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Abstract

This paper studies the performance of Andorra-1, a parallel logic programming system that
exploits and-parallelism and or-parallelism with a novel strategy to distribute and-work and or-
work among processors. The strategy, work-guided guides its decisions by looking at the amount of
current and-work and or-work available in an application during execution. The scheduler decision
strategy moves workers from one parallel task to another according to the tasks sizes. Results show
that the work-guided strategy works quite well and produces better results than the ones produced
with a version of Andorra-I that does not allow dynamic migration of workers during execution.
We believe that this strategy can be applied to other parallel logic programming systems that aim
to exploit both and- and or-parallelism in a single framework.
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1 Introduction

There are two main sources of parallelism in logic programming, namely or-parallelism
and and-parallelism. Or-parallelism is exploited when several alternative clauses to a goal
are executed in parallel. And-parallelism is exploited when two or more goals in the body
of a clause are executed simultaneously. Exploitation of full or- and and-parallelism is
limited by the number of physical processors available in a system. And-parallelism is also
limited by the interdependence among goals.

When allowing and-goals to proceed in parallel, the logic programming system needs
to choose what goal to select next. This job is usually done by an and-scheduler. When
allowing several clauses to proceed in parallel, the system needs to choose what alternative
from which branch to select next. This task is usually performed by an or-scheduler. There
are several and-scheduling techniques [14, 6, 20] implemented for scheduling and-parallel
work in systems that exploit and-parallelism only, such as &-Prolog [13] and commited-
choice languages systems [7, 4]. There are also several or-scheduling techniques [12, 2, 19]
implemented in systems that exploit only or-parallelism such as the Aurora [15], Muse [1],
Delphi [5], and Opera [3] systems.

So far, only the problem of and-scheduling alone and or-scheduling alone have been
tackled by the parallel logic programming researchers. Scheduling both and-work and
or-work is a new and hard problem to be solved in parallel logic programming systems.
When allowing both kinds of parallelism to be exploited in a single framework, the system
needs to deal with an extra problem that is what kind of work to choose from: and- or
or-.

“Research supported by CNPq, Brasilian Research Foundation under grant 202270/89.0. This work
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In figure 1 we show a tree that contains different kinds of parallel work. In this tree
we have several branches with choicepoints that contdin alternatives left open, and each
branch can produce some amount of and-work through the execution of parallel and-goals.
The problem that arises is how to distribute the twodifferent kinds of work among the
processors. For example, if the and-work in the left ar¢ of the tree is fine grained, it can be
a good strategy to allocate only one processor to this jarc and to allocate more processors
to expand the open alternatives located on the third |arc of the tree. Moreover, only one
processor should be allocated to the task in the second arc. As all solutions are to be
found, all arcs need to be expanded anyway, but the way and the order they are expanded
will lead to an earlier or longer time to produce a solution.

Figure 1: DIFFERENT KINDS OF wo;{x IN AN AND-OR TREE

This paper studies a dynamic strategy that solves this problem in the context of the
Andorra-1 parallel logic programming system [23, 16, 22].

Most scheduling strategies reported in the literature are applied to scientific ap-
plications that have a very regular task structure. Therefore most of the solutions are
static scheduler strategies. Our strategy is dynamic and applied to irregular computa-
tions, We implemented the strategy in the Andorra-1 parallel logic programming system
and evaluated it by showing results for a wide range of applications.

In an earlier work [8] we described briefly the first work-based strategy and showed
some results for a very small number of processors and different applications. In another
work [9], the work-guided strategy is compared with another scheduling strategy. In this
work we discuss the benefit of adding dynamic distribution of workers in Andorra-I and
compare the performance of the old version of Andorra-I that does not implement dynamic
distribution of workers with the performance achjeved with the work-guided strategy.

The paper is organised as follows. Section 2 describes briefly the first version of
Andorra-I that did not allow dynamic migration of workers between and-work and or-
work. Section 4 describes the work-guided strategy heuristics used to guide the scheduler
in the new version of Andorra-I. Section 3 describes the applications used to test the
strategy. Section 4.2 evaiuates the work-guided strategy and shows results produced for
a wide range of applications. Finally, section 5 draws some important conclusions of this
work and presents alternative solutions and future work.

