
VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 449

Performance Analysis of a Strategy to Distribute And-work
and Or-work in Parallel Logic Programming Systems

Inês de Castro Dutra·

CO PPE/Sistemas
Universidade Federal do Rio de Janeiro

Rio de Janeiro, Brasil
e-mail: ines@cos. ufrj.br

Abstract

T his paper studies the performançe of Andorra-I , a parallcllogic programmingsystem that
exploits and-parallelism and or-parallelism with a novel strategy to distribute and-work and or
work among processors. T he strategy, worl:-guided guides it.s decisions by looking at thc amount of
current and-work and or-work available in an application during execution. Thc schedulcr decision
strategy moves workers from onc parallel task to another according to the tasks sizes. Result.s show
that Lhe work-guided strategy works quite wcll and produces better result.s than the ones produccd
with a version of Andorra-! that does not a llow dynamic migration of workers during exccution.
We believe that this stratcgy can be applied to other parallel logic programming systems that aim
to exploit both and- and or-parallelism in a single framework.
Keywords: and-or scheduling, and-or parallelism, logic programming, parallelism, Andorra-I,
performance evaluation

1 Introduction

There are two main sources of parallelism in logic programming, namely or-parallelism
and and-parallelism. Or-parallelism is exploited when severa! alternative clauses to a goal
are executed in parallel. And-parallelism is exploited when two or more goals in the body
of a clause a rP. executed simultaneously. Exploitation of full or- and and-parallelism is
limited by the number of physical processors available in a. system. And-parallelism is also
limited by t he inte rdependente among goals.

When allowing and-goals to proceed in parallel, t he Jogic programming system needs
to choose what goal to select next. This job is usually done by a.n and-sclleduler. When
allowing severa! clauses to proceed in parallel, t he system needs to choose what a lternative
from whlch branch to select next. This task is usually performed by an or-scheduler. There
are severa.! and-scheduling techniques (14, 6, 20] implemented for scheduling and-pa.rallel
work in systems that exploit a nd-parallelism only, such as &-Prolog [13] and commited
choice la.ngua.ges systcms (7, 4]. There are a.lso severa.! or-scheduling techniques (12, 2, 19]
implemented in systems that exploit only or-parallelism such as the Aurora [15], Muse [1],
Delphl [5], and Opera (3] systems.

So far, only t he problem of and-scheduling a.lone a.nd or-scheduling a.lone have been
tackled by the parallel logic programming resea.rchers. Scbeduling both and-work and
or-work is a new and hard problem to be solved in parallel logic programming systems.
When allowing both kinds of parallelism to be exploited in a single framework, t he system
needs to dea.l with an extr a problem that is wha.t kind of work to choose from : and- or
or-.

· aesearcb supported by CN Pq, Brasilian Research Foundation under grant 202270/89.0. This work
was developed in t he Oepartment of Compu ter Science, Univcroity or Bristol, England

450 XV O>o~ do Sociol"" a,..;,,;,. d< O>mp'"<''

In figure 1 we show a tree that contains diffe.rent kinds of parallel work. ln this tree
we have severa! branches with choicepoints that cont ·n alternatives left open, and each
branch can produce some amount of and-work througl the execution of parallel and-goals.
The problem that arises is how to distribute the two different kinds of work among the
processors. For example, if the and-work in the left ar of the t ree is fine grained, it can be
a good strategy to allocate only one processar to this are and to allocate more processors
to expand the open altero atives located on the third are o f the tree. Moreover, only one
processar should be allocated to the task in the sec nd are. As ali solutions are to be
found , ali ares need to be expanded anyway, but the ay and the order they are expanded
will lead to an earlier or longer time to produce a so ution.

Figure 1: OtFFERENT KINDS OF WO K IN AN AND-OR TREE

This paper studies a dynamic strategy that s ·lves this problem in the context of the
Andorra- I parallel logic programming system [23, 6, 22).

Most scheduling strategies reported in the "terature are applied to scientific ap
plications that ha.ve a very regular task structur . Therefore most of the solutions are
static scheduler strategies. Our strategy is dyna ic and applied to irregular computa
tions. We implemented the strategy in the Andor a-I parallel logic programming system
and evaluated it by showing results for a wide ra e of applications.

In an ea.rlier work [8) we described brielly ti e first work-based strategy and showed
some results for a. very small number of processar and different applications. In another
work [9) , the work-guided strategy is compared th another scheduling strategy. In this
work we discuss the benefit of adding dynamic d stribution of workers in Andorra-I and
compare the performance of the old version of An orra-1 that does not implement dynamic
distribution of workers with the performance ach eved with the work-guided strategy.

The paper is organised as follows. Sectio 2 describes brielly the first version of
Andorra.-! that did not allow dynamic migra.tio of workers between and-work and or
work. Section 4 describes the work-guided strate heuristics used to guide the scheduler
in the new version of Andorra-I. Section 3 des ribes the applications uscd to test t he
stra.tcgy. Section 4.2 evaiuates the work-guided strategy and shows results produced for
a wide range of applications. Finally, section 5 raws some important conclusions of this
work and presents alternative solutions and fut re work.

