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Abstract 

This paper presents a new production system architecLure that uses serializability as 

a correctness criterion to select a set of productions to be executed in parallcl. T he use 

of serializability eliminales global synchronization. This a rchilecture takes advantage of 

modern associative memory devices to allow parallel production firing, concurrent matching, 

and overlap among matching, selection, and firing of productions. A comprehensive event­

driven simulator is used to evaluate the scaling properties of the new architecture and to 

compare it with a parallel architecture using global synchronization before every production 

firing. Our results indicate that the combination of serializabili ty and associative memories 

can achieve substantial improvements in speed with a very modest increase in hardware cost. 

1 Introduction 

Attempts to speed up Product ion Systems (PS) date back to 1979 when Forgy created the Rete 

network, a state saving algorithrn to speed up the matching phase of PS [4]. Following a 1986 

study by Gupta, which indicated that a significant portion o f the processing time in a Rete- based 

PS machine is consumed in the matching phase [6], substantial efforts were made to improve 

this phase. Comprehensive surveys of the research towards speeding up production systems are 

found in the works of Kuo and Moldovan [10] and Amaral and Ghosh [3]. 

The issue of which criterion to use for correctness in the execution of a production system 

is still an open question. The two most prominent candidates are the commutativity criterion 

and the serializability criterion. When commutativity is used, a set of rules can be executed in 

parallel if and only if the result is the same that would be produced by any possible sequential 

execution of the set. Under serializability it is enough that the result produced by the parallel 

execution be equal to at least one sequential execution of the set [16]. 

•supported by a feUowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and 
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The commutativity criterion proposed by lslaida and Stolfo [8) is favored by programmers 

because it allows for easy verification of correctness in a production system. However, it is very 

restrictive and the amount o f parallelism extracted from a PS using this criterion is very low. 

The use of the serializability criterion increases the amount of parallelism available but makes 

the verification of correctness in a program more difficult. Nevertheless, if serializable production 

systems are proven to be sufficiently faster than commutable ones, development tools wiU be 

created to aid the verification of correctness. 

· schmolze and Snyder [17) studied the use of confluence to control a parallel production 

system. They suggest the use of term rewriting systems to verify the confluence of a production 

set. They argue that a confluent production set that is guaranteed to terminate will produce the 

same final result independent of the sequence in which the productions are executed. Therefore, 

for such a class of systems, the verification of correctness with the serializability criterion would 

not impose an extra burden in the programmer. 

On surveying measurements published by other authors [13, 6), we found that the ratios of 

reading and writing operations in the benchmarks studied are between 100 and 1000. We also 

found that in complex benchmarks that bear more similarity with "reallife" problems, this ratio 

tends to be higher than in "toy probrems". This is primarily because productions have a larger 

number of antecedents than consequents in such problems [1). 

The need to improve other phases of production execution besides the match cycle is now 

evident [3). In this paper we present a parallel architec:ture based on the serializability crite­

rion of correctness. The architecture exploits the high read/write ratio of production systems, 

and the increased importance of associative search operations when global synchronization is 

eliminated, to yield a fast and efficient production system engine. This architecture foUows an 

early recommendation of Gupta and Forgy [7), i.e., that a parallel production system machine 

be constructed with a small number of relatively powerful processors. 

2 Architectural Model 

The architectural model proposed in this paper consists of a moderate number of identical 

processors interconnected through a Broadcasting lnterconnection Network (BIN). Each of the 

processors has the internai organization shown in Figure 1. An 1/0 processar attached to the 

BIN initially loads the productions and the initial database in the processors. At compile time 

each production is uniquely assigned to a processar according to a partitioning algorithm that 

takes into consideration inter-production dependencies and workload balance [2). A processar 

reads data only from its local memory, i.e., no read operations are performed over the network. 
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Dueto the absence of network reads and the low frequency of network writes, a simple bus should 

be adequate as the broadcasting system. This conclusion is supported by deta.iled experimental 

results showing the bus not to be a bottleneck even for a twenty processar system. A number 

of associative memories implement a system of lookaside tables to allow parallel operations 

within each processar. This scheme does not allow parallel production firing within a processar, 

but allows the match-select-act phases of a production system to overlap. A snooping directory 

isolates the activities in remote processors from the activities in a local processar, and interrupts 

a local operation only when pieces of data that affect the local processar are broadcast over the 

network. 

Broedcast lnterwnncction NeiWOIX 

r--------- ---------------- ----
1 
I ,...----, lnstantiation 1-----, 

Firing 
Engine 

Figure 1: Processing Element Model 

All tokens propagated over the BIN consist of deletion, addition or modification of a WME. 