2 Andorra-I in the Past F

Andorra-1 is a system that exploits multiple forms of parallelism. Systems that exploit
several forms of parallelism, such as Andorra-1.|/face a new problem: how to transparently
and efficiently distribute and-work and or-work Lhal arise dynamically and irreqularly dur-
ing the computation of a program? By transpardni we mean that the system should exploit
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parallelism without any user’s intervention. By efficient we mean to distribute both kinds
of work and achieve speedups close to a possible optimal. By dynamic and irregular we
mean that the sizes and forms of parallelism vary with time.

Andorra-1 is based on the Basic Andorra Model [21]. The Basic Andorra Model
assumes that goals that match at most one solution are to be executed in parallel, and
that alternatives left open in the execution tree can be executed in parallel. Goals that
match at most one solution are called determinate goals. In the Basic Andorra Model,
these goals are executed eagerly and in parallel. Andorra-1 implements and-parallelism in
the same way as the JAM abstract machine [7], and it expoits or-parallelism in much the
same way as the Aurora or-parallel system [15].

The system is designed in a way that workers are grouped into teams. Each team
is composed of a master and some slaves. Workers in a team cooperate to share available
and-parallel work, while teams cooperate with each other to exploit or-parallelism. Before
our work, the user had to choose a fixed configuration of masters and slaves to exploit the
parallelism available. This brought three main drawbacks to the system:

¢ It was very inconvenient and difficult to use, and it was inconsistent with the aim of
exploiting parallelism implicitly.

o For most cases, the user would choose a configuration of workers that would produce
results far from being optimal.

¢ Because of the varying nature of parallelism in some programs, the system would still
produce performance below the best achievable, even if the user could (somehow)
choose the best fixed configuration.

The main objective of dynamic dsitribution of workers is to distribute workers au-
tomatically between the two kinds of work available, and thus release the user from the
burden of having to adjust manually fixed configurations of masters and slaves into teams.

In order to achieve this goal, and hence make Andorra-1 a practical system for the
user, there are at least three possible approaches. In the first approach we can use compile-
time analysis of the programs for a certain set of queries (probably the most common) to
generate information about the best fixed configuration of masters and slaves that should
be used for that particular computation. In the second approach the work distribution is
decided at runtime. In the third approach the work distribution is decided at runtime,
but guided by information generated through compile-time analysis.

The first approach has three main disadvantages:

The fixed configuration is set forever in the beginning of the computation and never
changes. This may lead to loss of parallelism, since the parallelism varies along the
execution time.

The process of collecting information about the amount of parallelism in a program in
order to find a suitable fixed configuration of workers into teams is very complicated
and sometimes does not produce the precise and expected results. First because the
computation of an application varies greatly with different queries and different sizes
of data. Second because some variable dependencies in the program are only solved
at runtime, which makes the task of generating precise or even useful information
more difficult.

Usually, the process of obtaining useful information through compile-time analysis is
very slow, therefore the overall gain in running the application in a parallel system
may not be justified.
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The second approach seems to be better than th !ﬁrst one. Dynamic reconfiguration
allows the workers to react to the runtime system, and therefore gives a chance to the
workers to change its position according to events that happen at runtime. It has also
some disadvantages. The first one is that dynamic strategies, in general, do not find global
optimums. However a fixed configuration would not achieve a global optimum either. The
second disadvantage is that we have the overhead of re-scheduling at several stages of the
computation. But as long as we keep scheduling overhead costs and frequency of task
switching low, this disadvantage is manageable.

The third approach, which is to combine a static schedule with dynamic scheduling
seems to be the best choice, as long as the static Information can guide the dynamic
scheduling decisions whenever possible, and overheads are kept low.

Although we think that the combination of dynamic plus static information is a
better choice to guide scheduling decisions, we concentrated only on the dynamic aspect
of the problem (leaving scope to static information to be used), as the issue of generating
static information for the programs is a whole subject by itself. In any case, as we believe
that static information alone is not sufficient to do a good schedule, but totally dynamic
scheduling will suffice, we concentrated on the ma.iﬁ problem, that is to find a dynamic
solution for distributing work that varies dynamically.

A dynamic strategy not only solves the problem of making Andorra-1 a practical
system, but can also allow the system to exploit more parallelism from programs where
and- and or-parallelism vary with time. A very simple example is a program whose search
tree produces and-parallelism in the beginning of|the execution, say to set up a set of
constraints, and later produces or-parallelism to search for a solution. No single fixed
configuration of reasonable number of workers (25 /workers arranged in 5 teams would do
the job!) into teams solves this problem optimally, because the system should be able to
configure workers in order that they exploit and-parallelism in the beginning, and later,
work independently in each or-parallel branch.

