
VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 367

ANDES: a Tool for Evaluating Parallel
Systems

João Paulo Kitajima
Departamento de Ciência da Computação

Universidade de Brasília
Campus Universitário- Asa Norte
70910-900, Brasília- DF - Brazil

e-mail: ki taQguarany. cpd . unb . br

Brigitte Plateau
LMC-IMAG-INPG

46, avenue Félix Viallet
38031- Grenoble CEDEX 1- France
e-mail: Brigi tte. PlateauQimag . f r

Abstract

This paper presents the ANDESenvironment, a tool for supporting
the performance evaluation of parallel systems. ANDES is structured
as a modular tool. The parallel program, the parallel computer and
the strategies used for implementing the software on the hardware
are described separately. The interaction among modules occur when
using ANDES. This environment is employed during the early phases
of the software or hardware design. The evaluation technique currently
adopted is based on the execution of synthetic workloads. However,
ANDES can be used with other techniques that are compatible with
the information described inside each module. A first prototype of the
tool is running on a Transputer network. A more recent version runs
on a computer network supporting PVM (Parallel Virtual Machine).
ANDES was used to compare different mapping algorithms.

368 XV Congresso da Sociedade Brasileira de Computação

1 Introduction

It is alrea.dy well established the importance of parallel processing in the
search for computational power and also as a new way to solve problems.
Parallel algorithms, parallel languages, parallel operating systems and pa­
rallel computers are available in order to make this parallel processing real.
However it is necessary to constantly evaluate this new technology in order
to improve it and to make it worthy.

This work concerns the performance evaluation of parallel systems. By
"parallel systems", we mean a parallel computer executing a parallel program
(i.e., a parallel workloaá). There are severa! methodologies and techniques for
the performance analysis of such systems. There are also different moments in
the life cycle of a parallel program development when performance evaluation
is necessary. Therefore, we restrict the scope of our research.

First of ali, it is intended to evaluate the performance of parallel programs
during the design phase. In other words, we want to predict the performance
of these programs, before coding them. We believe that the implementation
of parallel programs (coding it, running it and obtaining results from it) is
an expensive task. In this way, the detection of performance "bugs" should
be avoided in the late phases of a parallel program life cycle. If the stress is
"prediction" then we work rather with models of parallel programs and with
models of parallel machines, as seen !ater.

Another characteristic of our work is the use of synthetic workloads as
the technique for obtaining performance índices. A synthetic workload is
also known as "exerciser" (8, 3]. lt uses effectively a computer, but no real
problem is solved. The a.dvantage of this approach is the realistic execu­
tion environment. The synthetic workloa.d executes on a real machine with
a real operating system or runtime system on it. The overhea.ds (e.g., sche­
duling, other users using the system) are real and not artificial or absent
as in other techniques, like analytical modeling and simulation. In general,
these overhea.ds are difficult to model and at the same time they influence
strongly the performance of the system. On the other hand, this approach
has drawbacks. One of them is the need of a real parallel computer. During
the 80's, the availability of a parallel machine was not trivial. However, with
the growing of Internet and the development of standard communication li­
braries (e.g., PVM - Parallel Virtual Machine (9]), this problem has been
minimized. Another drawback is the absence of control of the overhead. It
is difficult, even impossible, for example, to increase the quantum of the
multiprogramming or to reduce in a controlled fashion the interference of
the operating system. There are also some restrictions imposed by the used
parallel machine (the target computer). If there is only one target parallel
computer, it can be difficult to evaluate the performance of a program on a
parallel machine different from the target one. If we can evaluate different

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 369

parallel programs, we would like also to evaluate different parallel compu­
ters. To minimize this problem, emulation is done. To emulate a parallel
computer or a parallel operating system corresponds to modify some charac­
teristics of the parallel program, of the machine and of the operating system
in order to rnimic a different computer. A typical example is the change of
the computation costs of a parallel program in order to emulate a parallel
computer with a processor having a different processing power if compared
with the processor of the target machine. This approach will be detailed
!ater. Although the synthetic approach is used, we would like to support
eventually other techniques for obtaining performance índices.

