
VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 399

Influence of overhead on processar allocation for
multiple loops*

M. D. Gubitoso S. W. Song

Universidade de São Paulo
Instituto de Matemática e Estatística

R. Matão, 1010, CEP 05508-900 São Paulo, SP, Brazil
e-mail: {gubi,song}@ime.usp.br

Abstract

We consider two consecutive and independent forall loops and the strategy to
allocate processors for their execution. One strategy is to execute each of the two
loops consecutively, each time with all the available processors. Another strategy is
to execute both loops simultaneously, each with a fraction of the available processors.
We verify that the presence of overhead can influence this strategy, since the second
strategy implies the use of a smaller number of processors for each individual loop,
reducing t hus the effect of the overhead. We establish conditions under which the
second strategy is better. Finally we consider the special case when there is a single
forall loop. We show conditions under which it is more advantageous to split it
into two smaller loops and execute them simultaneously, each with a fraction of the
available processors.

1 Introduction

In this paper we address the problem of allocating a total of n processors to the execution
of two consecutive and independent fora/1 loops, so that the execution time is minimized .
This seems to be a simple problem. However, in the presence of overhead, it is not clear
whether we should simply execute one loop after another, using ali the proc~sors for each
of the loops, or partition the processors in to two parts to execute both loops simultaneously.
These two strategies will be referred to as the consecutive execution and the simultaneous
execution strategies.

We show that the presence of overhead can influence the choice of the more suitable
strategy. This is so because the simultaneous execution of t he two loops implies the use
of a smaller number of processors in each individual loop, reducing thus the efect of the

•supported by FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo)- Pro c. No. 93/0603-
1, 94/4544-2, 95/0767-0 and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico) -
Proc. No. 523112/94-7 and PROTEM 11, and Commission of the European Communities through Project
ITDC-207.

tJFRG S
INSTe- . ·· ,-: ~--._,,f TlCA ! .. .': "d.-\

biôLiOTECA

400 XV Congresso da Sociedade Brasileira de Computação

overhea.d. We will establish conditions under which the simultaneous execution strategy is
better.

We also consider the special case when there is a single forallloop. We show conditions
under which it is more advantageous to split it into two smaller loops and execute them
simultaneously, each with a fraction of the available processors.

Our work is motivated by the works of Flatt and Kennedy(5, 6). Note that the use
of an increasingly larger amount of processors could initially decrease the t ime to solve
a problem. However, after some point, the use of too many processors could even take
longer time than that required by a smaller number of processors(1, 5, 6, 8, 10). This led
Flatt and Kennedy to examine the problem of finding the number of processors that would
result in the smallest execution time. Other related works concerning the performance of
parallel systems and number of processors include [3, 4, 7]

In the next section we state the problem to be considered. In Section 3 we reproduce
some preliminary results. In Section 4 we present the two execution strategies and establish
conditions to choose the one with the smaller execution time. We consider cases without
and with overhea.d. In Section 5 we consider the particular case of one large single forall
loop. Again we give conditions to choose the better strategy. Finally in Section 6 we give
concluding remarks.

2 Statement of the problem

We consider the problem of allocation of n processors to execute two consecutive indepen
dent forall loops.

forall i = 1 to m 1 do
begin

endi

statement S1 i
statement S2 i

statement S.

forall i = 1 to m2 do
begin

end

statement R. i
statement R2i

statement Rr

We assume that the two forall loops are independent. Therefore any of the two loops
can be in principie be executed first, or both loops can be run simultaneously.

VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 401

One way is to allocate ali the n processors to execute the first loop and then the same
n processors to execute the second loop.

Alternatively, we can divide the n processors into two groups of n1 and n2 processors
each,

n = n1 +n2,

and run the first Joop with n 1 processors and the second loop with n 2 processors, simulta
neously.

One particular case of this problem is the following, with a single forallloop .

fora!! i = 1 to m 1 + m2 do
begin

end

statement S1 ;

statement S2;

statement sk

Obviously, any single forall loop can be viewed as two consecutive and independent
forallloops. Thus a solution to the original problem will be useful to this particular case
of one single forallloop. As we shall see, it is sometimes more advantageous to consider a
single forallloop as two smaller forallloops and run both simultaneously with n 1 and n2

processors, respectively.

3 Preliminary results

The motivation of our study is the papers by Flatt and Kennedy[5, 6]. They present a
kind of updated version of Amdahl's model or "law" [2], by including overheads. Their
model views the sequential time (t,.9) to solve a problemas composed of two parts: one
part must be executed on a single processor (t.) and another part could be executed in
parallel with two or more processors (tp)·

t,.q = t, + tp.

