
VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 167

Serializability Improves Parallel Execution of Production System

José Nelson Amaral·
(amaral@madona.pucrs.br)

Departamento de Eletrônica
Pontifícia Universidade Católica do RGS

90619-900 - Porto Alegre, RS

Joydee p Ghosh
(ghosh@pine. ece. utexas.edu)

Dept. of Electr. and Comp. Engineering
The University of Texas at Austin

Austin , Texas 78712

Abstract

This paper presents a new production system architecLure that uses serializability as

a correctness criterion to select a set of productions to be executed in parallcl. T he use

of serializability eliminales global synchronization. This a rchilecture takes advantage of

modern associative memory devices to allow parallel production firing, concurrent matching,

and overlap among matching, selection, and firing of productions. A comprehensive event­

driven simulator is used to evaluate the scaling properties of the new architecture and to

compare it with a parallel architecture using global synchronization before every production

firing. Our results indicate that the combination of serializabili ty and associative memories

can achieve substantial improvements in speed with a very modest increase in hardware cost.

1 Introduction

Attempts to speed up Product ion Systems (PS) date back to 1979 when Forgy created the Rete

network, a state saving algorithrn to speed up the matching phase of PS [4]. Following a 1986

study by Gupta, which indicated that a significant portion o f the processing time in a Rete- based

PS machine is consumed in the matching phase [6], substantial efforts were made to improve

this phase. Comprehensive surveys of the research towards speeding up production systems are

found in the works of Kuo and Moldovan [10] and Amaral and Ghosh [3].

The issue of which criterion to use for correctness in the execution of a production system

is still an open question. The two most prominent candidates are the commutativity criterion

and the serializability criterion. When commutativity is used, a set of rules can be executed in

parallel if and only if the result is the same that would be produced by any possible sequential

execution of the set. Under serializability it is enough that the result produced by the parallel

execution be equal to at least one sequential execution of the set [16].

•supported by a feUowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and
by Pontifícia. Universidade Católica. do Rio Grande do Sul (PUCRS) - Bruil.

168 XV Congresso da Sociedade Brasileira de Computação

The commutativity criterion proposed by lslaida and Stolfo [8) is favored by programmers

because it allows for easy verification of correctness in a production system. However, it is very

restrictive and the amount o f parallelism extracted from a PS using this criterion is very low.

The use of the serializability criterion increases the amount of parallelism available but makes

the verification of correctness in a program more difficult. Nevertheless, if serializable production

systems are proven to be sufficiently faster than commutable ones, development tools wiU be

created to aid the verification of correctness.

· schmolze and Snyder [17) studied the use of confluence to control a parallel production

system. They suggest the use of term rewriting systems to verify the confluence of a production

set. They argue that a confluent production set that is guaranteed to terminate will produce the

same final result independent of the sequence in which the productions are executed. Therefore,

for such a class of systems, the verification of correctness with the serializability criterion would

not impose an extra burden in the programmer.

On surveying measurements published by other authors [13, 6), we found that the ratios of

reading and writing operations in the benchmarks studied are between 100 and 1000. We also

found that in complex benchmarks that bear more similarity with "reallife" problems, this ratio

tends to be higher than in "toy probrems". This is primarily because productions have a larger

number of antecedents than consequents in such problems [1).

The need to improve other phases of production execution besides the match cycle is now

evident [3). In this paper we present a parallel architec:ture based on the serializability crite­

rion of correctness. The architecture exploits the high read/write ratio of production systems,

and the increased importance of associative search operations when global synchronization is

eliminated, to yield a fast and efficient production system engine. This architecture foUows an

early recommendation of Gupta and Forgy [7), i.e., that a parallel production system machine

be constructed with a small number of relatively powerful processors.

2 Architectural Model

The architectural model proposed in this paper consists of a moderate number of identical

processors interconnected through a Broadcasting lnterconnection Network (BIN). Each of the

processors has the internai organization shown in Figure 1. An 1/0 processar attached to the

BIN initially loads the productions and the initial database in the processors. At compile time

each production is uniquely assigned to a processar according to a partitioning algorithm that

takes into consideration inter-production dependencies and workload balance [2). A processar

reads data only from its local memory, i.e., no read operations are performed over the network.