Another restriction in our work is the chosen paradigm of parallel pro­
cessing. Parallelism can be expressed and implemented in different ways.
The scope of this research is related mainly with message-passing parallel
computers. In the same way we want to support different evaluation techni­
ques, we intend to evaluate different types of par aliei systems too. However,
stress is done on message-passing programs running on distributed memory
multiprocessors (5). Nowadays, this is a strong trend towards research in
parallelism.

Taking into account the considerations above, our goal is the development
of a computer-aided environment for performance evaluation of parallel sys­
tems. This environment is called ANDES and it is based currently on the
execution of synthetic parallel workloads. In the next section, we present the
structure of ANDES. After the structure, we present the methodology to im­
plement it. A current version of the environment is presented. We hope that
this work should be useful. In order to achieve this, we use the environment
to compare static mapping strategies. Some results are presented. Finally,
we analyze the research effort and give perspectives to our work.

2 Global Structure of ANDES

The structure of ANDES is modular and it is based on models of para.ilei
programs and models of parallel machines. Taking into account that we
work at the prediction levei, the parallel program is not yet implemented.
The target parallel machine is real, but we have seen that eventually this
par aliei machine would emulate a different multiprocessor. Therefore, models
are still important when describing the emulated parallel machine. Finally,
there is a module where the implementation strategies are described. These
strategies may be static like mapping or dynarnic like load balancing.

370 XV Congresso da Sociedade Brasileira de Computação

2.1 Modeling the parallel program

The parallel program is modeled as an annotated DAG (Direet Aeyelie
Graph) ealled DG-ANDES. The nodes of this graph represent the compu­
tations to be done. An are of the DG-ANDES represents the precedence
between the nodes eonnected by it. Eventually this are models a communi­
cation between these nodes. By the fact we want to employ the DG-ANDES
graphs in a performance evaluation environment, it is necessary to quantify
their needs in terms of computation, memory and communication resourees.
Therefore, we add costs to the nodes and to the ares in order to quantify
the needs of the parallel program. Computation and memory costs are as­
sociated to the nodes. Communication eosts are associated to tbe ares. Tbe
computation costs can be expressed in MIPS (millions of instructions per
second) or MFLOPS (millions of lloating point operations per second). Me­
mory and communication costs are expressed in by.tes. Considering that we
are interested in evaluating message-passing programs, tbe communication
costs are often associated to message sizes.

With a DAG structure and with costs, it is possible to model quantita­
tively deterministic parallel programs. However, there are nondeterministic
programs too. These programs, for example, contain loops whose limits are
not known before executing the program: these loops are data-dependent.
Another example is the existence of decision structures like i f and swi tch
structures [4]. It is not possible to model exactly these situations. We cannot
even know ali the possibilities of data inputs because these possibilities can
explode combinatorially. The solution adopted to this problem is to work
with probabilities and with dependent costs. A cost can be a constant, if we
know exactly the load, random in the case where the load can be modeled by
a random variable and dependent when the cost depends on another cost or
characteristic of the graph. For example, if we know the distribution of the
limits of a loop, this computation structure can be modeled quantitatively
using random variables. Often also, a task computation cost depends on the
size of input messages. In this case, we ean use dependent costs.

Another eharacteristic of the DG-ANDES is the possibility of modeling
different relationships between connected nodes. As a matter of fact, a com­
putation node is decomposed in three "logics": a computation logic, an input
logic and an output logic. The computation logic has computation costs as­
sociated to it. The input and output logics are related with communications
and the relationships between computation nodes. The input and output
logics have descriptors which define a relationship pattern. A descriptor can
be simple, boolean or global. A simple descriptor eharacterizes a computation
node with one input and/or one output. A boolean descriptor characterizes
a pattern of activation of inputs and outputs. For example, an and output
means that ali the successors of a computation node should be executed. On

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 371

the other hand, an or output models a decision. If there are only two or
outputs, one models the "true" possibility and the other· models the "false"
possibility. By the fact we are working with models, exclusive probabilities
(summing up to 1 or 100%) are associated to each output. A global input or
output is associated to global communications like broadcast. A broadcast
output works as a boolean and logic, but the passing data are the same for
ali outputs. Global communications often occur in parallel programs and we
believe important to model them.

