• of the ACM Conference on Mea~~urement 8 Modeling of Computer
Sy11tem. - SIGMETRICS'93 (Santa Clara, May 1993), pp. 48-60.

[12] TAKAMUJI.A, M., AND UTSUMI, T. Why vector parallel! In Proceeding11 of the High
Performance Computing Conference'94 (Singapore, September 1994}, pp. 394-398.

[13] TBINKING MACBINES CoaPOJI.ATION. CM5 Technical Summary, October 1991.

[14] UTSUMI, T ., lKEDA, M., AND TAKAMUJLA, M . Architecture of the VPPSOO parallel
supercomputer. In Proceeding11 of Supercomputing'94 (Washington, November 1994),
pp. 478-487.

(15] WEISS, S. Optimizing a superscalar machine to run vector code. IEEE Parallel &
Dilltributed TechnoÚJgy 1, 2 (May 1993), 73-83.