Such operations might enable or disable a local production. Upon processing a token, the 

Fireable lnstantiation Control (FIC) has to do the foUowing: perform an associative search in 

the Antecedents of Fireable lnstantiation Memory (AFIM) to verify which previously enabled 

productions are now disabled; remove such productions from the Fireable lnstantiation Memory 

(FIM), and remove all their antecedents from AFIM; and place the incoming token in the input 

queue of the Rete Network. Notice that because the productions that are no longer fireable were 

removed from FIM, a partially inforrned selection can proceed and select a new production to 

be fired among the ones that rema.ined in FIM. 
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This capability Lo fire a new production before the changes generated in the previous pro­

duction firing are fu lly propagated through the Rete Network results in low overhead for token 

removing1 , and allows the maintenance of the beta memories of the original Rete algorithm (4]. 

This combination of the advantages of Rete and Treat is made possible by the storage of negated 

conditions in the representation of fireable inslantiations of productions stored in FIM. 

The compiler classifies the productions as local or remate: a local production modHies only 

WMEs that are exclusively stored in local memories; a remate production changes pieces of 

memory Lhat are slorcd in other processors. Local productions a re furlher classified in Inde­

pendenl of Network Transactions (INT) or Dependenl on Network Transactions (DNT). An 

INT production can start firing at any time as long as its antecedents are satisfied. A DNT 

production P; only starts firing after ali tokens generated by a production Pj, currently being 

fired by a remo te processo r, are broadcast in the network and consumed by the processo r that 

fires P;. T his prevents P; and Pj actions from being intermingled, avoiding thus non-serializable 

behavior. 

To select a production to fire , t he lnstantiation Firing Engine ( IFE) performs an assoc.iative 

search in FIM to find the most recently enabled production. !f the selected production is remate, 

the IFE places a request for ownership of the BIN. Upon rece.iving BIN ownership, the IFE waits 

until ali outstanding tokens from previous broadcastings are processed by F IC. The IFE access 

FIM to verify whether the selected production is still fireable. If it is, IFE proceeds to execute its 

actions, propagating tokens that change shared WMEs in BIN and sending tokens that modify 

onl_y local WMEs to FIC and Rete. 

The Snooping Directory (SD) is an associative memory that contains a tist of ali WME 

types that are tested by antecedents of the productions assigned to the local processar. SD 

"snoops" BIN and captures only tokens that modify WMEs relevant to the processar. lf there 

is a local production being executed , the token cannot be immediately processed. lt is stored 

in the Broadcasting Network Buffer (BNB), and is processed as soon as the local production 

processing finishes. 

The Pending Matchlng Memory (PMM) is necessary to store tokens that are in the Rete 

Network. Whenever a change to the conflict set2 is generated in the Rete Network, FIC performs 

an associative search in PMM to verify if a later modification invalidates such change. Thls 

mechanism prevents races between IFE and Rete. 

T he main steps in the machine operation are presented below Ln an algorithmic form. The 

1Low overbead in token removing is the most salient advantage of the Treat algorithm [11). 
2 "Conftict set" is the set of all productions enabled to be fired at any given time. 
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steps of the algorithm are performed by different structures of the processing element. A formal 

proof that the architectural model presented in this section produces correct results according 

to the serializability criterion is given in [1). 

PRODUCTION-FIRING 

1. execute ali outstanding tokens in BNB on first-come first-serve basis 

2. select a fireable instantiation l~t in FIM 

3. if h is global 

4. then Request BIN ownership 

5. while BIN ownership is not granted 

6. execute tokens captured from BIN 

7. if h is still fireable 

8. then broadcast actions that change shared WMEs 

9. execute actions that change shared WMEs 

10. reiease BIN 

11. else end PRODUCTION-FIRING 

12. else if l~t is DNT 

13. then while wait BIN ownership 

14. execute tokens captured from BIN 

15. if [J, is still fireable and Ik has local actions 

16. then disable local execution of any incoming token 

17. execute local actions 

18. enable local execution of incoming tokens 

Note that no production is fired while there are outstanding tokens in BNB. The selection of 

a fireable instantiation in step 2 of PRODUCTION-FIRING is done according to the "pseudo­

recency~ criterion: the most recent instantiation in FIM is selected3 • This is not a true recency 

criterion because the Rete Network may still be processing a previous token, and thus the 

instantiations that it will produce are not in FIM yet. 