Finally, it is possible to build hierarchical DG-ANDES where a compu­
tation logic can be exploded in another DG-ANDES. This feature should
be employed carefully in order to make compatible the inputs and outputs
between different leveis of the hierarchy. Hierarchical models can be useful
when developing the model and when evaluating different granularities of the
parallel program.

A DG-ANDES is described textually using the language ANDES-C. This
language is indeed a library built on standard C (4). This library supports
the construction of annotated direct graphs through procedures. A new
type, Node, is defined in order to model a computation node. A Node object
is composed by some "attributes" like input, computation and output logics,
costs and probabilities. The attributes can be accessed by procedures. The
generated program (using ANDES-C) is then compiled and a workload is
generated.

2.2 Modeling the parallel architecture

The parallel architecture model is the other module inside ANDES. This
module allows the user to model quantitatively a parallel machine on which
the modeled program should execute. The data contained in this module
are related basically to the structure and behavior of the modeled parallel
computer added with eventual overheads generated by an operating system
executing on this architecture.

The structural data are:

• for the processors: number of processors;

• for the communications: topology of the communication network;

• for the memory: size of principal memory on each processor;

• for the inputjoutput devices: number of devices.

Th~ behavioral data are:

• for the processors: processing power in MIPS and MFLOPS, scheduling
overhead;

372 XV Congresso da Sociedade Brasileira de Computação

• for the communications: link bandwidth and communication models
(latency in function of the message size, distance and average charge
of the communication media) , routing strategy;

• for the memory: access time (write/read);

• for the inputjoutput devices: inputfoutput !atendes in function of the
distance, data size and charge.

These data are furnished to the target parallel machine (i.e. the available
parallel machine). The target machine changes its own parameters in order
to emulate a different parallel machine. This emulation is based mainly on
modifying the basic parameters of tbe models. These changes should answer
questions like "How much should the original message sizes be modified in the
parallel program model in order to emulate a communication network twice
faster than the communication network of the target machine"? Or "How
should we change the dummy synthetic loops in order to emulate a faster or
a slower machine"? This emulation is not trivial. It can be observed that
changes can be done in the parallel application model, in the hardware of
the target computer or in the target operating system in order to emulate
the parallel computer described in this module.

2.3 The implementation strategies

The implementation strategies are related to ali the necessary tasks, execu­
ted by the designer, by the operating system o r even by the target par aliei
machine, to allow the implementation of a parallel program on a parallel com­
puter. The typical strategies are those performing mapping or scheduling.
Mapping is characterized by the choice of a processor to execute a task of the
parallel program, according to a criterion. This criterion can be, for example,
the execution time. In this way, the best mapping corresponds to the task
allocation which gives the fastest execution time for the whole prograrn. The
scheduling is a similar problem, but more complex. It defines where (i .e.,
which processor - as in the mapping problem) and when the tasks should
be executed on each processor. This temporal problem can be also viewed
as defining an execution order of tasks on each processor. These problems
can be solved statically, i.e., before the execution of the parallel prograrn or
dynamically, i.e., during the execution of the parallel program. The dyna­
mic scheduling and mapping are also known generally as "load balancing"
or "load sharing". The dynarnic strategies are better in theory because they
solve the allocation problem according to the actual charge of the system.
Also, these strategies are better adapted to the nondeterminism of the appli­
cations. However, they are expensive in time and space and often they hide
the benefits of the parallelism. More than expensive, these strategies are in

VII Simpósio Brasileiro de Arquitetura de Computadores · Processamento de Alto Desempenho 373

general very complex. On the other hand, the static strategies can be very
fast to be executed, but they are less precise. Inside ANDES, these strategies
are "black boxes" that can be changed. Only the interface should be defined
between the mappers/schedulers and ANDES.

2.4 Putting ali the modules together

How the modules described above interact with each other inside the envi·
ronment ANDES? The Figure 1 presents the modules and their interaction
in order to generate a synthetic workload to be executed by a target parallel
machine.

workload

description

machine
model

c

1--....!!.-7---.l.----! implemen­
tation

strategies

A

worldoad + mapping

ANDES-Synth

parallel target machine

Figure 1: The structure of ANDES.