3 About the Benchmarks |

All programs used as the benchmark set were selected according to their degree of paral-
lelism. One group of programs has predominantly and-parallelism, another has predom-
inantly or-parallelism, another has both kinds of parallelism in different phases of the
computation, and another has both kinds of par+.llehsm appearing at the same computa-
tional phase.

Some of the benchmarks are specially wnlten to test the reconfigurer. Others are
real applications used by companies or by academic people. The idea behind writing
special programs is to predict the behaviour off‘lhe reconfigurer and evaluate closely the
scheduling strategies.

A detailed decription of the benchmarks Jan be found in [10].

f
4 Andorra-I with the Reconfigurer

4.1 Showing the Benefits of Dynamij Reconfiguring

The work-guided strategy bases its decisions on a set of parameters: cost to redeploy a
worker to and-work, cost to redeploy a worker to or-work. different priorities to give work.
correction factor between and-work and or-work. size of goals and size of alternatives. We
made experiments for a wide range of combined parameter values. In this chapter we
present results obtained with a single parameter setting that produced the best results

|
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over all benchmark set. Initial values for some of the parameters were taken from a
performance analysis of the Andorra-I system. A range of integer values greater than and
lesser than those values were tried. Not all combination of parameter values were tried as
this would lead to an infinite set of experiments. Our main conclusion for the parameter
settings tried is that although, for some benchmarks, some variation of parameter values
can affect performance, we could choose overall one single set of parameters that produced
good performance on all benchmarks. Some experiments with different parameter settings
can be found in [10]. More detailed study of variation of parameters for ten processors
can also be found in [10].

Another important parameter is the starting configuration to run Andorra-I with
the reconfigurer. The starting configuration could have been obtained through compile-
time analysis of the programs. But sometimes compile-time analysis would not be able
to infer any starting configuration due to the complexity of the problem. In that case we
would be back to the same problem of having to choose different configurations for each
computation. The reconfigurer, therefore, uses a standard initial configuration, which is
chosen to be a single team (i.e., a configuration that supports and-parallelism, but not
or-parallelism). This was an arbitrary choice, but as we will see later, this choice for
the starting configuration does not cause any impact on the performance, because the
reconfiguring overheads are very low.

In this section we intend to show the benefits of adding a reconfigurer to the Andorra-
I system. Our objective is to show that Andorra-I with a reconfigurer is much more user
friendly, while achieving very good performance. In order to do that we compare the per-
formance of our reconfigurer with the performance achieved by different versions of the old
Andorra-I corresponding to different fixed configurations chosen. This method of compar-
ing Andorra-I with the reconfigurer with the old version of Andorra-I seems reasonable,
since as we take real results produced in practice with plausible fixed configurations.

There is an infinite number of fixed configurations possible. We will limit our com-
parison to five plausible fixed configurations. As explained before, in Andorra-I, users can
specify the number of teams and number of slaves to run a computation, where the slaves
are evenly allocated to each team. In order to allow the user to enter a more convenient
fixed configuration for all numbers of processors we assume that the system provides a
formal way of choosing the configurations. In that case for a number of processors n
we will use the following formula, where we only have plausible user choices, assuming
a particular weight between and-parallelism and or-parallelism, and with teams having
approximately the same size.

n? teams with n'~? workers each

The number p corresponds to the proportion of or-parallelism, i.e. the relative weight
we want to give to or-parallelism, and it is in the range 0 to 1. We take the least integer
approximation for n? and n'~P, with n being the number of processors. If there are any
remaining workers from the approximation to n'~?, they are allocated evenly as slaves to
the existing teams, until there are no more remaining workers. This formula, allows the
user to specify weights for and-parallelism and or-parallelism, and to use a single formula
for any numbers of processors.

We consider the following five plausible configurations:

1) give weight 0 to or-parallelism. In this case p = 0. We have 1 team of n workers.

2) give weight 0 to and-parallelism. In this case 1 — p = 0, and p = 1. We have n teams
of 1 worker each.
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3) give equal weights to both and- and or-parallelism. In this case p= 3 and 1 — p =
In that case we can have ¥/n teams with ¢/n workers each,

B

4) give weight 2 to and-work and weight 1 to or-wo
In that case we can have /n teams with Vn?

.Inthiscasep=Land 1-p=
orkers each.