The test in step 7 is necessary because between the time the BIN was requested and the 

time its ownership is acquired, incoming tokens might have changed the status of the production 

selected to tire. lf this occurs, the firing of the selected production is-aborted. Steps 12-14 are 

executed for productions that are dependent on network transactions. If such productions were 

to start firing while a remote processor is in the middle of a production execution, the interrnin-

3 A single usociative search in FIM produces the entry with the most recent time stamp. 
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gling of actions could result in non-serializable behavior. Notice that the BIN is released in step 

10, before changes to local memory take place. To guarantee that no token is processed before 

the local changes are executed, buffering of tokcns in BNB in stcp 16 is activated immediately 

upon releasing the BIN. 

Access arbitration in a broadcasting network is a well studied problcm. In this machine we 

adopt the scheme uscd in the first prototypc of thc Alpha architecture by DEC [18). During 

startup each processar is assigned an arbitrary priority number from O to N - 1. N - 1 is the 

highest priority and O is the lowest. When a processar requests the network, it uses its priority. 

The requester with highest priority is the winner and is granted acccss to the network. The win­

ner has possession of the network as long as it needs to write ali consequents of one production. 

Aftcr releasing thc network, thc winner sets its own priority to zero. Ali processors t hat had 

a priority number less than the winner increment their priority number by one, regardless of 

whether they made a request. This scheme works as a round robin arbitration if ali processors 

are requesting the network at the same time. If fewer processors are requesting the network, 

this mechanism creates the illusion that only these active processors are present in the machine. 

2.1 Correctness of the Processing Model 

A Production R; consists of a set of antecedents A(R;) and a set of consequents C(R;): the 

antecedents specify the conditions upon which the production can be fired; the consequents 

specify the actions performed when the production is fired. 

Definition 1 The database manipulated by a Production System consista of a set of assertions. 

Each assertion is represented by a Working Memory Element ( WME}, notated by Wk. A 

WME consists of a class nome and a set of attribute-value pairs that together characterize its 

type, T(Wk)4 • 

Definition 2 Each production antecedent specifies a type of WME and a set of values for its 

attribute-value pairs. A WME Wk is tested by an antecedent if it has the specijied type. An 

antecedent is matched by a WME if the WME has the type specified and ali the values in the 

antecedent match the ones in the WME. 

Definition 3 !f the antecedents of a production R; test WMEs of type T[W.~), then W" belongs 

to the antecedents of R;, it is notated by Wk E A(R;)5 . 

' Two WMEs of the same type are distinguished only by lhe values assodated with their attributes. 

• A WME might belong to lhe antecedents of more than one production. 
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In the architec;tural model described in Section 2, productions are partitioned into disjoint 

sets with one set assigned to each processar. Rn E Pi indicates that production Rn belongs to 

processor Pi. The Working Memory is distributed among the processors in such a way that 

a processor stores in its local memory ali WMEs tested by its productions. This is stated in 

Axiom 1. 

Axiom 1 (Condition for Ownership) A WME Wk is stored in the local memory of a pro­

cessar Pi iffWk E A(Rn) and Rn E Pi. 

Deftnition 4 (Serializability Criterion of Correctness) The parallel ezecution of a collec­

tion of production inslantiations 1 is correct if! there ezists at least one serial ezecution o f I 

that produces the same results as the parallel ezecution. 

Theorem 1 states t hat the operation of architecture proposed in section 2 is correct according 

to the serializability criterion (16). The proof for theorem 1 was produced by Amaral based on 

an analysis of ali possible confticting condition that might appear in the architecture [1). This 

proof is not presented in this article due \o the limitation of space. 

Theorem 1 Giving the parallel machine model presented in this document, the definition of 

local DNT, locallNT, and global productions, Aziom 1 is a necessary and sufficient condition of 

ownership to guarantee correct ezecution of a production system under the serializability criterion 

of correctness. 

In the following section we present a partition algorithm that determines which partitions 

shall be assigned to which processors based on the set of dependencies arnong the productions. 

This algorithm also takes into consideration the work balance among the processors. In section 

4 we describe a set of benchmarks that is used for performance evaluation in sections 4.1 and 

4.2. 