VII Simpósio Brasileiro de Arquitetura de Computadores· Processamento de Alto Desempenho 169

Dueto the absence of network reads and the low frequency of network writes, a simple bus should

be adequate as the broadcasting system. This conclusion is supported by deta.iled experimental

results showing the bus not to be a bottleneck even for a twenty processar system. A number

of associative memories implement a system of lookaside tables to allow parallel operations

within each processar. This scheme does not allow parallel production firing within a processar,

but allows the match-select-act phases of a production system to overlap. A snooping directory

isolates the activities in remote processors from the activities in a local processar, and interrupts

a local operation only when pieces of data that affect the local processar are broadcast over the

network.

Broedcast lnterwnncction NeiWOIX

r--------- ---------------- ----
1
I ,...----, lnstantiation 1-----,

Firing
Engine

Figure 1: Processing Element Model

All tokens propagated over the BIN consist of deletion, addition or modification of a WME.

Such operations might enable or disable a local production. Upon processing a token, the

Fireable lnstantiation Control (FIC) has to do the foUowing: perform an associative search in

the Antecedents of Fireable lnstantiation Memory (AFIM) to verify which previously enabled

productions are now disabled; remove such productions from the Fireable lnstantiation Memory

(FIM), and remove all their antecedents from AFIM; and place the incoming token in the input

queue of the Rete Network. Notice that because the productions that are no longer fireable were

removed from FIM, a partially inforrned selection can proceed and select a new production to

be fired among the ones that rema.ined in FIM.

170 XV Congresso da Sociedade Brasileira de Computação

This capability Lo fire a new production before the changes generated in the previous pro­

duction firing are fu lly propagated through the Rete Network results in low overhead for token

removing1 , and allows the maintenance of the beta memories of the original Rete algorithm (4].

This combination of the advantages of Rete and Treat is made possible by the storage of negated

conditions in the representation of fireable inslantiations of productions stored in FIM.

The compiler classifies the productions as local or remate: a local production modHies only

WMEs that are exclusively stored in local memories; a remate production changes pieces of

memory Lhat are slorcd in other processors. Local productions a re furlher classified in Inde­

pendenl of Network Transactions (INT) or Dependenl on Network Transactions (DNT). An

INT production can start firing at any time as long as its antecedents are satisfied. A DNT

production P; only starts firing after ali tokens generated by a production Pj, currently being

fired by a remo te processo r, are broadcast in the network and consumed by the processo r that

fires P;. T his prevents P; and Pj actions from being intermingled, avoiding thus non-serializable

behavior.

To select a production to fire , t he lnstantiation Firing Engine (IFE) performs an assoc.iative

search in FIM to find the most recently enabled production. !f the selected production is remate,

the IFE places a request for ownership of the BIN. Upon rece.iving BIN ownership, the IFE waits

until ali outstanding tokens from previous broadcastings are processed by F IC. The IFE access

FIM to verify whether the selected production is still fireable. If it is, IFE proceeds to execute its

actions, propagating tokens that change shared WMEs in BIN and sending tokens that modify

onl_y local WMEs to FIC and Rete.

The Snooping Directory (SD) is an associative memory that contains a tist of ali WME

types that are tested by antecedents of the productions assigned to the local processar. SD

"snoops" BIN and captures only tokens that modify WMEs relevant to the processar. lf there

is a local production being executed , the token cannot be immediately processed. lt is stored

in the Broadcasting Network Buffer (BNB), and is processed as soon as the local production

processing finishes.

The Pending Matchlng Memory (PMM) is necessary to store tokens that are in the Rete

Network. Whenever a change to the conflict set2 is generated in the Rete Network, FIC performs

an associative search in PMM to verify if a later modification invalidates such change. Thls

mechanism prevents races between IFE and Rete.