(11X}

5) give weight 1 to and-work and weight 2 to or-work. In this case p= 2 and 1 - p =
In that case we can have ¥/n? teams with o/n workers each.

-

—S—% 0o 8

e £

Benchmarks Speedup with weighting, p = Speedup with
3 z 1 Reconfigurer
ndetdet 2.037 4.673 5.913 7.971 8.487 9.831
mixed 0.980 1.920 2.642 3.819 3.584 4.004
detndet 1.044 1.622 2.052 2.387 2.032 3.157
bqu8 1.527 2.858 3.937 5487 7.516 4.474
chat 0.666 1.578 2.502 3.866 7.334 7.034
cypher 1.147 2.164 2875 4.p46 5.922 6.116
mutest 0.584 1.386 2.071 J3H50 5.959 6.025
bqué 1.499 2562 2.940 3/132 3.137 2.920
flypan2 6.203 4.105 3.507 1/964 1.007 6.307
bt_cluster 6.002 4.353 3.947 1,995 1.011 5.793 |
flypand 5.079 3.726 3.305 1947 1.062 4.961
scanner 5.009 5.460 4.992 4/087 3.226 5.414
road_markings || 4.887 3.452 2479 1.790 0.965 4.269
benet 3.226 3.763 3.336 2.767 2.033 3.942
crossll 2666 1.647 1.615 1.669 1.112 2.917
flypanh 2.629 2.878 2506 2.139 1.335 3.382
crosst 2.529 2.260 2.095 1.342 0.964 2.260
{[ H.mean 1.656 2.505 2.787 2.574 1.836 4.258 ||

WORKERS

Table 1: ANDORRA-I IN THE PAST X ANDORI\J-I WITH THE RECONFIGURER, AT 10
\
|
1

As an example, for 10 workers, the system would set a configuration of a team with
10 masters for weighting 1, 1 team of 1 master and 9 slaves for weighting 2, 3 teams of
three masters with the first master having three slaves and the two remaining masters
having two slaves each for weighting 3, two teams with 2 masters with 4 slaves each for
weighting 4, and 5 teams with 5 masters with 1|slave each for weighting 5. The size of
the teams for different choices gives the desiredj balance to exploit and-parallelism and
or-parallelism.

Table 1 shows speedups achieved at 10 processors with the plausible fixed configu-
rations, and the speedups achieved with the recanfigurer. The five middle columns of the
table give the speedups of the benchmark set for|the five plausible fixed configurations, in
increasing order of p. The column Reconfig gives the speedups achieved by the reconfig-
urer. Shaded rectangles show the best speedups Fschieved at different fixed configurations.
The benchmarks are presented in the following Im'cler: artificial programs, programs that
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contain predominantly or-parallelism in decreasing order of amount of or-parallelism, and
programs that contain predominantly and-parallelism, in decreasing order of amount of
and-parallelism. The last row of the table shows the harmonic mean over all speedups. The
reason for using the harmonic mean in this context is to find an overall mean performance
for all benchmarks, giving equal weight to each individual benchmark.

For our benchmark set, despite the fact that we have reconfiguring overheads with
the work-guided strategy, the work-guided strategy is consistently close to or better than
the best of the five fixed configurations. The reconfigurer reaches an overall result that is
around 55% better (= 1.5 times faster) than the best result produced with a single fixed
configuration (which is given by the choice equal weights to both and- and or-parallelism).
It is interesting to note that p =  gives the best performance overall for the old Andorra-I,
but is not the best individually for any of the benchmarks.

From the figures shown in table 1, we can summarise the following:

¢ For computations that contain or-parallelism only, chat and mutest, the reconfigurer
performs similarly to a fixed configuration of n teams with one worker each (choice

of user 1), which means that the overhead of reconfiguring slaves into masters is
negligible.

¢ For computations that contain and-parallelism only, bt_cluster, the reconfigurer
performs similarly to a fixed configuration of workers in a single team (choice of user
2), which means that there was no overhead for reconfiguring during the computa-
tion.

o For computations with high degree of parallelism and distinct phases of computation,
and-parallel and or-parallel phase, despite the reconfiguring overheads, the work-
guided strategy performs similarly or better than the fixed configurations. This is
shown for computations ndetdet, detndet, flypan2, and flypan5.