2 Andorra-I in the Past

Andorra-I is a systcm tha.t exploits multiple ~ rms of parallelism. Systems that exploit
se,·eral forms of parallclism. such as Andorra-I. face a. new problem: how to tronsparently
mui efficienlly distribui e and-work and or-work hnt arise dynamically and irregularly dur
ing lht compulnlion of a progmm? By lrouspa nl we mean that t he systcm should exploit

VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 451

paralJelism without any user's intervention. By efficient wc mean to distribute both kinds
of work and achieve speedups dose to a possible optimal. By dynamic and ir·regu/ar we
mean thM the sizes and forms of parallelism vary with time.

Andorra-I is based on the Basic Andorra Model (21]. The Basic Andorra Model
assumes that goals that match M most one solution are to bc executed in parallel, and
that alternatives left open in the execution tree can be executed in parallel. Goals that
match at most one solution are called determinate goa.ls. In the Basic Andorra Model,
these goals are executed eagerly and in parallel. Andorra-I implements and-parallelism in
the same way as lhe JAM abstract machine [7], and it expoits or-parallelism in much the
same way as the Aurora or-parallel system [15].

The system is designed in a way that workers are grouped into teams. Each team
is composed of a master and some slaves. Workers in a team cooperate to share available
and-parallel work, while teams cooperate with each other to exploit or-parallelism. Before
ou r work, the user had to choose a fixed configuration of masters and slaves to exploit the
parallelism available. This brought three main drawbacks to the system:

• It was very inconvenient and difficult to use, and it was inconsistent with the aim of
exploiting parallelism implicitly.

• For most cases, the user would choose a configuration of workers that WCluld produce
results far from being optimal.

• Because of the varying nature of parallelism in some programs, the system would still
produce performance be.low the best achievable, even if the user could (somehow)
choose the best fixed configuration.

The main objective of dynamic dsitribution of workers is to distribute workers au
tomaticalJy between the two kinds of work available, and thus release the user from the
burden of having to adjust manually fixed configuration~ of masters and slaves in to teams.

ln order to achieve this goal, and hence make Andorra-! a practical system for the
user , there are at least t hree possible approaches. In the first approach we can use compile
time analysis of the programs for a certain set of queries (probably the most common) to
generate information about the best fixed configuration of masters and slaves that should
be used for that particular computation. In the second approach the work distribution is
decided at runtime. In the tlürd approach the work distribution is decided at runtime,
but guided by information generated through compile-time analysis.

The first approach has three main disadvantages:

• The fixed configuration is set forever in the beginning of the computation and never
changes. This may lead to loss of parallelism, since the parallelism varies along the
execution time.

• The process of collecting information about the amount of parallelism in a program in
order to find a suitable fixed configu ration of workers in to teams is very complicated
and sometimes does not produce the precise and expected results. First because the
computation of an application varies greatly with different queries and different sizes
of data. Second because some variable dependencies in the program are only solved
at runtime, which makes the task of generating precise or even useful information
more difficult.

• Usually, the process of obtaining useful information through compile-time analysis is
ve.ry slow, therefore the overall gain in running the application in a parallel system
may not be justified.

452 XVCongr da Sociedade Brasileira de Computação

The second approach seems to be better than th first one. Dynamic reconfiguration
allows the workers to react to the runtime system, d therefore gives a chance to the
workers to change its position according to events t at happen at runtime. It has also
some disadvantages. The first one is that dynamic str egies, in general, do not find global
optimums. However a fixed configuration would not ieve a global optimum either. The
second disadvantage is that we have the overhead of scheduling at severa! stages of the
computation. But as long as we keep scheduling o rhead costs and frequency of task
switchin~ low, this disadvantage is manageable.

The third approach, which is to combine a sta c schedule with dynamk schedul.ing
seems to be the best choice, as long as the static nformation can guide the dynamic
scheduling decisions whenever possible, and overhea sare kept low.

Although we think that the combination of ynamic plus static information is a
better choice to guide scheduling decisions, we cone ntrated only on the dynamic aspect
of the problem (leaving scope to static information be used), as the issue of generating
static information for the programs is a whole subje t by itself. In any case, as we believe
that static information alone is not sufficient to do good schedule, but totally dynamic
scheduling will suffice, we concentrated on the m · problem, that is to find a dynamic
solution for distributing work that varies dynamica ly.

A dynamic strategy not only solves the pro !em of making Andorra-I a practical
system, but can also allow the system to exploit ore parallelism from programs where
and- and or-parallelism vary with time. A very sim !e exarnple is a program whose search
tree produces and-parallelism in the beginning of the execution, say to set up a set of
constraints, and !ater produces or-parallelism to earch for a solution. No single fixed
configuration of reasonable number of workers (25 workers arranged in 5 teams would do
the job!) in to teams solves this problem optimall because the system should be able to
configure workers in order that they exploit and- arallelism in the beginning, and !ater,
work independently in each or-parallel branch.

3 About the Benchmarks

All programs used as the benchmark set were sei cted according to their degree of paral
lelism. One group of programs has predominant y and-parallelism, another has predom
inantly or-parallelism, another has both kinds f parallelism in different phases of the
computation, and another has both kinds of par llelism appearing at the same computa
tional phase.

Some of the benchmarks are specially wri ten to test t he reconfigurer. Others are
real applications used by companies or by aca emic people. The idea behind writing
special programs is to predict the behaviour of the reconfigurer and evaluate closely the
scheduling strategies.

A detailed decriplion of t he benchmarks an be found in [lO].