As we have seen, the quantitative model of the parallel program (i.e., the
workload) is a C prograrn that is compiled and executed. In this stage, some
program costs can be modified in order to refiect a different architecture of
the target machine. These changes are naturally based on the parameters

374 XV Congresso da Sociedade Brasileira de Computação

of the modeled parallel computer. Thls interaction is represented by the
ares A. The static implementation strategies need also information about
the parallel program and the parallel machine. This fact is represented by
the ares B . The execution of the C program generates a synthetic workloa.d
which is mapped (or scheduled) on the modeled parallel machine. ANDES­
Synth is the kernel program, executing on the target machine, that executes
synthetically the workloa.d. This execution can also be controlled in order
to emulate a different machine parameter (are C). The synthetic execution
produces traces that can be analyzed and visualized for performance analysis.

3 Implementation of ANDES-Synth

The current implementation of ANDES-Synth executes on the target machine
Méganode composed of 128 Transputers interconnected by a reconfigurable
network [6]. A newer version is available on target machines using PVM
(Parallel Virtual Machine), a standard and portable communication library.
However, the description presented in this session is related to the Transpu ter
version.

3.1 The general scheme

The parallel program models are described using ANDES-C. A benchmark
of parallel program models exists in order to allow a systematic performance
evaluation of classical parallel progra.J"Qs. The parallel machine model cor­
responds directly to the Méganode itself. In this first step of the research,
the problem of parallel machine emulation is not tackled. The model_ed and
the target parallel computer are the same. The implementation strategies
employed are the grouping and the mapping. Grouping is necessary in order
to make the directed DG-ANDES compatible and the undirected models ne­
eded by the mapping strategies. Two grouping strategies are used: a manual
grouping and an automatic one, done by PYRROS, a grouping program de­
veloped at Rutgers (10] . Static mapping is done using algorithms developed
in the APACHE project in Grenoble, France [1]. The grouped workloa.d (the
andes. data file) is then given to the synthetic execution manager which exe­
cutes the workload in a synthetic fashion. Traces are generated in an internai
format in order to be used for performance evaluation.

3.2 The structure of ANDES-Synth

The kernel of ANDES is the synthetic execution manager that runs on the
Transputer network. This manager is called ANDES-Synth. Roughly spea­
king, this kernel reads a file containing the DG-ANDES with the computation

VII Simpósio Brasileiro de Arquitetura de Computadores · Processamento de Alto Desempenho 375

and the communication costs plus a chosen map (the andes. data file), exe­
cutes the synthetic program corresponding to the andes. data file, and stocks
the performance data obtained during the synthetic execution.

3 .2.1 The structure of the manager

The synthetic execution manager is a SPMD (Single Program, Multiple Data
(5)) parallel program written in Inmos C using routing facilities provided by
VCR (Virtual Channel Router, developed at the University of Southamp­
ton (2)). There are two types of processes (Figure 2): one executing on the
root interface Transputer inside the host workstation (the root task) and
one executing on each Transputer of the network (the manager tasks). These
tasks (ali the manager ones and the root) are virtually completely connec­
ted, that is, there is a virtual communication channel between any pair of
processes.

G
&anager)

VCR

8
I

I
I

I
I

Eanager) __

'
'

message receiver

task
table

Figure 2: Process structure of the synthetic execution manager.

376 XV Congresso da Sociedade Brasileira de Computação

3.2.2 The root process

The root process reads the DG-ANDES plus the mapping information and
sends, to each manager process on the network, the information of the nodes
(tasks) of the DAG placed on the receiver manager process. In this way, each
manager has a partia! knowledge of the complete DAG. The root keeps the
processor identification of the DAG tasks which do not ha.ve predecessora.
After each network processor has received from the root processor ali the
informa.tion of the tasks pla.ced on it, the root process starts the synthetic
execution and measures time. This root process sends a. starting signal to
ali Transputers conta.ining DAG tasks with no predecessora. After this com­
munication, the root wa.its for a terminal signal from ali manager processes,
stops measuring time and receives from ali manager processes the charge
informa.tion.

3.2.3 The manager process

The ma.na.ger process is composed of two distinct pa.rts. The first one receives,
from the root process, the DAG informa.tion {computation and communi­
cation costs, number of predecessor tasks, number of successor tasks) and
put them into a. ta.ble (the T-Table). The second part consista in effectively
ma.na.ging the synthetic execution. lt is only sta.rted i f there are tasks placed
on the associated processor. This part is the kernel of the environment and
it is described in the following para.graphs.