¢ For computations that contain mainly one form of parallelism, but with small amounts
of the other form, sometimes the work-guided strategy does not perform so well as
one of the fixed configuration. This is shown for computations bqu8 and road markings.
The difference is very significant for bqu8. In other cases, as for mixed, cypher,
flypan4 and scanner, the performance obtained with the reconfigurer is compara-
ble with Andorra-1 without the reconfigurer.

e For computations with a low degree of parallelism, e.g. bcnet and crossii, the
reconfigurer performs slightly better than any of the fixed configurations. For others
like bqus, one of the fixed configurations performs slightly better.

In summary, we can conclude that Andorra-I with dynamic reconfiguration is overall
far better than any single fixed configuration, and even on individual benchmarks is gen-
erally better than any fixed configuration that the user might plausibly choose. Moreover,
this was achieved automatically without any user intervention.

4.2 Performance Evaluation of the Work-Guided Strategy

After showing that Andorra-I with the reconfigurer performs much better than Andorra-I
without the reconfigurer, in this section we intend to evaluate how good is the performance
of the work-guided strategy compared with the best performance we might hope to achieve.
This study is very important, since we are not only interested in showing the benefits of
using dynamic reconfiguration’ in Andorra-I, but also we are interested in obtaining the
best possible performance.
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There are several ways that can be used to evaluate the performance of the work-
guided strategy. One of them is to use an analytical model to evaluate if the performance
of the system corresponds to the optimal model of each computation. Another method
is to find the optimal performance of a computation, for limited and unlimited number
of processors by simulating the parallel model. Yet another method is to evaluate the
performance through pure measurement, i.e., we have two different systems, Andorra-
I without the reconfigurer and Andorra-I1 with the reconfigurer, we collect results from
these two different systems and compare both performances.

The first method consists of devising a mathematical model for the computations,
where a mathematical formula would give an estimate of a possible optimal speedup for a
computation. This method is not suitable for logic |programs, because the computations
are very irregular, therefore it would be difficult tg find a good mathematical model to
describe the computational behaviour of a program

The second method is a whole subject by itself, and not very trivial. The idea
is to simulate the parallel model and estimate optimal speedups for the computations,
with limited and unlimited numbers of processors. [The simulation can be done at a high
level, i.e., only simulate the conceptual model, or it can be done at a low level. Low level
simulation is more realistic because it takes into account implementation issues of the
system. Work done by Shen [18] provides such a tool, but for studying the exploitation
of or-parallelism combined with non-determinate independent and-parallelism, which is a
very different model from what we are using. Also Fernandez [11] studies ideal speedups
for the same model. Both of them predict perfarmance of a model that combines or-
parallelism with independent and-parallelism at unlimited number of processors, and at a
limited number of processors by finding a quasi optimal schedule to run the applications.
Sehr [17] uses a yet different method to achieve the same goal, by annotating the Prolog
program with special predicates and extra argument variables to pass around goal and
clause time information.

The third approach consists of evaluating the results by pure measurement by com-
paring our new Andorra-I system with the oid Andorra-I system. Although this method
does not evaluate the system with respect to the best optimal achievable speedups, it is
still useful as an evaluation method. As we do not have a tool to estimate the performance
of the Andorra model or of the Andorra-I system, we limited our study of performance
to measurements of performance for different fixed configurations of workers, or in other
words, different versions of the Andorra-1 system. Our ambitious goal is to achieve at
least the best performance achievable with any| fixed configuration, which is a difficult
target given that the reconfigurer is dynamic (incurs overheads), and sometimes does not
make the right choices due to the instant measures taken for the amounts of and-work and
or-work. We will call it the target performance.We define the target performance as the
one produced when we choose the best fixed configuration of workers into teams for each
computation at each number of processors. As most logic programs of our benchmark
set can run reasonably well with the best configuration of workers into teams, if we can
produce results similar or better than the ones|achieved by this best fixed configuration,
then we are well enough able to say that our objectives are completely satisfied.

Therefore, we compare the performance of the work-guided strategy with what we
defined as our target performance. This target performance was determined by running all
programs with all possible fixed teams configurations, and getting the best performance
for each configuration. As an example, we show in table 2 speedups achieved for the best
fixed teams configuration of 10 workers for each of our benchmarks. The second column of
the table (Target/Cfg) shows the speedups achieved by the best fixed configuration. The
best fixed configuration is shown between parentheses. For example, program detndet
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achieves its best speedup, at 10 processors, with a fixed configuration of eight masters and
two slaves, i.e., eight teams, with two of them with two workers and the remaining six with
only one worker. The third column of the table (Reconfig) shows the speedups achieved
with the work-guided strategy. The results shown for the reconfigurer were produced with
a single version of Andorra-I, where the reconfigurer starts from a configuration of only
one team of workers. The last row of the table (H.mean) shows the harmonic mean over
all the benchmarks.