4 Andorra-I with the R econfig rer

4.1 Showing the Benefits of Dynami R econfiguring

Th(' work-guided strategy bases its decision; n a set of parameters: cost to redeplo~· a
worker to and-work. costto redeploy a worker o or-work. elifferent priorities to give work .
correction factor between and-work anel or-wo k. size of goals anel size of alternatives. We
made experiments for a wiele range of combi u:!d parameter values. In this chapter we
present results obtained with a single param ter setting that proeluced the bes1 results

VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 453

over ali benchmark set. Initial values for some of the parameters were taken from a
performance analysis of the Andorra-I system. A range of integer values greater t han and
lesser than those values were tried. Not ali combination of parameter values were tried as
this would lead to an infinite set of experiments. Our main conclusion for the pararneter
settings tried is that although, for some benchmarks, some variation of parameter values
can affect performance, we could choose overall one single set of pararneters that produced
good performance on all benchmarks. Some experiments with different parameter settings
can be found in [10]. More detailed study of variation of pararneters for ten processors
can also be found in [10] .

Another important pararneter is the starting configuration to run Andorra-I with
the reconfigurer. The starting configuration could have been obtained through compile
time analysis of the programs. But sometimes compile-time analysis would not be able
to infer any starting configuration due to the complexity of the problem. In that case we
would be back to the same problem of having to choose different configurations for each
computation. The reconfigurer, therefore, uses a standard initial configuration, which is
chosen to be a single team (i.e., a configuration that supports and-parallelism, but not
or-parallelism). This was an arbitrary choice, but as we will see !ater, this choice for
the starting configuration does not cause any impact on the performance, because the
reconfiguring overheads are very low.

In this section we intend to show the benefits of adding a reconfigurer to the Andorra
I system. Our objective is to show that Andorra-I with a reconfigurer is much more user
friendly, while achieving very good performance. In order to do that we compare t he per
formance of our reconfigurer with the performance achieved by different versions of the old
Andorra-I corresponding to different fixed configurations chosen. This method of compar
ing Andorra-I with the reconfigurer with the old version of Andorra-I seems reasonable,
since as we take real results produced in practice with plausible fixed configurations.

There is an infinite number of fixed configurations possible. We will lirnit ou r com
parison to tive plausible fixed configurations. As explained before, in Andorra-I, users can
specify the number of tearns and number of slaves to run a computation, where the slaves
are evenly allocated to each tearn. In order to allow the user to enter a more convenient
fixed configuration for ali numbers of processors we assume that the system provides a
formal way of choosing the configurations. In that case for a number of processors n
we will use the following formula, where we only have plausible user choices, assuming
a particular weight between and-parallelism and or-parallelism, and with teams having
approximately t he same size.

nP teams with n1-P workers each

The number p corresponds to the proportion of or-parallelism, i.e. the relative weight
we want to give to or-parallelism, and it is in the range O to I. We take the least integer
approximation for nP and n1- P, with n being the number of processors. lf there are any
remaining workers from the approximation to n l-p, they are allocated evenly as slaves to
the existing teams, until there are no more remaining workers. This formula, allows the
user to specify weights for and-parallelism and or-parallelism, and to use a single formula
for any numbers of processors.

We consider the following five plausible configurations:

l) give weight O to or-parallelism. In this case p =O. We have I team of n workers.

2) give weight O to and-parallelism. In this case I - p = O, and p = I. We have n teams
of I worker eacl1.

454 XV Co I d s . d d B ., . d Co I çã ngr~ISO a ooe a e rast etra e mpu a o

3) give equal weights to both and· and or-para.llelisD . In this case p = t and 1 - p = t·
In that case we can have :;fii teams with :;fii w rkers each.

4) give weight 2 to and-work and weight 1 to or-wo ~· In this case p = 5 and 1- p = ~
In that case we can have :;fii teams with ?'fi2 ' orkers each.

5) give weight 1 to and-work and weight 2 to or-wo k. In this case p = ~ and I - p = k·
In that case we can have ?'fi2 teams with :;fii orkers each.

Benchmarks Speedup with weightir g, p- J1 Speedup with
o * t ! 1 ll Reconfigurer

ndetdet 2.037 4.673 5.913 7. 71 8.487 9.831
mixed 0.980 1.920 2.642 3. 19 3.584 4.004
detndet 1.044 1.622 2.052 2. 87 2.032 3.157
bqu8 1.527 2.858 3.937 5. 87 7.516 4.474
chat 0.666 1.578 2.502 3. 66 7.334 7.034
cypher 1.147 2.164 2.875 4. 46 5.922 6.116
mutest 0.584 1.386 2.071 3 50 5.959 6.025
bqu6 1.499 2.562 2.940 3 132 3.137 2.920
flypan2 6.203 4.105 3.507 I 964 1.007 6.307
bt.cluster 6.002 4.353 3.947 1995 1.011 5.793
flypan4 5.079 3.725 3.305 I 947 1.062 4.961
scanner 5.009 5.460 4.992 4 087 3.226 5.414
road_markings 4.887 3.452 2.479 1 790 0.965 4.269
bcnet 3.226 3.763 3.336 .767 2.033 3.942
crossll 2.666 1.647 1.615 .669 1.112 2.917
flypan5 2.629 2.878 2.506 .139 1.335 3.382
cross6 2.529 2.260 2.095 .342 0.964 2.260

11 H.mean 1.656 2.505 2.787 1-574 1.836 11 4.258 11

Table 1: ANDORRA· I IN THE PAST X ANDOR · I WITH TIIE RECON FIGU RER, AT I 0
WORKERS

As an example, for 10 workers, the system ould set a configuration of a team with
10 masters for weighting 1, 1 team of 1 master nd 9 slaves for weighting 2, 3 teams of
three masters with the first master having thr~ slaves and the two remaining masters
having two slaves each for weighting 3, two tea s with 2 masters with 4 slaves each for
weighting 4, and 5 teams with 5 masters with 1 slave each for weighting 5. The size of
the teams for different choices gives the desired balance to exploit and-parallelism and
o r· para.llelism.