3 Production Partitioning Algorithm 

The problem of partitioning a Production System into disjoint production sets which are then 

mapped onto distinct processors has been studied by a number of researchers. Most partitioning 

algorithms are designed with the goal of reducing enabling, disabling and output dependencies 

arnong productions allocated to different processors (15). Oftazer formulates partitioning as a 

minimization problem and concludes that the best suited architecture for Production Systems 

has a small number of powerful processors (14) . Oftazer also indicates that a limited amount 
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of improvement in the PS speed can be obtained by an adequate assignment of productions to 

processors. Moldovan presents a detailed description of production dependencies and expresses 

the potential parallelism in a "parallelism matrix" and the cost of communication arnong pro­

ductions in a "communication matrix" (12). Xu and Hwang use a similar scheme with ma.trices 

of cost to construct a simula.ted annea.ling optimiza.tion of the production partition problem (19). 

Although certain basic principies are maintained in ali partitioning schemes, partition algo­

rithms are ta.ilored to specific architectures. We are concerned with two kinds of rela.tionships 

a.mong productions: productions tha.t share a.ntecedents, and productions tha.t ha.ve conflicting 

actions. Assigning productions with common a.ntecedents to the same processar reduces memory 

duplication, while assigning productions with conflicting a.ctions to the same processar prevents 

tra.ffic in the bus. Previous partition algorithms were grea.tly influenced by enabling a.nd dis­

a.bling dependencies arnong productions (14, 12, 19). Our experiente with production systems 

shows tha.t grouping productions with common antecedents is much more effective to reduce the 

communication cost. Moreover, in the production system progra.ms tha.t we examined, a pro­

duction seldom creates a. WME that was not tested on its antecedents. Therefore, productions 

tha.t have more common antecedents are also most likely to ha.ve a. grea.ter number of ena.bling 

a.nd disabling dependencies among them. Thus, our pa.rtition algorithm does not include these 

dependencies, but on1y sha.red antecedents and conflicting outputs. 

We analyzed a.nd experimented with severa! pa.rtitioning algorithms and found the following 

algorithm to be the most effective [I, 2). The optimal partitioning o f productions in to disjoint 

sets is modeled as a minimum cut problem, which is NP-Complete (5). The polynomial time 

a.pproxima.te solution presented in this section has three goals: minimizing the duplication of 

working memory elements; reducing tra.ffic in the bus; a.nd bala.ncing the arnount of processing 

in each processar. In the a.rchitecture presented in section 2 these goals transla.te to: minimizing 

the number of global productions a.nd reducing the number of local DNT production. As a. 

consequence, the number of local INT productions is increased. 

To represent the rela.tionships arnong productions we define a.n undirected, fully connected 

graph PRG = (P, E) called Production Relationship Graph. Each vertex in P represents one 

of the productions in the system, a.nd each weighted edge in E is a. combined measure of the 

production rela.tionships. PRG has a. weight function w : E ...... z+, defined by equa.tion 1. 

n-1 m-1 p-1 q-1 

w(Eij) = w(Eji) = (1- 6ij) E E Wli,ki + (1 - 6ij) E E 'Yii,ki• (1) 
1=0 4-=0 1=0 4-=0 

where n and m are the number of a.ntecedents a.nd p and q are the number of consequents in 

productions R; and Rj, respectively, 6ii is 1 if i= j and O otherwise, a.nd 
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1/Jti,kj 

"'fli,kj 

{ 
if antecedents At of R; and Ak of Rj are of the same type. 

O otherwise 

{ 

1 if consequent W1 of R; confticts with Wk of Rj 

O otherwise 

Empirical studies with a parallel architecture simulator show that the main factor limiting 

further reduction is the time spent in the matching phase in the Rete network. Consequently, the 

load balancing must concentrate on the processing performed in the Rete network. Furthermore, 

most of the time in the Rete network is spent in ,B-node activities. Thus, the number of ,B-tests 

performed in the antecedents of a production is used as a measure of the workload associated 

with this production. To address the constraint of balancing the amount of processing among 

processors, we define the function B : Po, ... , PN-! - z+, which computes the number of beta 

tests that are expected to be performed by processo r P; . 

B(P;) = L ,B(Rj) '{J;j, 
j 

(2) 

where ,B(Rj) is the number of beta tests performed for production Rj, and '{Jij is 1 if Rj is 

assigned to P;, and O otherwisé. 

Let S; denote the set of productions assigned to processar P;. When the algorithm starts, 

all subsets S; are empty and all productions are in the set S. The fitness of placing production 

R; in set Sk is measured by the value of the function F( R;, SJ<). 