Three types of (sub)processes are created just before mana.ging synthetic
execution (Figure 2):

1. a. message receiver process: this process receives ali the messages for the
tasks residing on the processor. When a. message arrives, this process
verifies the identifica.tion of the receiver DAG task. The local DAG
T-table is then consulted in order to check whether a.ll the incoming
messages for the receiver tasks have arrived. If not, the incoming mes­
sage counter is decremented, and the process wa.its for a. new messa.ge.
If yes, a. synthetic task execution is signaled (through a. local work
queue) to the synthetic execution process;

2. a set of synthetic execution processes: when a DAG task is to be execu­
ted, the message receiver process informs one of the synthetic execution
processes that a synthetic DAG task can be executed. This last process
loops for a specific amount of t ime defined by the application quanti­
ta.tive DAG and the out communica.tions are done. Opposite to the
reception of messages, there is not a process that manages the emission
of messa.ges: the synthetic execution process itself sends the appro­
priate rhessages to the successor DAG tasks. One important remark

VII Simpósio Brasileiro de Arquitetura de Computadores • Processamento de Alto Desempenho 377

is tha.t the number of synthetic execution processes is specified by the
user of the kernel. This pa.ra.meter is known a.s the "multiprogram­
ming degree", a.nd the higher is this degree, the more exploited is the
Tra.nsputer time-sha.ring capacity;

3. a.n idle process: this process runs only when no other process is running
(including the VCR internai processes). The idle process only incre­
ments a. counter. The final value of this counter is used to estima.te the
processor idle time.

The message receiver process a.nd ali the synthetic execution processes
runs on high priority, like the internai VCR processes. The idle process is
the only low priority process on a. network Tra.nsputer. The message receiver
process receives a. messa.ge, looks up the concerned ta.sk informa.tion in the T­
table (using direct access, no sequential nor bina.ry sea.rch is dooe) a.nd puts
the ta.sk id in a. local work queue in the ca.se a synthetic ta.sk should be exe­
cuted. It is expected that these activities do not take sigoifica.nt time of the
processor. On the other ha.nd, extreme ca.re ha.s to be taken when a. synthetic
ta.sk is executed in high priority. A synthetic ta.sk executing in high priority
is a priori not interruptible. In order to give the processor to other proces·
ses, reschedule instructions a.re interleaved in the synthetic loop executed by
the synthetic execution processes. In other words, a.t ea.ch x iterations of the
synthetic loop (which mimics a true computation), a ProcReschedule() is
executed. The current process is put at the end of the Tra.nsputer active
processes queue. The x pa.rameter ca.n be modified, but a. good value corres­
ponds approximately to the slice provided by the CPU when executing low
priority processes. In this way, a. forced rescheduling of synthetic ta.sks are
executed in order to ena.ble messa.ge treatment by VCR a.nd by the message
receiver process.

The end of the ma.nager process is achieved when no more DAG ta.sks are
to be executed. Ali the (sub)processes finish anda signal is sent to the root
process. Finally, the value of the counter incremented by the idle process is
sent to the root process in order to be stored for post-mortem treatment.

4 Application of the Environment

ANDES is then used in the evaluation of ta.sk mapping stra.tegies. In this
experimental approa.ch, the set of experiments described below ha.s been per­
formed. The sta.rting point is a benchma.rk composed of 17 models of pa.ra.llel
algorithms (DG-ANDES). This benchma.rk is derived from different sources
(the literature a.nd real benchma.rks). We hope tha.t it is representa.tive of
scientific computing. The models a.re of (1) the Bellma.n-Ford itera.tive a.lgo­
rithm for computing the pa.th length in a. graph; (2)-(5) 4 systolic dia.mond-

378 XV Congresso da Sociedade Brasileira de Computação

shaped computations; (6) a divide-and-conquer; (7) one-dimensional FFT;
(8) Gaussian elimination; (9) a generic iteration; (10) master-slave; (11)
master-slave followed by Gaussian elimination; (12)-(13) two partia! differen­
tial equation iterative algorithms; (14) a tree computation; (15) a quantum
dynamics algorithm; (16) the recursive Strassen algorithm for matrix multi­
plication, and (17) the Warshall algorithm for finding the transitive closure of
an adjacency matrix. For each program of this benchmark, some parameters
are considered important for performance evaluation: the number of groups
generated by PYRROS, the computation cost, the communication cost (and
the ratio communication/computation), the number of inputsfoutputs of a
group, its communication regularity (i.e., the mean time interval between two
externai communications of a group) and its virtual parallelism (the width
of the DG-ANDES). The target architecture is the Méganode configured as
a 4 x 4 torus.