Table 1 shows speedups achieved at 10 pr cessors with the plausible fixed configu·
rations, and the speedups achieved with the rec nfigurer. The five middle columns of the
table give the speedups of the benchmark set fo r the five plausible fixed configurations, in
increasing oróer of p. The column Reconfig giv s the speedups achieved by the reconfig·
urer. Shaded rectangles show the best speedups chieved at different fixed configurations.
T he benchmarks are presented in the following rder: artificial programs, programs that

VII Simpósio Brasileiro de Arquitetura de Computadores· Processamento de Alto Desempenho 455

contain predominantly or-parallelism in decreasing arder of arnount of or-pa.rallelism, and
progra.ms tha.t contain predominantly and-parallelism, in decreasing arder of arnount of
a.nd-parallelism. The last row of the ta.ble shows the harmonic mea.n over ali speedups. The
reason for using the harmonic mea.n in this context is to find a.n overall mean performance
for ali benchmarks, giving equal weight to ea.ch individual benchma.rk.

For our benchma.rk set, despite the fact tha.t we ha.ve reconfiguring overheads with
the work-guided stra.tegy, the work-guided stra.tegy is consistently dose to or better than
the best of the five fixed configura.tions. The reconfigurer reaches a.n overall result tha.t is
a.round 55% better (~ 1.5 times f as ter) tha.n the best result produced with a. single fixed
configura.tion (which is given by the choice equal weights to both a.nd- a.nd or-parallelism).
It is interesting to note tha.t p = ~ gives the best performance overall for the old Andorra-I,
but is not the best individually for a.ny of the benchmarks.

From the figures shown in ta.ble 1, we ca.n summa.rise the following:

• For computa.tions tha.t contain or-pa.rallelism only, chat a.nd mutest, the reconfigurer
performs similarly to a. fixed con.figuration of n tearns with one worker ea.ch (choice
of user 1), which mea.ns that the overhead of reconfiguring slaves into masters is
negligible.

• For computations that contain and-parallelism only, bt_cluster, the reconfigurer
performs sirnilarly to a fixed configuration of workers in a. single team (choice of user
2), which means that there was no overhead for reconfiguring during the computa
tion.

• For computations with high degree of parallelism a.nd distinct phases of computation,
and-parallel and or-parallel phase, despite the reconfiguring overheads, the work·
guided strategy performs similarly or better than the fixed configurations. This is
shown for computations ndetdet, detndet, flypan2, a.nd flypan5.

• For computations that contain mainly one form of parallelism, but with small a.mounts
of the other form, sometimes the work-guided strategy does not perform so well as
one of the fixed configuration. This is shown for computations bqu8 and road.markings.
The difference is very signilica.nt for bqu8. In other cases, as for mixed, cypher,
flypan4 a.nd scanner, the performance obtained with the reconfigurer is compara.
ble with Andorra-I without the reconfigurer.

• For computations with a low degree of parallelism, e.g. bcnet and cross11, the
reconfigurer performs slightly better than any of the fixed configurations. For others
like bqu6, one of the fixed configurations performs slightly better.

In summary, we can condu de that Andorra-I with dynarnic reconfiguration is overall
far better than any single fixed configuration, and even on individual benchmarks is gen·
erally better than any fixed configuration that the user might plausibly choose. Moreover,
this was achieved automatically without any user intervention.

4.2 Performance Evaluation of the Work-Guided Strategy

After showing that Andorra-I with the reconfigurer performs much better tha.n Andorra-I
without the reconfigurer, in this section we intend to evaluate how good is the performance
of the work-guided strategy compared with the best performance we rnight hope to a.chieve.
This study is very importa.nt, since we are not only interested in showing the benefits of
using dynamic reconfiguration· in Andorra-I, but also we are interested in obtaining the
best possible performance.

456 da Sociedade Brasileira de Computação

There are severa! wa.ys tha.t ca.n be used to e ua.te the performance of the work
guided stra.tegy. One of them is to use a.n a.na!ytica! odel to eva!ua.te if the performance
of the system corresponds to the optima! model of a.ch computation. Another method
is to find the optima! performance of a computatio , for limited and unlimited number
of processors by simula.ting the pa.ra.llel model. Ye another method is to eva!ua.te the
performance through pure mea.surement, i.e., we h ve two different systems, Andorra
I without the reconfigurer a.nd Andorra-I with the econfigurer, we collect results from
these two different systems and compare both perfo mances.