Flatt assumes that, in general , a parallel application can have its execution time viewed
as the sum of three parts. One partis purely sequential (to be called sequential component
t,), one partis perfectly parallel that varies inversely with the number of processors (tp/n)
and a third partis the overhead that depends on n (t0 (n)) . The total time, as function of
the number of processors n, is therefore,

t
t(n) = t, +...!. + t 0 (n).

n

The speedup is defined as

402 XV Congresso da Sociedade Brasileira de Computação

s - t •• q
n- t(n)

If we ignore overhea.d, Sn is monotonically increasing, and for large n its growth is
linear. However, taking into account the natural supposition that t0 (n) increases with n,
Sn should have a maximum.

Through a study of performance/cost, Flatt and Kennedy suggest an "ideal" value for
the number of processors to be utilized. This number is, in general, much smaller. than
the one that gives the maximum speedup. The idea is that after a certain point, a great
increase in the number of processors is needed to get a marginal gain on the speedup.

This fact of using a subset of processors for a certain task instea.d of ali of the processors
suggests a solution to our proposed problem, which we will now elaborate.

In the next section we consider the case of two consecutive and independent forall loops.
We present conditions under which they should execute simultaneously, each one with a
fraction of the available processors. This study will be done in two cases: with or without
overhea.ds.

4 Execution strategies and times

Given the problem of Section 2, we can consider two possibilities.
(a) Execute each of the two loops consecutively, each time with all the available pro

cessors (to be referred to as the consecutive execution of the two loops), or
(b) execute both loops at the same t ime, each with a fraction of the available processors

(to referred to as the simultaneous execution of the two loops).

We consider each situation with or without overhead. Thus we have four distinct
situations. For each of the four situat ions, we present the condition of minimum execution
time.

We assume that the machine possesses n processors and we wish to make use of ali of
them. In the case of simultaneous execution of both loops, we assume the following.

em processors will be used in the first loop and
f3n processors in the second loop, with /3 = 1 - Q.

The time of each loop is given by

t;(n) = t., +to,(n) + tp, ,i E {1,2}.
n

In a "pure" forall loop, we ignore the sequential component (t., = 0). In general, we
assume the existence of a sequential component for our analysis.

4.1 Cases without overhead

In this case the execution time is

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 403

t
t(n) = t, + 2

n

(a) Consecutive execution of the two loops, each time with ali the n processors.

This case is the usual option[9). The total time when the loops are executed one after
the other is given by:

T = t~ t~
I t,, + - + t, 2 + -

n n
t + t = t + t + Pl ~

•1 •2 n (1)

(b) Simultaneous execution of the two loops, each with a fraction of the available processors.

We h ave the following1
:

Tu = max (t., + ;~, t,2 + ;)
max (t 1(an), t2(/1n)) (2)

Without loss of generality, we consider

(3) --
The condition for the simultaneous execution (case (b)) to be more advantageous than

case (a) can be obtained by imposing T1;::: Tu:

tp, + t~ () t,, + t,2 + ;::: t1 an
n

that is,

Assuming t,
2
« ~. we can disregard the left hand side of (5), and we have

at~ ;::: {3tp,
a > tp,
p - t~

(4)

(5)

I We can even h ave a better time, se we use n - 1 processors during lt,, - t,,l and n processors after
min(t1(n), t 2(n)). We will not , however, consider this situation.

404 XV Congresso da Sociedade Brasileira de Computação

If tp, = t,., we have equality with o= {3.

We should be careful with the above analysis because (3) depends on the value of o.
Let us therefore calculate the minimum value of Tu for any o, satisfying (3).

According to (2) we have to consider the maximum of t 1 and t2. t 1 is a monotonically
decreasing function in o, with minimum in o= 1, on the other hand, t 2 is monotonically
increasing in o. lgnoring the limit cases where t 1(n) > t2(l) and t2(n) > t1(l) , the
minimum is found through the equality of the two times:

In the particular case where t., = t.,, o for the minimum time takes a simple value:

tp,
o=--=-

tp, + t,.

and we can verify easily that the minimum time is equal to the sequential component.
Under this situation it is indifferent to use one strategy or another. This is true for the
case for the perfectly parallelizable forall (t.; =O). This is not true, however, when there
is a difference between the sequential components.

4.2 Case with overhead

We use the same kind of analysis for the case with overhead. The consecutive execution
time is

() tp, () t,. T1 t., + to, n + - + t,2 + t02 n + -
n n

() ()
tp, + t,. = t., + t., + t01 n + t 02 n + -'-'--~

n
(6)

To calculate the simultaneous execution time, we consider that ali the processors are
used (a+ {3 = 1), though in some cases it might be better to use a subset of the total, due
to the overhead.

Thus we have:

Tu max(t., +to,(on)+ ;~, t.,+t02 ({3n)+ ;) (7)

= max(t1(on), t2({3n))

We can assume, without loss of generality, that

t1 (on) 2:: t2({3n).

Simultaneous execution will be better when T1 2:: Tu:

VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 405

t > l 01 (on) +...!!..
on

t,, - o(t,, + tl'2)
~ on

(8)

Let us make the natural assumption that the overhead increases with n. Observe
immediately that the left side of the inequality (8) increases with n while the right side
decreases, for any o. The conclusion is that, if overhead is increasing, inequality (8)
is always verified for a sufficiently large number of processors. Therefore, under such
conditions, simultaneous execution of the two loops each with a fraction of the processors
is always better than the usual consecutive execution.