Four greedy and two iterative mapping algorithms are evaluated: modulo
{i111 task on i modulo p processor, p is the number of available processors),
LPTF (Largest Processing Time First [1)), LPTF with a quantitative crite­
rion, LPTF with a structural criterion, one implementation of the simulated
annealing algorithm (iterative) and one implementation of the tabu algorithm
{iterative) [1). The starting solution for the iterative algorithms is given by
executing a greedy LPTF with a quantitative criterion. Four cost functions
are defined:

1. SUM: it considers an additive cost function (non-overlap of computa­
tion and communication);

2. MAX: it considers a maximum cost function (overlap of computation
and communication);

3. ROUT: it considers an additive cost function, but the communication
costs are multiplied by the distance between the two placed tasks;

4. TOR: it considera an additive cost function, but the communication
costa are obtained from a precise communication model of the target
machine.

Finally, the following índices can be obtained when using ANDES: the
value of the cost function of the final solution given by the mapping strate­
gies, the execution time of the mapping strategy, the execution time of the
synthetic program and the charge of each processor of the parallel machine.
We are interested fustly in the execution time of the synthetic program and
the related speedup (ratio between the total sum of the computation costa
of the DAG tasks and the measured execution time). The speedup is used
for comparing the different synthetic loads associated with the benchmark.

VII Simpósio Brasileiro de Arquitetura de Computadores • Processamento de Alto Desempenho 379

The quality of the cost functions is assessed through a. linear regression
between the cost function values (obta.ined when executing the ma.pping al­
gorithms) a.nd the real execution times. The best cost function is tha.t whose
obta.ined values are near of the real execution times. The Ta.ble 1 presents,
for each cost function, the regression slope a.nd the correla.tion coeffi.cient. It
is clear that the best cost function is TOR (slope dose to 1).

ADD MAX TOR ROUT
slope 1,213 1,620 1,185 1,636
linear correlation coeffi.cient 0,923 0,894 0,907 0,947

Ta.ble 1: Linear regressions for cost functions.

The practical (in opposition to the theoretical) evalua.tion of the ma.pping
stra.tegies is done through a.n experimental process. For each model of the
benchrnark (17 models), three different communica.tion-computa.tion ratios
are considered (therefore 17 modela x 3 ra.tios). Six ma.pping stra.tegies
a.re a.pplied (4 greedy algorithrns a.nd 2 itera.tive methods). In this wa.y, we
ha.ve 17 x 3 x 6 experimental values. Each one of these experimental values
corresponds to the a.vera.ge execution time of a sample of 100 executions.
With this sample size, the obta.ined a.vera.ges are accura.te.

From the experiences, we got some global conclusions:

• the best cost function is TOR which models the qua.ntita.tive beha.vior
of the VCR routing scheme;

• the communication-computa.tion ratio has a. strong influence on the
speedup. This is verified through the obta.ined linear correlation coef­
ficients a.mong the different para.meters of the benchmark models;

• the communica.tion regularity has a. wea.ker influence on the speedup
but remarka.ble;

• the best ma.pping strategies are those which consider the communica­
tion a.nd computa.tion costs of the tasks (LPTF with a. qua.ntita.tive
criterion a.nd the two itera.tive algorithms). The improvement of the
itera.tive algorithms on the greedy algorithms is not remarka.ble. We
think tha.t this is due to the regularity of the graph of groups. If the
gra.ph is regular, the pa.irwise excha.nge done by the itera.tive algorithms
ma.y not improve the cost function because the groups are equivalent;

• the models with a. very high or a. very low communica.tion-computa.tion
ra.tio "smooth" the beha.vior of the ma.pping stra.tegies. Too much com­
munica.tions imply a. very loa.ded network. Even the most "intelligent"

380 XV Congresso da Sociedade Brasileira de Computação

algorithms are not able to manage the high congestion in the parallel
system. On the other hand, too little communications imply that any
load balancing strategy is good enough.