The first method consists of devising a math a.tica! model for the computa.tions,
where a mathema.tica! formula. would give an estima e of a. possible optimal speedup for a.
computa.tion. This method is not suitable for logic programs, because the computa.tions
are very irregular, therefore it would be difficult t find a good mathematica! model to
describe the computationa! beha.viour of a. program

The second method is a. whole subject by i self, a.nd not very trivial. The idea.
is to simula.te the para.llel model a.nd estimate op imal speedups for the computations,
with limited a.nd unlimited numbers of processors. he simula.tion ca.n be done at a. high
levei, i.e., only simulate the conceptua! model, or i ca.n be done a.t a.low levei. Low level
simula.tion is more rea.listic because it takes into account implementation issues of the
system. Work done by Shen (18) provides such a. ool, but for studying the exploita.tion
of or-parallelism combined with non-determinate i dependent and-para.llelism, which is a.
very different model from what we are using. Ais Fernandez (11) studies ideal speedups
for the same model. Both of them predict per~ rma.nce of a. model that combines or
para.llelism with independent and-pa.ra.llelism at u limited number of processors, and a.t a.
limited number of processors by finding a. qua.si o timal schedule to run the a.pplications.
Se h r (17) uses a yet different method to achieve t e same goal, by a.nnotating the Prolog
progra.m with specia! predicates a.nd extra argu ent variables to pa.ss around goal and
cla.use time informa.tion.

The third approach consists of evaluating t e results by pure mea.surement by com
pa.ring our new Andorra-I system with the oiJ A dorra.-I system. Although this method
does not eva!ua.te the system with respect to th best optimal a.chieva.ble speedups, it is
still useful a.s an evaluation method. As we do no have a. tool to estimate the performance
of the Andorra model or of the Andorra-I syste , we limited our study of performance
to mea.surements of performance for different fix d configurations of workers, or in other
words, different versions of the Andorra-I syste . Our ambitious goal is to a.chieve at
lea.st the best performance achievable with a.ny fixed configuration, which is a difficult
target given that the reconfigurer is dynamic (i urs overhea.ds), and sometimes does not
make the right choices due to the instant mea.sur s taken for the amounts of and-work and
or-work . We wiU ca.ll it the target performance. We define the target performance a.s the
one produced when we choose the best fixed co figuration of workers into teams for ea.ch
computation at ea.ch number of processors. A most logic programs of our benchmark
set can run rea.sonably well with the best confi ration of workers into teams, if we ca.n
produce results similar or better than the ones a.chieved by this best ftxed configuration,
then we are well enough able to say that our o jectives are completely sa.tisfied.

Therefore, we compare the performance f the work-guided stra.tegy with what we
defined a.s ou r t a rget performance. This target erforma.nce wa.s determined by running a.ll
progra.ms with a.ll possible fixed teams confi a.tions, a.nd getting the best performance
for ea.ch configuration. As a.n example, we sho in table 2 speedups a.chieved for the best
llxed teams configuration of lO workers for eac of our benchmarks. The second column of
the table (Target/Cfg) shows the speedups ac ieved by the best fixed configuration. The
best fixed configuration is shown between pa entheses. For example, program detndet

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 457

achieves its best speedup, at 10 processors, with a fixed configura.tion of eight ma.sters and
two sla.ves, i.e .. eight tea.ms, with two of them with two workers and the remaining six with
only one worker. The third column of the ta.ble (Reconfig) shows the speedups a.chieved
with the work-guided strategy. The results shown for the reconfigurer were produced with
a singlP version of Andorra-I, where the reconfigurer sta.rts from a. configuration of only
one team of workers . The la.sl row of lhe table (H .mean) shows lhe harmonic mea.n over
ali lhe benchma.rks.

The overall result shown by row H.mean confirms tha.t lhe work-guided stra.tegy
performs similarly to lhe targel performance. For ea.ch benchma.rk individua.lly, the work
guided slrategy performs belter than the ta.rget performance for 10 benchma.rks. For the
remaining 7 benchmarks, the work-guided slrategy does not reach ou r ta.rget performance,
allhough the resulls are stiU good. given tha.t it is not a.n ea.sy ta.sk to alloca.te dyna.mica.lly
lhe righl numbers of workers to lhe va.rying pa.rallel work a.vailable.

Targel/Cfg 11 Reconfig 11

ndetdet 8.487 {10M) 9.831
mixed 3.997 (6M./S) 4.004
dctndet 3.012 (8M2S) 3.157
bqu8 7.516 {10M) 4.474
chat 7.334 {10M) 7.034
cypher 5.922 {10M) 6.116
mutesl 5.959 {10M) 6.025
bqu6 3.950 (9MJS} 2.920
Oypan2 6.203 (9S) 6.307
bt.clusler 6.002 (9SJ 5.793
ftypan4 5.079 (9S) 4.961
scanner 5.485 (2M8S) 5.414
roadJDarkings 4.887 (9S) 4.269
bcnet 3.746 (2M8S} 3.942
cross1 1 2.666 (9S} 2.917
flypan5 2.862 (2M8S) 3.382
cross6 2.529 (9S) 2.260

11 B.mean 11 4.407 4.258 11

Ta.ble 2: BEST FIXED CONFIGURATION X RECONFIGURER, AT 10 WORKERS

Next we evalua.te the work-guided stra.tegy up to 15 processors. In an ea.rlier paper (8]
we described brietly the initial work-ba.sed stra.tegy and showed some results for a. very
sma.ll number of processors and different benchma.rks, for the interpreted-ba.sed Andorra-
I (8].