T he main steps in the machine operation are presented below Ln an algorithmic form. The

1Low overbead in token removing is the most salient advantage of the Treat algorithm [11).
2 "Conftict set" is the set of all productions enabled to be fired at any given time.

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 171

steps of the algorithm are performed by different structures of the processing element. A formal

proof that the architectural model presented in this section produces correct results according

to the serializability criterion is given in [1).

PRODUCTION-FIRING

1. execute ali outstanding tokens in BNB on first-come first-serve basis

2. select a fireable instantiation l~t in FIM

3. if h is global

4. then Request BIN ownership

5. while BIN ownership is not granted

6. execute tokens captured from BIN

7. if h is still fireable

8. then broadcast actions that change shared WMEs

9. execute actions that change shared WMEs

10. reiease BIN

11. else end PRODUCTION-FIRING

12. else if l~t is DNT

13. then while wait BIN ownership

14. execute tokens captured from BIN

15. if [J, is still fireable and Ik has local actions

16. then disable local execution of any incoming token

17. execute local actions

18. enable local execution of incoming tokens

Note that no production is fired while there are outstanding tokens in BNB. The selection of

a fireable instantiation in step 2 of PRODUCTION-FIRING is done according to the "pseudo­

recency~ criterion: the most recent instantiation in FIM is selected3 • This is not a true recency

criterion because the Rete Network may still be processing a previous token, and thus the

instantiations that it will produce are not in FIM yet.

The test in step 7 is necessary because between the time the BIN was requested and the

time its ownership is acquired, incoming tokens might have changed the status of the production

selected to tire. lf this occurs, the firing of the selected production is-aborted. Steps 12-14 are

executed for productions that are dependent on network transactions. If such productions were

to start firing while a remote processor is in the middle of a production execution, the interrnin-

3 A single usociative search in FIM produces the entry with the most recent time stamp.

172 XV Congresso da Sociedade Brasileira de Computação

gling of actions could result in non-serializable behavior. Notice that the BIN is released in step

10, before changes to local memory take place. To guarantee that no token is processed before

the local changes are executed, buffering of tokcns in BNB in stcp 16 is activated immediately

upon releasing the BIN.

Access arbitration in a broadcasting network is a well studied problcm. In this machine we

adopt the scheme uscd in the first prototypc of thc Alpha architecture by DEC [18). During

startup each processar is assigned an arbitrary priority number from O to N - 1. N - 1 is the

highest priority and O is the lowest. When a processar requests the network, it uses its priority.

The requester with highest priority is the winner and is granted acccss to the network. The win­

ner has possession of the network as long as it needs to write ali consequents of one production.

Aftcr releasing thc network, thc winner sets its own priority to zero. Ali processors t hat had

a priority number less than the winner increment their priority number by one, regardless of

whether they made a request. This scheme works as a round robin arbitration if ali processors

are requesting the network at the same time. If fewer processors are requesting the network,

this mechanism creates the illusion that only these active processors are present in the machine.

2.1 Correctness of the Processing Model

A Production R; consists of a set of antecedents A(R;) and a set of consequents C(R;): the

antecedents specify the conditions upon which the production can be fired; the consequents

specify the actions performed when the production is fired.

Definition 1 The database manipulated by a Production System consista of a set of assertions.

Each assertion is represented by a Working Memory Element (WME}, notated by Wk. A

WME consists of a class nome and a set of attribute-value pairs that together characterize its

type, T(Wk)4 •

Definition 2 Each production antecedent specifies a type of WME and a set of values for its

attribute-value pairs. A WME Wk is tested by an antecedent if it has the specijied type. An

antecedent is matched by a WME if the WME has the type specified and ali the values in the

antecedent match the ones in the WME.

Definition 3 !f the antecedents of a production R; test WMEs of type T[W.~), then W" belongs

to the antecedents of R;, it is notated by Wk E A(R;)5 .

' Two WMEs of the same type are distinguished only by lhe values assodated with their attributes.

• A WME might belong to lhe antecedents of more than one production.