N-! 
F(R;,Sk) = L w(E;j)1/jk(I- 6;j), 

1/jk = f ~ l -1 

j:O 

if Ri E S1< 

if Rj E S 

if Ri E Sm i Sk, 

(3) 

The strategy used in this partitioning algorithm consists of selecting the processar with 

the least number of estimated beta tests, and then finding the production best fitted to this 

processor. The productions strongly related to other productions in PRG are the first ones to 

be assigned to processors. The algorithm ends when there are no more productions in S . 
0P(R1 ) is An eotimate of lhe number of beta teots performed becauoe of lhe preoence of production R1 • h iB 

measured in previous runs of lhe same production system. 
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PARTITION(S,E,w,N,B,F) 

1 while S f; 0 

2 do sk - sk u { R; I R; E s and 

B(Pk) = mink B(Pk) and 

F( R; , Sk) = max; F( R ;, Sk)} 

3 S- S- {R;} 

4 Benchmarking 

A well known weakness of production system machine research is the lack of a comprehensive 

and broadly used set of benchmarks for evaluation of performance. We used three benchmarks 

obtained from other researchers and developed a new benchmark in which the number of produc­

tions and the database size can be independently changed to allow researchers to study various 

aspects of new architectures. This new benchmarking, called Contemporaneous Traveling Sales­

person Problem (CTSP), is presented in detail in [1). 

Table 1 shows static measures - number of productions, number of distinct WME types, 

average number of antecedents per production, average number of consequents per productions 

- for the benchmarks used to estimate performance in the multi pie functional unit Rete network. 

south and south2 are CTSPs with four countries and ten cities per country ; moun and moun2 

are CTSPs with ten countries and fifteen cities per country. 

Bench. # Prod. Ant. Cons. WMEs 

life 40 6.1 1.3 5 

hotel 80 4.1 2.0 62 

patents 86 5.2 1.2 4 

south 91 4.7 2.8 40 

south2 121 4.7 2.7 61 

moun 211 4.7 2.8 88 

moun2 301 4.7 2.7 151 

waltz2 10 2.7 8.0 7 

Table 1: Static Measures for Benchmarks Used. 

patente is our solution to the constraint Confusion of Patenls Problem presented in [9). Be­

cause this solution has only four different types of WMEs, most of the productions either change 

or test the same kinds of WM E. As a consequence, productions have strong interdependency, 
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resulting in a. production system poorly suited for clustering. The main source of pa.rallelism is 

the concurrent execution of different portions of the Rete network. Origina.lly written by Steve 

Kuo a.t the University of Southern Ca.lifornia., hotel is a. production system tha.t models the op­

era.tion of a. hotel. lt is a. rela.tively la.rge a.nd va.ried production system (80 productions, 65 WME 

types) with 17 non-exclusive contexts. life is an implementa.tion for Conwa.y's ga.me of life, a.s 

constructed by Anura.g Acha.rya.. After our modifica.tions, life ha.s forty productions. Twenty 

five of these productions a.re in the context tha.t computes the va.lue of ea.ch cell for the next 

genera.tion a.nd potentially ca.n be fired in parallel. The other fifteen productions a.re used for 

sequencing a.nd printing a.nd ca.n be only slightly accelera.ted by Rete network pa.rallelism. Our 

version of the line la.beling problem, valtz2, wa.s origina.lly written by Toru Ishida. (Columbia. 

Univ.), a.nd successively modified by Da.n Neima.n (Univ. of Ma.ssa.chusetts) , Anurag Acha.rya. 

(Ca.rnegie-Mellon Univ.) a.nd J osé Amaral (Univ. of Texas). It ha.s two non-overla.pping sta.ges 

of execution, ea.ch one with four productions. 

4.1 Parallel Firing Speedup 

To mea.sure the a.dvantages of pa.rallel production firing a.nd The benchma.rks described in section 

4 were used to eva.lua.te the performance o f the proposed a.rchitect ure. o f the internai pa.rallelism 

within ea.ch processo r, we define a globally synchronized a.rchitecture tha.t is very similar to the 

one proposed in this pa.per, except tha.t it performs global conftict set resolution to implement the 

OPSS recency stra.tegy. This synchronized a.rchitecture is a.lso very similar to the one suggested 

by Gupta, Forgy, and Newell (7] . In this a.rchitecture, ea.ch processor reports the best local 

instantia.tion to be fired to the bus controller. The bus controller selects the instantiation whose 

time ta.g indica.tes it to be the Ja.test one to become firea.ble. This added decision capa.bility in the 

bus controller implements the recency stra.tegy to solve the conftict set. T he processor selected 

to fire a. production broa.dca.sts ali cha.nges in the bus. A processor only selects a. new candidate 

to fire when the ma.tching in the Rete network is complete. The bus controller waits until ali 

processors report a. new candidate to fire. This mecha.nism reprod uces the global synchroniza.tion 

and conflict set genera.tionfresolution present in many of the previously proposed a.rchitectures. 