In order to reduce the complexity of this section we present gra.phs for some repre
senta.tive classes of progra.ms of our benchma.rk set. They fa.ll in to six subgroups depending
on whether the pa.ra.llelism is high or low, a.nd whether it is mainly a.nd-para.llelism or or
pa.ra.llelism. For brevity, we ca.ll these groups: (1) only or, (2) only and, (3) high or, low
and, (4) high and, low or, (5) low or, lower and, a.nd (6) low and, lower or. Group (1)
ha.s only or-pa.ra.llelism. Group (2) ha.s only a.nd-para.llelism. Group (3) ha.s a. high degree

458 XVCoogr da Sociedade Brasileira de Computação

of or-pa.rallelism with low degree of and-pa.rallelism Group (4) ha8 a high degree of and
pa.rallelism, and low degree of or-pa.rallelism. Grou (5) ha8 a low degree of or-pa.rallelism
and low degree of and-pa.rallelism, but the amo t of or-pa.rallelism is bigger than the
amount of and-pa.rallelism. Group (6) ha8 a low d ee of and- and or-pa.rallelism, but the
amount of and-pa.rallelism is bigger than the amou t of or-pa.rallelism.

8.1
"]8
"" cn6

4

2

Figure 2: WORK-GUIDED STRATEGY: ONLY OR BENCBMARKS

CHAT

2 4 6 8 10 12 14 16
Number of Workers

Figure 3: WORK-GUIDED STRATEG

BT_CLUS

MUTEST

4 6 8 10 12 14 16
Number of Workers

ONLY ANO BENCHMARK

R

s 115 135

14 16

The graphs in figures 2, 3, 4, 5, 6 and 7 show the compa.rison between the work
guided strategy and our ta.rget performance. e thick line in the graphs representa the
performance of the work-guided strategy, while the thin line representa our ta.rget perfor
mance. Note that for some of the benchma.rks, e need different weights for and- andor-,
which means that we may need different confi ations of ma8ters and slaves at different
nurnbers of processors in order to achieve best speedups with a fixed configuration. The
fixed configuration that produced the best s up is attached to the fixed configuration
curve (these are shown a8 amall numbers in t e graph. For example, 11M3S in figure 4
shows that, at 14 processors, the best fixed nfiguration for the benchma.rk ndetdet ia
the one with 11 teams, three of them with 2 workers and the remainiag with only one
worker) .

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 459

Computations that contain or-parallelism only achieves best performance with a
fixed configuration tuned to exploit or-parallelism only, i.e., severa! teams with only one
master (choice of weighting 1). Computations that contain and-parallelism only achieve
best performance with a fixed configuration tuned to exploit and-parallelism only, i.e., one
team of one master and severa! slaves (choice of weighting 2). The work-guided strategy
performs s~arly to these different versions of Andorra-I, as is shown by benchmarks
chat and lllUtest in figure 2, and benchmark bt..c:luster in figure 3. This means that the
overhead of rearranging workers into teams is very low.

For programa that contain a mixture of both kinds of parallelism, we would like the
work-guided strategy to perform similarly or better than the target performance, although
this is a difficult t.arget. Indeed the reconfigurer reaches the target performance for most
of the benchmark programa that contain a mixture of both forms of parallelism (e.g.,
ndetdet in figure 4, flypan2 in 5, and bcnet in figure 7).

Figure 4: WORK·GUIDEO STRATEGY: BJGB OR, LOW ANO BENCBMARKS

NDETDET

2 • 6 8 10 12 14 16
Nurnber of Workers

BQU8

2 • 6 8 10 12 14 16
Number of Workers

Figure 5: WORK·GUIDED STRATEGY: BIGB ANO, LOW oa BENCBMARKS

FLYPAN2

2 • 6 8 10 12 14 16
Nurnber of Workers

ROAD.MARKINGS

0o 2 • 6 8 10 12 14 16
Number of Workers

The computation flypan2 (figure 5) is an example of a program where no fixed
configuration would achieve best performance, because it contains two distinct phases of
computation, an and-parallel phase followed by an or-parallel phase. In practice, with

460

this particular class of computations (that includes ill computations that contain dis
tinct phases), we showed that using dynamic reconfi~ation of workers into teams we
achieve better speedups than setting the best fixed co ltiguration. This is also true for the
benchmark detndet (figure 6). •

Figure 6: WORK-GUIDED STRATEGY: LOW OI, LOWER AND BENCHMARKS

BQU6
1~-------------------,

1

g.t(
118
<1)6

:~s
00 2 <l 6 8 10 12 l<l 16

Number of Workers

DETNDET
1~+-----------------,

!.1
" 1Js

<1)6

0o 2 " 6 8 10 12 u 16
Number of Workers

Figure 7: WORK-GUIDED STRATEGY: LOW I'ND, LOWER OR BENCBMARKS

BCNET CROSSll
I 1

1 1

1 1

§-1' a.t
::l

118 11
<1)6 cn

(

~s ~ 2
~s

o o 2 (6 8 lO 12 l<l 16 o o 2 4 6 8 lO 12 14 16
Number of Workers Number of Workers

For the program flypan2, we can show by pimple analysis that our strategy obtains
the best speedup possible with the Andorra-I Íll plementation. As program flypan2 has
two distinct phases of computation, we can say the program is executed optimally in
parallel by Andorra-I within the following time:

Dp +!I

where Dp is the time taken to execute the and-p frallel phase in parallel, and Np is the time
taken to execute the or-parallel phase in parai e!, i.e., the determinate phase taking Dp
time units to finish and the non-determinate p~ase taking NP time uiuts to finish. Let D,
be the time to execute the and-parallel phase sfquentially, and N, be the time to execute
the or-parallel phase sequentially. From our periments with Andorra-I, taking as an
example runs for 10 processors, we have the fo owing time information for this program:

VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 461

(1) D, + N, = 13.727secs, this corresponds to the average time taken to execute the
program sequentia.lly;

(2) D, + N, = 2.422secs, this is the average time taken to execute the program with only
and-para.llelism, at 10 processors;

(3) D, + N, = 13.646secs, this is the average time taken to execute the program with
only or-para.llelism, at 10 processors.

Adding (2) and (3), we get:

D, + N, + D, + N, = 16.068

Subtracting (1), we get,
D, + N, = 2.341

i.e., the time to execute the program optima.lly with and-para.llelism and or-para.llelism
with 10 processors should be around 2.341 secs. The best fixed configuration of workers in
Andorra-I executes this program at 10 processors in time 2.422 secs, while the work-guided
strategy produces execution time of 2.172 secs. This means not only that the reconfigurer
produces a better speedup than the target speedup, but it manages to achieve slightly
better speedups than the best predicted by the preceding analysis. This is explained by
the fact that, if there is little and-parallelism available, and there are more workers in
a team than necessary to exploit the parallelism, Andorra-I behaves very inefficiently.
IdJe slaves in a team can steal the work of any other worker, and the execution may be
swapped from one worker to another very frequently. The immediate disadvantage of
this phenomenon is that processors need to reload their caches frequently. While using
fixed configuration of workers, Andorra-I incurs more overheads with workers in a team
competing to execute the work available. While using dynarnic reconfiguring, workers
instead of competing to obtain more work in its team, have a chance of being redeployed
to elsewhere, and do not disturb the execution of other workers. As the reconfigurer
preventa slaves of disturbing each other by redeploying them to elsewhere, and the total
cost of reconfiguring is much lower than the costs of sharing para.llel and-work or parallel
or-work in a fixed configuration, the reconfigurer achieves slig~tly better speedups than
the best possible computed from real runtime units.

If we apply the same reasoning to program detndet, the result is similar, with the
reconfigurer perforrning around 10% better in average than the best possible, predicted
analytically.

For some of the computations (e.g., bqu8, in figure 4), the work-guided strategy
achieves good performance, but it does not reach the target performance. This is explained
by the fact that the or-para.llel phase in these computations is dominant, but there is a
very sma.ll amount of and-para.llelism in the or-parallel branches. Because the reconfigurer
uses instant runtimé information to redeploy workers, it believes that there is more and
parallelism than the program really contains (although the run queue has plenty of goals,
they are finished very shortly), and preventa slaves from becoming masters to exploit the
or-parallelism available.

5 Conclusions

In this work we performed two important evaluations. First, we evaluated the benefits of
using dynamic reconfiguring in the Andorra-I system. Second, we studied the performance
of the work-guided reconfiguring strategy.

462 da Sociedade Brasileira de Computação

We showed how Andorra-I with dynamic recon guration compares with Andorra-I
with no dynamic reconfiguration using the work-guide reconfigurer as an example of dy
namic reconfiguring. We did a comparison for some p ausible fixed configurations, where
we give different weights to and-parallelism and to r-parallelism. We concluded that
Andorra-I with dynamic reconfiguring is much better than Andorra. I without a reconfig
urer, for three reasons:

• The user does not have the burden of deciding hich configuration to use.

• Overall, the reconfigurer performs much better han any one of the fixed configura
tions.

• For individual benchmarks, the reconfigurer p forros as weU as or better than any
of the fixed configurations.

We also attempted to evaluate whether the per ormance of the work-guided strategy
is as good as it could be by comparing it with a t rget performance given by the best
speedup achievable by any fixed configuration.

The comparison with the target performance d pends on the k.ind of application. For
programs that present only one forro of parallelism, the work-guided strategy performed
similarly to the target performance, which implies that rearrangement of workers into
teams does not incur much overhead. For programs hat present both k.inds of parallelism
with a reasonable grain size, the work-guided stra egy performs around 6.5% better in
average than the target performance, at 10 proces rs. For programa that contain both
kinds of parallelism, but with fine grain size, the WOl' -guided strategy still performs better
than the target performance for some cases, is si · ar to the target performance in other
cases, and does not perform very well for certain ê es.

Although dynamic reconfiguring was applied o a particular parallel logic program·
ming syotem, we believe that the same idea can be pplied to other parallellogic program
ming system that aims to exploit both and- and o parallelism.

References

[1) Khayri A. M. Ali and Roland Karlsaon. The Muae or-parallel Prolog Model and its Perfor
mance. ln Procceding6 of thc 1990 North Amcricat Confcrencc on Logic Progrumming, pages
757- 776. MIT Press, October 1990.

[2) Anthony Beaumont, S. Muthu Raman, and P ter Szeredi. Flexible Scheduling of Or
Parallelism in Aurora: The Brístol Scheduler. In Aarts, E. H. L. and van Leeuwen, J. and
Rem, M., editor, PARLE91: Confcrencc on Pa 1/cl Architcctare6 and Languagc6 Europc,
volume 2, pages 403-420. Springer Verlag, June 991. Lecture Notes in Computer Science
506.