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 173

In the architec;tural model described in Section 2, productions are partitioned into disjoint

sets with one set assigned to each processar. Rn E Pi indicates that production Rn belongs to

processor Pi. The Working Memory is distributed among the processors in such a way that

a processor stores in its local memory ali WMEs tested by its productions. This is stated in

Axiom 1.

Axiom 1 (Condition for Ownership) A WME Wk is stored in the local memory of a pro­

cessar Pi iffWk E A(Rn) and Rn E Pi.

Deftnition 4 (Serializability Criterion of Correctness) The parallel ezecution of a collec­

tion of production inslantiations 1 is correct if! there ezists at least one serial ezecution o f I

that produces the same results as the parallel ezecution.

Theorem 1 states t hat the operation of architecture proposed in section 2 is correct according

to the serializability criterion (16). The proof for theorem 1 was produced by Amaral based on

an analysis of ali possible confticting condition that might appear in the architecture [1). This

proof is not presented in this article due \o the limitation of space.

Theorem 1 Giving the parallel machine model presented in this document, the definition of

local DNT, locallNT, and global productions, Aziom 1 is a necessary and sufficient condition of

ownership to guarantee correct ezecution of a production system under the serializability criterion

of correctness.

In the following section we present a partition algorithm that determines which partitions

shall be assigned to which processors based on the set of dependencies arnong the productions.

This algorithm also takes into consideration the work balance among the processors. In section

4 we describe a set of benchmarks that is used for performance evaluation in sections 4.1 and

4.2.

3 Production Partitioning Algorithm

The problem of partitioning a Production System into disjoint production sets which are then

mapped onto distinct processors has been studied by a number of researchers. Most partitioning

algorithms are designed with the goal of reducing enabling, disabling and output dependencies

arnong productions allocated to different processors (15). Oftazer formulates partitioning as a

minimization problem and concludes that the best suited architecture for Production Systems

has a small number of powerful processors (14) . Oftazer also indicates that a limited amount

174 XV Congresso da Sociedade Brasileira de Computação

of improvement in the PS speed can be obtained by an adequate assignment of productions to

processors. Moldovan presents a detailed description of production dependencies and expresses

the potential parallelism in a "parallelism matrix" and the cost of communication arnong pro­

ductions in a "communication matrix" (12). Xu and Hwang use a similar scheme with ma.trices

of cost to construct a simula.ted annea.ling optimiza.tion of the production partition problem (19).

Although certain basic principies are maintained in ali partitioning schemes, partition algo­

rithms are ta.ilored to specific architectures. We are concerned with two kinds of rela.tionships

a.mong productions: productions tha.t share a.ntecedents, and productions tha.t ha.ve conflicting

actions. Assigning productions with common a.ntecedents to the same processar reduces memory

duplication, while assigning productions with conflicting a.ctions to the same processar prevents

tra.ffic in the bus. Previous partition algorithms were grea.tly influenced by enabling a.nd dis­

a.bling dependencies arnong productions (14, 12, 19). Our experiente with production systems

shows tha.t grouping productions with common antecedents is much more effective to reduce the

communication cost. Moreover, in the production system progra.ms tha.t we examined, a pro­

duction seldom creates a. WME that was not tested on its antecedents. Therefore, productions

tha.t have more common antecedents are also most likely to ha.ve a. grea.ter number of ena.bling

a.nd disabling dependencies among them. Thus, our pa.rtition algorithm does not include these

dependencies, but on1y sha.red antecedents and conflicting outputs.

We analyzed a.nd experimented with severa! pa.rtitioning algorithms and found the following

algorithm to be the most effective [I, 2). The optimal partitioning o f productions in to disjoint

sets is modeled as a minimum cut problem, which is NP-Complete (5). The polynomial time

a.pproxima.te solution presented in this section has three goals: minimizing the duplication of

working memory elements; reducing tra.ffic in the bus; a.nd bala.ncing the arnount of processing

in each processar. In the a.rchitecture presented in section 2 these goals transla.te to: minimizing

the number of global productions a.nd reducing the number of local DNT production. As a.

consequence, the number of local INT productions is increased.