5 Conclusions and Perspectives

ANDES is a performance evaluation tool based on synthetic programs and
was developed initially for support of the evaluation of different mapping
strategies. The tool is being used intensively in order to acquire knowledge
o(the strategies behavior. The goal is to obtain some rules of thumb about
the choice of the best mapping strategy given a specific par aliei program anda
specific parallel architecture. However, ANDEShas been designed for a wider
use. Other implementation and execution strategies can be evaluated like
scheduling and load balancing, implying a change of the synthetic execution
manager.

The choice of the synthetic approach was done in order to take into ac­
count the real overheads of the execution of a parallel program on a parallel
machine. These overheads (for example, those associated with the commu­
nication system of a multiprocessor) are sometimes difficult to model when
using analytical and simulation models. In this way, ANDES allows per­
formance evaluation at the model levei, but with some realistic (or almost
realistic) components. This experimental approach is rather new, conside­
ring that normally mapping strategies are compared according to different
values of the cost function [7].

Future work is planned. ANDES currently runs on a Transputer ma­
chine. It will be ported on the IBM SP-1 multiprocessor. With the SP-1
version, mapping, scheduling and load balancing strategies will be evalua­
ted. A toolbox of the best strategies will compose the kernel of the parallel
prograrnming environment currently being developed inside the APACHE
project. This environment is based on Athapascan, a programming language
based on Remote Procedure Calls. Later, ANDES will be used inside this
programming environment as a tool used for performance prediction. With
the version on the SP-1, ANDES models will be described using C++ (ins­
tead of C, as done today). This language seems to be more adequate to
model objects like tasks. C++ will also be used to describe machine models.

A cknowledgements

Méganode is a Telmat trademark. Transputer is an Inmos, Inc. trademark.
The ANDES project is supported by the CNRS, INPG, PRC C3 , MESR,
CNPq/Brazil and the Rhône-Alpes Region.

VII Simpósio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 381

References

(1) Pascal Bouvry. Placement de Tâches sur Machine Paraltele à Mémoire
Distribuée. PhD thesis, Institut National Polytechnique de Grenoble,
1994. Directeur de thése (advisor) : Denis Trystram.

(2) Mark Debbage, Mark B. Hill, and Denis A. Nicole. The Virtual Channel
Router. Transputer Communications, 1(1):3- 18, August 1993.

(3) Raj Jain. The art o f computer systems performance analysis: techniques
for experimental design, measurement, simulation, and modeling. Wiley
Professional Computing. John Wiley and Sons, New York, 1991.

(4] Brian W. Kernigha.n a.nd Dennis M. Ritchie. The C programming lan­
guage. Prentice-Hall Software Series. Prentice-Hall, Englewood Cliffs,
second edition, 1988.

[5) Ted G. Lewis and Hesham El-Rewini. Introduction to Parallel Compu­
ting. Prentice-Hall International, Englewood Cliffs, 1992.

(6) Denis A. Nicole. ESPRIT project 1085: reconfigurable Transputer pro­
cessar architecture. In C. R. Jesshope and K. D. Reinartz, editors,
CONPAR88, pages 81- 89, Cambridge, 1989. British Computer Society,
Cambridge University Press.

(7) Michael G. Norman and Peter Thanisch. Models of machines and com­
putation for mapping in multicomputers. ACM Computing Surveys,
25(3):263- 302, September 1993.

(8) D. A. Poplawski. Synthetic models of distributed memory parallel pro­
grams. Technical Report ORNL/TM - 11634, Oak Ridge National La­
boratory - Martin Marietta, ORNL - Oak Ridge, Tennessee 37831 -
USA, 1990.

(9) V. S. Sunderam, G. A. Geist, J . Dongarra, and R. Manchek. The PVM
concurrent comput ing system: evolution, experiences, and trends. Pa­
rallel Computing, 20(4):531- 546, April1994.

(10) Tao Yang and Apostolos Gerasoulis. PYRROS: static scheduling and
code generation for message passing multiprocessors. In Proceedings of
the 6th ACM International Conference on Supercomputing, pages 428-
437. ACM, July 1992.