[3) J . Briat, M. Favre, C. Geyer, and J . Chassin. Se duling of or-parallel Prolog on a scaleable,
reconfigurable, distributed-memory multipro r. In Procceding6 of Para/lei Architccture
and Languagc6 Europc. Springer Verlag, 1991.

[4) Keith L. Clark, F. G. McCabe, and S. Gregory. C-PROLOG- language features. In K. L.
Clark and S. A. Tarnlund, editora, Logic Progra ming, pages 253-266. Academic Press, Lon
don, 1982.

[5) William Clocksin. Principies of the DelPhi Par lei lnference Machine. Computer J oumal,
30(5):386-392, 1987.

[6) J. A. Crammond. Scheduling and Variable Assig ment in the Parallel Parlog lmplementation.
In Procecding6 of thc 1990 North American Confi rence on Logic Programming, pages 642-657,
October 1990.

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 463

[7) J. A. Crammond. The Abstract Machine and Implementation of Parallel Parlog. Technical
report, Dept. of Computing, Imperial College, London, June 1990.

[8) Inês Dutra. A Flexible Scheduler for Andorra-I. In A Beaumont and G. Gupta, editors,
Lecture Note8 in Computer Science 569, Para/lei Erecution of Logic Program&, pages 7Q-82.
Sprioger-Verlag, June 1991.

[9] Inês Dutra. Strategies for Scheduliog Aod- and Or-Work in Parallel Logic Programmiog
Systems. In Proceeding& of lhe 199./ lnlernalional Logic Programming Sympo8ium, pages
289-304. MIT Press, 1994.

[10] Inês Dutra. Distribuling And- and Or- Work in lhe Andorra-I Para/lei Logic Programming
Sy51em. PhD thesis, University of Brístol, Department of Compu ter Science, February 1995.
Ph.D. thesis.

[11] M. J . Fernaridez, M. Carro, and M. V. Hermenegildo. IDRA (IDeal Resource Allocation): A
Tool for Computing Ideal Speedups. In ICLP'9./ Pre-Conferenct Workshop on Para/lei and
Data-Parai/ti Ertcution of Logic Languages, Facultad de Informática, Uoiversidad Politécnica
de Madrid, June 1994.

[12) Wai-Keong Foong. Or-Parallel Prolog with Heuristic Task Distribution. In Leclure Nolt8 in
Artificial /nlelligence 59H, Logic Programming RuS8ian Conference, pages 193- 200, 1991.

[13] Manuel Hermenegildo. An Abstract Machine for Restricted And-Parallel Execution of Logic
Programs. In Ehud Shapiro, editor, Proceeding1 o f lhe Third lnlernational Conference on
Logic Progromming, pages 25-39. Springer-Verlag, 1986.

[14] Manuel V. Hermenegildo. Relating Goal Scheduling, Precedence, and Memory Management in
AND-parallel Execution of Logic Programa. In Jean-Louis Lassez, editor, Logic Programming:
Proceedings o f lhe Fourth lnternational Conference, Volume e, pages 556--575. The MIT Press,
1987.

[15) Ewing Lusk, David H. D. Warren , Seif Haridi, et ai. The Aurora Or-parallel Prolog System.
In Proceedings o f lhe 1988 Jn lernalional Conference on Fifth Generalion Compuler Sy&tems,
pages 819-830. ICOT, Tokyo, Japan, November 1988.

[16] Vitor Santos Costa, David H. D. Warren, and Rong Yang. The Andorra-I Preprocessar:
Supporting full Prolog on the Basic Andorra model. In Proceedings o f lhe Eighth lnternotional
Conference on Logic Programming, pages 443-456. MIT Press, 1991.

[17) David C. Sehr and Laxmikant V. Kalé. Estimating the lnherent Parallelism in Prolog Pro
grama. In Proceedings o f lhe 1 99H Jnternotionol Conference on Fi/Ih Generation Computer
Systems, pages 783- 790. ICOT, 1992.

[18) Kish Shen. Sludies of And/Or Porallelism in Prolog. PhD thesis, Computer Laboratory,
University of Cambridge, 1992.

[19) Raéd Yousef Sindaha. Branch-Level Scheduling in Aurora: The Dharmo Scheduler . PbD
thesis, University of Brístol, Department of Computer Science, In preparation, 1993.

[20] Evan Tick. Compile Time Granularity Analysis for Parallel Logic Programming Systems. New
Generation Col(lpuling, 7(2,3):325-337, 1990.

[21] David H. D. Warren. The Andorra model. Presented at Gigalips Project workshop, University
o f Manchester, March 1988.

[22) Rong Yang, Tony Beaumont, Inês Dutra, Vitor Santos Costa, and David H. D. Warren. Per
formance of the Compiler-Based Andorra-I System. In Proceedings o f the Tenlh lnternotionol
Conference on Logic Programming, pages 150- 166. MIT Press, June 1993.

[23] Rong Yang, Vitor Santos Costa, and David H. O. Warren. The Andorra-I Engine: A parai·
lei implementation of the Basic Andorra model. In Proceedings o f lhe Eighth Jnternotionol
Conference on Logic Programming, pages 825- 839. MIT Press, 1991.