To represent the rela.tionships arnong productions we define a.n undirected, fully connected

graph PRG = (P, E) called Production Relationship Graph. Each vertex in P represents one

of the productions in the system, a.nd each weighted edge in E is a. combined measure of the

production rela.tionships. PRG has a. weight function w : E z+, defined by equa.tion 1.

n-1 m-1 p-1 q-1

w(Eij) = w(Eji) = (1- 6ij) E E Wli,ki + (1 - 6ij) E E 'Yii,ki• (1)
1=0 4-=0 1=0 4-=0

where n and m are the number of a.ntecedents a.nd p and q are the number of consequents in

productions R; and Rj, respectively, 6ii is 1 if i= j and O otherwise, a.nd

VII Simpósio Brasileiro de Arquitetura de Computadores· Processamento de Alto Desempenho 175

1/Jti,kj

"'fli,kj

{
if antecedents At of R; and Ak of Rj are of the same type.

O otherwise

{

1 if consequent W1 of R; confticts with Wk of Rj

O otherwise

Empirical studies with a parallel architecture simulator show that the main factor limiting

further reduction is the time spent in the matching phase in the Rete network. Consequently, the

load balancing must concentrate on the processing performed in the Rete network. Furthermore,

most of the time in the Rete network is spent in ,B-node activities. Thus, the number of ,B-tests

performed in the antecedents of a production is used as a measure of the workload associated

with this production. To address the constraint of balancing the amount of processing among

processors, we define the function B : Po, ... , PN-! - z+, which computes the number of beta

tests that are expected to be performed by processo r P; .

B(P;) = L ,B(Rj) '{J;j,
j

(2)

where ,B(Rj) is the number of beta tests performed for production Rj, and '{Jij is 1 if Rj is

assigned to P;, and O otherwisé.

Let S; denote the set of productions assigned to processar P;. When the algorithm starts,

all subsets S; are empty and all productions are in the set S. The fitness of placing production

R; in set Sk is measured by the value of the function F(R;, SJ<).

N-!
F(R;,Sk) = L w(E;j)1/jk(I- 6;j),

1/jk = f ~ l -1

j:O

if Ri E S1<

if Rj E S

if Ri E Sm i Sk,

(3)

The strategy used in this partitioning algorithm consists of selecting the processar with

the least number of estimated beta tests, and then finding the production best fitted to this

processor. The productions strongly related to other productions in PRG are the first ones to

be assigned to processors. The algorithm ends when there are no more productions in S .
0P(R1) is An eotimate of lhe number of beta teots performed becauoe of lhe preoence of production R1 • h iB

measured in previous runs of lhe same production system.

176 XV Congresso da Sociedade Brasileira de Computação

PARTITION(S,E,w,N,B,F)

1 while S f; 0

2 do sk - sk u { R; I R; E s and

B(Pk) = mink B(Pk) and

F(R; , Sk) = max; F(R ;, Sk)}

3 S- S- {R;}

4 Benchmarking

A well known weakness of production system machine research is the lack of a comprehensive

and broadly used set of benchmarks for evaluation of performance. We used three benchmarks

obtained from other researchers and developed a new benchmark in which the number of produc­

tions and the database size can be independently changed to allow researchers to study various

aspects of new architectures. This new benchmarking, called Contemporaneous Traveling Sales­

person Problem (CTSP), is presented in detail in [1).

Table 1 shows static measures - number of productions, number of distinct WME types,

average number of antecedents per production, average number of consequents per productions

- for the benchmarks used to estimate performance in the multi pie functional unit Rete network.

south and south2 are CTSPs with four countries and ten cities per country ; moun and moun2

are CTSPs with ten countries and fifteen cities per country.