5 Particular cases

It is interesting to analyze the inequality (8) with particular overhead models and verify
the case of one large forall loop (as seen in Section 2). Let us examine some overhead
models.

5.1 Constant model

This is the simplest overhead model. Overhead does not vary with the number of proces
sors. Notice that in this case the observation at the end of last section does not apply.

Let us rewrite (8), using t01 (n) = t 0 1(on) = t0 , and t02 (n) = t.,, we have the condi t ion
that favors simultaneous execution.

t > tp,-o(t,,+tl'2)_t
.,_ on 32 (9)

Recai! that we are assuming T1 ~Tu. We have found a lower bound for the overhead
of the faster loop with the chosen distribution of processors. Obviously we can consider
the inverse problem and find o such as to satisfy (9), in an analogous way as in Section
4.1.

5.2 Linear model

In the linear model the overhead is t0 (n) = an + b. T his is a very used model, especially
when the overhead is basically due to communication.

The left side of (8) becomes:

t.2 + to,((l - o)n) + t02 (n) - b

Let us write T 01 (n) as a;n + b;. Since these parameters a; and b; in general depend on
the machine, we can assume a1 = a2 = a and bt = b2 = b.

406

Then

and (8) becomes

5.3 One single loop

XV Congresso da Sociedade Brasileira de Computação

t01 ((1- a)n) + t02 (n)
(2- a)an + 2b

As mentioned in Section 2, we consider the case of one single forall loop. We present
conditions under which il is better to split it into two smaller loops, of the same size, to
be executed simultaneously.

This problem makes sense i f there exists some kind of overhead, for instance, balancing,
acêess of data outside the processor, etc.

For such a loop we have:

t,, = t,. =o
tp, tP2
to1 to,

The inequality (8) becomes very simple:

t (1 - 2a)
2t0 (n) - to(an) ~ -'P....:.,_ _ _..:..

an

We see that even under the constant model, the left side can be greater than the right
side with a not too large number of processors.

6 Conclusion

We studied the case of two consecutive and indpendent forall loops and the strategy to
allocate processors for their execution. The two strategies considered are: (a) The consec·
utive execution strategy - execute each of the two loops consecutively, each time with ali
the available processors, or (b) The simultaneous execution strategy- execute both loops
at the same time, each with a fraction of the available processors.

We verified that the presence of overhead can influence the choice of the better strategy.
This is so because the simultaneous execution of the two loops implies the use of a smaller
number of processors for each individualloop, reducing thus the efect of the overhead.

When there is no overhead, there is no significant difference to choose one strategy or
another. In particular, under the situation where the sequential components of the loops

VII Simpósio Brasileiro de Arquitetura de Computadores · Processamento de Alto Desempenho 407

are equal, it is always possible to discover a partitioning of the processors to make the
consecutive and simultaneous execution times equal.

In the case of existence of overhead, we established conditions under which the simul
taneous execution strategy is better. For a sufficiently large number of processors, the
simultaneous execution is better.

We then considered the special case when there is a single forall loop. We show con
ditions under which it is more advantageous to split it into two smaller loops and execute
them simultaneously, each with a fraction of the available processors.

Note that the same approach can be used to analyze the more general case of k con
secutive loops.

References

[1) Adams, L. M. and Crokett, T. W. Modelling algorithm execution time on processor
arrays. Computer 17, No. 7, 38-43 (1984).

[2) Amdahl, G. M. Validity of the single processor approach to achieving large scale
computer capabilities. Proc. AFJPS Computer Conference 30, 483 (1967).

[3] Cytron, R. Useful parallelism in a multiprocessing environment. Proceedings of the
International Conference on Parai/e/ Processing, IEEE Computer Society Press, 450-
457 (1985).

[4) Eager, D. L., Zahorjan, J. and Lazowska, E. D. Speedup versus efficiency in parallel
systems. IEEE 1Tans. Computers 38, No. 3, 408-423 (1989).

[5) Flatt, H. P. Further results using the overdead model for parallel systems. IBM Journal
Res. Development 35, No. 5/6, 721-726 (1991).

[6) Flatt, H. P. and Kennedy, K. Performance of parallel processors. Parai/e/ Computing
12, No. 1, 1-20 (1989).

[7] Gustafson, J . L., Montry, G. R. and Benner, R. E. Development of parallel methods
for a 1024-processor hypercube.

[8) M. Lehman. A survey of problems and preliminary results concerning parallel process
ing and parallel processors. Proc. IEEE 54, 1889-1901 (1966).

[9) Polychronopoulos, C. D. Parai/e/ Programming and Compilers, Kluwer Academic Pub
lishers, Boston, 1988.

[10) Rosenfeld, J. L. A case study in programming for parallel processors. Comm. ACM
12, No. 12, 645-655 (1969).