In order to ha.ve a. fair comparison, we considered tha.t the synchronized a.rchitecture uses a.n 

a.ssocia.tive memory to store a.nd solve the local conllict sets, a.nd tha.t the bus controller chooses 

the "winner" in one time step. 

Since the synchronized a.rchitecture a.lso uses a.ssocia.tive memory to store a.nd sea.rch the 

loca.l conllict sets, the comparisons of Figures 2 and 3 do not reftect the a.dvanta.ges of using such 

memories in our architecture. 

Figure 2 shows the speedup curves for the benchma.rks life, hotel, patents, and valtz2. 
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Figure 2: Speedup Curves 

In this and the next section, we will observe a significant dilference in performance and memory 

requirements between this group of benchmarks and the ones based on CTSP (south, south2, 

moun, and moun2). This is due to a gap in complexity between the two groups of benchmarks: 

the CTSP programs have higher data locality, larger number of productions, and larger data 

sets. Because of these characteristics, CTSP programs reflect more closely the characteristics 

encountered in production system applications in industry. The curve names starting with "s" 

indicate measures in the synchronized architecture; the curve names starting with "a" indicate 

measures in the architecture proposed in this paper. AU speedups are measured against a 

single processor synchronized architecture. For the benchmarks presented in Figure 2, there is 

not much distinction between the two architectures when they have a single processor. This 

indicates that the parallelism between the matching phase and the selcctingfexecut ion phase 

does not result in much speed improvement for these benchmarks. Yet, even with these "toy 

problems", the parallel firing of productions and fhe elimination of the global synchronization 

provides significant speedup. 

Figure 3 shows the comparative performance for the CTSP benchmarks. Here, significant 

speedup is observed over the synchronized architecturc even for the single processar configura­

tion. This measures the amount of speed that is gained due to the parallelism between matching 

and selecting/firing. The apparent superlinear speedup in the cu rves of Figure 2 reflects the fact 

that these cu rves are showing the combined speedup due to two dilferent factors: intra and 

inter!>focessor parallelism. To obtain the speedup due exclusively to parallel production firing, 

the reader should divide the values in the "a" curves by the values in the same curve for a 
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20 

single processar machine. These results confirm our initial conjecture that the elimination of 

the global synchronization in a production systern allows the construction of machines with 

significant speedup. 

4.2 Bus Utilization 

A. Jegitimate concern about any bus- based parallel architecture is the limitation of a. bus as a 

broadcasting network. In section 2 we conjectured that bus ba.ndwidth is not a limitation in the 

architecture proposed. Table 2 presents the measurements for the percentage of time that the 

bus is busy for machines with 4, 8 and 16 processors, assuming that bus bandwidth is the same 

as that oflocal memory. These measures include the arbitration time and the token broadcasting 

time. Observe that technological limitations would have to render the bus\muclp slower than the 

memories before the bus speed becames a concern in this architecture. 
I 

5 Concluding Remarks 

We proposed a new production system architecture that eliminates global synchronization and 

the generation of a global conflict set . This elimination is possible because of the use of se­

rializability as a correctness criterion in the selection of actions to be performed, in para.llel. 

The increased importance of associative search for mainta.ining fireable instantiation tables in 

this setting is evidenced by the big performance gains obtained by using modest amounts.of 

associative memory. 
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Benchmark Bus Utilization(%) 

4 proc. 8 proc. 16 proc. 

hotel 10.9 20.9 23.7 

li f e 0.83 1.38 2.02 

moun2 2.25 3.83 4.il 

patents 0.68 0.89 1.08 

south2 4.97 8.31 9.72 

valtz2 1.36 1.79 1.76 

Table 2: Percentage of time t hat the bus is busy. 

One of the drawbacks is the use of serializability as a corrcctness critcrion is that the program­

mer must make sure that any possible sequential execution of P•labled productions is correct. 

Our experience with PS benchmarks indicates that programmers often rely on knowledge about 

conftict set resolution strategies when writing PS prograrns. This often manifests itself in the 

omission of important antecedents in productions that are cnabled but never selected to fire 

by a specific strategy. Now that our study has indicated that serializable systems offer g reat 

speed improvements, it is desirable to develop programming tools to help in lhe specification 

and verification of a wider range of serializable PS programs. 
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