Bench. # Prod. Ant. Cons. WMEs

life 40 6.1 1.3 5

hotel 80 4.1 2.0 62

patents 86 5.2 1.2 4

south 91 4.7 2.8 40

south2 121 4.7 2.7 61

moun 211 4.7 2.8 88

moun2 301 4.7 2.7 151

waltz2 10 2.7 8.0 7

Table 1: Static Measures for Benchmarks Used.

patente is our solution to the constraint Confusion of Patenls Problem presented in [9). Be­

cause this solution has only four different types of WMEs, most of the productions either change

or test the same kinds of WM E. As a consequence, productions have strong interdependency,

VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 177

resulting in a. production system poorly suited for clustering. The main source of pa.rallelism is

the concurrent execution of different portions of the Rete network. Origina.lly written by Steve

Kuo a.t the University of Southern Ca.lifornia., hotel is a. production system tha.t models the op­

era.tion of a. hotel. lt is a. rela.tively la.rge a.nd va.ried production system (80 productions, 65 WME

types) with 17 non-exclusive contexts. life is an implementa.tion for Conwa.y's ga.me of life, a.s

constructed by Anura.g Acha.rya.. After our modifica.tions, life ha.s forty productions. Twenty

five of these productions a.re in the context tha.t computes the va.lue of ea.ch cell for the next

genera.tion a.nd potentially ca.n be fired in parallel. The other fifteen productions a.re used for

sequencing a.nd printing a.nd ca.n be only slightly accelera.ted by Rete network pa.rallelism. Our

version of the line la.beling problem, valtz2, wa.s origina.lly written by Toru Ishida. (Columbia.

Univ.), a.nd successively modified by Da.n Neima.n (Univ. of Ma.ssa.chusetts) , Anurag Acha.rya.

(Ca.rnegie-Mellon Univ.) a.nd J osé Amaral (Univ. of Texas). It ha.s two non-overla.pping sta.ges

of execution, ea.ch one with four productions.

4.1 Parallel Firing Speedup

To mea.sure the a.dvantages of pa.rallel production firing a.nd The benchma.rks described in section

4 were used to eva.lua.te the performance o f the proposed a.rchitect ure. o f the internai pa.rallelism

within ea.ch processo r, we define a globally synchronized a.rchitecture tha.t is very similar to the

one proposed in this pa.per, except tha.t it performs global conftict set resolution to implement the

OPSS recency stra.tegy. This synchronized a.rchitecture is a.lso very similar to the one suggested

by Gupta, Forgy, and Newell (7] . In this a.rchitecture, ea.ch processor reports the best local

instantia.tion to be fired to the bus controller. The bus controller selects the instantiation whose

time ta.g indica.tes it to be the Ja.test one to become firea.ble. This added decision capa.bility in the

bus controller implements the recency stra.tegy to solve the conftict set. T he processor selected

to fire a. production broa.dca.sts ali cha.nges in the bus. A processor only selects a. new candidate

to fire when the ma.tching in the Rete network is complete. The bus controller waits until ali

processors report a. new candidate to fire. This mecha.nism reprod uces the global synchroniza.tion

and conflict set genera.tionfresolution present in many of the previously proposed a.rchitectures.

In order to ha.ve a. fair comparison, we considered tha.t the synchronized a.rchitecture uses a.n

a.ssocia.tive memory to store a.nd solve the local conllict sets, a.nd tha.t the bus controller chooses

the "winner" in one time step.

Since the synchronized a.rchitecture a.lso uses a.ssocia.tive memory to store a.nd sea.rch the

loca.l conllict sets, the comparisons of Figures 2 and 3 do not reftect the a.dvanta.ges of using such

memories in our architecture.

Figure 2 shows the speedup curves for the benchma.rks life, hotel, patents, and valtz2.

178

-" "' E

"' >
E
c.

.É

l
c.
:r.

10

8

6

4

2

XV Congresso da Sociedade Brasileira de Computação

alife -
apat•nte --­

ahotel ·
awaltz'2 ········

alife - · - ·
epatente - ·- .-·- · ---·- ·-·-

.:~!:~ :::: ·~,;.-:;.""·~·~·!-·~ ·- · - ·- ·-·- ·-
1,,.· ~ -..
" '{!;, ... :.:.:.:

•' ::::·_ .. _ .. :: :·:::: :::::: ::· .. :·:::: ~
0 ~----L-----L-----L-----~

o 5 10 15 20
of Pror.I>J<S!ll'll

Figure 2: Speedup Curves

In this and the next section, we will observe a significant dilference in performance and memory

requirements between this group of benchmarks and the ones based on CTSP (south, south2,

moun, and moun2). This is due to a gap in complexity between the two groups of benchmarks:

the CTSP programs have higher data locality, larger number of productions, and larger data

sets. Because of these characteristics, CTSP programs reflect more closely the characteristics

encountered in production system applications in industry. The curve names starting with "s"

indicate measures in the synchronized architecture; the curve names starting with "a" indicate

measures in the architecture proposed in this paper. AU speedups are measured against a

single processor synchronized architecture. For the benchmarks presented in Figure 2, there is

not much distinction between the two architectures when they have a single processor. This

indicates that the parallelism between the matching phase and the selcctingfexecut ion phase

does not result in much speed improvement for these benchmarks. Yet, even with these "toy

problems", the parallel firing of productions and fhe elimination of the global synchronization

provides significant speedup.

Figure 3 shows the comparative performance for the CTSP benchmarks. Here, significant

speedup is observed over the synchronized architecturc even for the single processar configura­

tion. This measures the amount of speed that is gained due to the parallelism between matching

and selecting/firing. The apparent superlinear speedup in the cu rves of Figure 2 reflects the fact

that these cu rves are showing the combined speedup due to two dilferent factors: intra and

inter!>focessor parallelism. To obtain the speedup due exclusively to parallel production firing,

the reader should divide the values in the "a" curves by the values in the same curve for a

VII Simpósio Brasileiro de Arquitetura de Computadores· Processamento de Alto Desempenho 179

40 ..----r-----r---,---r-~
a•oun2-

3t) ,.:::~:~ ~:.:

- 30 c
c.

~ 25
c
c. 20
.É

15

lO

.~

a•oun2 ········
aaouth -·-·

1\ 10 11\
of Pror.~~or~

Figure 3: Speedup Curves

20

single processar machine. These results confirm our initial conjecture that the elimination of

the global synchronization in a production systern allows the construction of machines with

significant speedup.

4.2 Bus Utilization

A. Jegitimate concern about any bus- based parallel architecture is the limitation of a. bus as a

broadcasting network. In section 2 we conjectured that bus ba.ndwidth is not a limitation in the

architecture proposed. Table 2 presents the measurements for the percentage of time that the

bus is busy for machines with 4, 8 and 16 processors, assuming that bus bandwidth is the same

as that oflocal memory. These measures include the arbitration time and the token broadcasting

time. Observe that technological limitations would have to render the bus\muclp slower than the

memories before the bus speed becames a concern in this architecture.
I

5 Concluding Remarks

We proposed a new production system architecture that eliminates global synchronization and

the generation of a global conflict set . This elimination is possible because of the use of se­

rializability as a correctness criterion in the selection of actions to be performed, in para.llel.

The increased importance of associative search for mainta.ining fireable instantiation tables in

this setting is evidenced by the big performance gains obtained by using modest amounts.of

associative memory.

180 XV Congresso da Sociedade Brasileira de Computação

Benchmark Bus Utilization(%)

4 proc. 8 proc. 16 proc.

hotel 10.9 20.9 23.7

li f e 0.83 1.38 2.02

moun2 2.25 3.83 4.il

patents 0.68 0.89 1.08

south2 4.97 8.31 9.72

valtz2 1.36 1.79 1.76

Table 2: Percentage of time t hat the bus is busy.

One of the drawbacks is the use of serializability as a corrcctness critcrion is that the program­

mer must make sure that any possible sequential execution of P•labled productions is correct.

Our experience with PS benchmarks indicates that programmers often rely on knowledge about

conftict set resolution strategies when writing PS prograrns. This often manifests itself in the

omission of important antecedents in productions that are cnabled but never selected to fire

by a specific strategy. Now that our study has indicated that serializable systems offer g reat

speed improvements, it is desirable to develop programming tools to help in lhe specification

and verification of a wider range of serializable PS programs.

References

[1) J. N. Amaral. A Para/lei Architecture for Serializable Production Systems. PhD thesis, The

University of TeHas at Austin , 1994. Electrical and Compu ter Engineering.

[2] J. N. Amara.l and J. Ghosh. An associative memory architecture for concurrent production

systems. In Proc. 199./ IEEE lntemational Conference on Systems, Man and Cybemetics,

San Antoni.o , TX. October 1994.

[3) J. N. Ama .ral and J. Ghosh. Speeding up production systE'ms: From concurrent matching to

parallel rule firing. ln L. N. Kanal, V. Kumar, H. Kitani, and C. Suttner, editors, Para/lei

Processin.g fo .r AI, chapter 7, pages 139-160. Elsevier Sc.ience Publishers B.V. , 1994.

[4) C. L. Fo.rgy. O n the Efficient Jmplementations of Production Systerns. PhD thesis, Carnegie

Mellon Univers ity, Pittsburgh, PA, 1979.

[5) M. R. Garey, [. l. S. Johnson, and L. Stockmeyer. So•me simplified NP-complete graph

problems. Theor .. Cornput. Sei., 1:237- 267, 1976.

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 181

[6) A. Gupta. Parollelism in Production Systems. PhD thcsis. l'arnegie MeiJon University,

Pittsburgh, PA, March 1986.

(7) A. Gupta, C. Forgy, and A. NeweiJ. High-speed implementations of rule-based systems.

ACM Transactions on Computer Systems, 7:119- 146, May 1989.

[8) T. lshida and S. Stolfo. Towards the parallel execution of rules in production system

programs. In Proceedings of /ntemational Cor1jerence on Paro/lei Processing, pages 568-

575, 1985.

[9) P. C. Jackson. l ntroduction to Artificial lntel/igence. Dover Pub., New York, 1985.

(10) S. Kuo and D. Moldovan. The state of the art in parallel production systems. Joumal of

Paro/lei and Distributed Computing, 15:1- 26, June 1992.

[ll) D. P. Miranker. TREII T: A New and Efficient Match lllgorilhm for 11 1 Production Systems.

Pittman/Morgan-Kaufman, 1990.

[12) D. I. Moldovan. Rubic: A multiprocessor for rule-based systems. IEEE Tronsactions on

Systems, Man and Cybemetics, 19:699- 706, July/ August 1989.

[13) P. Nayak, A. Gupta, and P. Rosenbloom. Comparison of the Rete and Treat production

matchers for SOAR (a summary). In Proceedings of National Conference on Artificial

l ntelligence, pages 693- 698, August 1988.

[14) K. Ofiazer. Partitioning in pa ralle1 processing of production systems. In Proceedings of

l ntemational Conference on Paro/lei Processing, pages 92- 100, 1984.

[15) J. Schmolze. A parallel asynchronous distributed production system. In Proceedings of

National Conference on Artificial lntelligence, pages 65- 71, 1990.

[16) J. G. Schmolze. Guaranteeing serializable results in synchronous parallel production sys­

tems. Joumal of Paro/lei and Distributed Computing, 13:348- 365, December 1991.

[17) J . G. Schmolze and W. Snyder. Using conHuence to control parallel production systems. In

Second Intemational Workshop on Paro/lei Processing for .4rtificiallntelligence (PPA /-99},

August 1993.

[18) C. P. Thacker, D. G. Conroy, and L. C. Stewart. Tht' alpha dernonstration unit: A high­

performance multiprocessor. Communications of tltc ACM, 36:55- 67, February 1993.

[19) J. Xu and K. Hwang. Mapping rule-based systerns onto multicomputers using simulated

annealing. Joumal of Paro/lei and Distributed Computing, 13:442- 455, December 1991.