The overall result shown by row H.mean confirms that the work-guided strategy
performs similarly to the target performance. For each benchmark individually, the work-
guided strategy performs better than the target performance for 10 benchmarks. For the
remaining 7 benchmarks, the work-guided strategy does not reach our target performance,
although the results are still good, given that it is not an easy task to allocate dynamically
the right numbers of workers to the varying parallel work available.

[ Target/Cfg Reconfig ||
ndetdet 8.487  (10M) 9.831
mixed 3.997 (6M{S) 4.004
detndet 3.012 (8M25) 3.157
bqus 7516 (10M) 1474
chat 7334 (10M) 7.034
cypher 5.922  (10M) 6.116
mutest 5.959  (10M) 6.025
bqub 3.950 (9MIS) 2.920
flypan2 6.203 (95) 6.307
bt.cluster 6002 (95 || 5.193
flypand 5.079 (95) 4.961
scanner 5.485 (2M8S) 5.414
road_markings || 4.887 (95) 4.269
benet 3.746  (2M8S) 3.942
crossl1 2666 (95) 2.917
flypan5 2.862  (2M8S) 3.382
cross6 2.529 (95) 2.260
H.mean 1407 3.258

Table 2: BEST FIXED CONFIGURATION X RECONFIGURER, AT 10 WORKERS

Next we evaluate the work-guided strategy up to 15 processors. In an earlier paper [8]
we described briefly the initial work-based strategy and showed some results for a very
small number of processors and different benchmarks, for the interpreted-based Andorra-
1(8].

In order to reduce the complexity of this section we present graphs for some repre-
sentative classes of programs of our benchmark set. They fall into six subgroups depending
on whether the parallelism is high or low, and whether it is mainly and-parallelism or or-
parallelism. For brevity, we call these groups: (1) only or, (2) only and, (3) high or, low
and, (4) high and, low or, (5) low or, lower and, and (6) low and, lower or. Group (1)
has only or-parallelism. Group (2) has only and-parallelism. Group (3) has a high degree
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of or-parallelism with low degree of and-parallelism, Group (4) has a high degree of and-
parallelism, and low degree of or-parallelism. Group (5) has a low degree of or-parallelism
and low degree of and-parallelism, but the amount of or-parallelism is bigger than the

amount of and-parallelism. Group (6) has a low degree of and- and or-parallelism, but the
amount of and-parallelism is bigger than the amount of or-parallelism.

Figure 2: WORK-GUIDED STRATEGY:] ONLY OR BENCHMARKS
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Figure 3: WORK-GUIDED STRATEGY: ONLY AND BENCHMARK

BT cws'r;m

0 2 4 6 8 10 12 14 16
Number of VIVorkers

The graphs in figures 2, 3, 4, 5, 6 and 7/ show the comparison between the work-
guided strategy and our target performance. The thick line in the graphs represents the
performance of the work-guided strategy, whil;rEhe thin line represents our target perfor-
mance. Note that for some of the benchmarks, we need different weights for and- and or-,
which means that we may need different configurations of masters and slaves at different
numbers of processors in order to achieve best speedups with a fixed configuration. The
fixed configuration that produced the best speedup is attached to the fixed configuration
curve (these are shown as small numbers in the graph. For example, 11M3S in figure 4
shows that, at 14 processors, the best fixed o&nﬁgura.tmn for the benchmark ndetdet is
the one with 11 teams, three of them with 2 lworkera and the remaining with only one
worker). [
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Computations that contain or-parallelism only achieves best performance with a
fixed configuration tuned to exploit or-parallelism only, i.e., several teams with only one
master (choice of weighting 1). Computations that contain and-parallelism only achieve
best performante with a fixed configuration tuned to exploit and-parallelism only, i.e., one
team of one master and several slaves (choice of weighting 2). The work-guided strategy
performs similarly to these different versions of Andorra-I, as is shown by benchmarks
chat and mutest in figure 2, and benchmark bt_cluster in figure 3. This means that the
overhead of rearranging workers into teams is very low.

For programs that contain a mixture of both kinds of parallelism, we would like the
work-guided strategy to perform similarly or better than the target performance, although
this is a difficult target. Indeed the reconfigurer reaches the target performance for most
of the benchmark programs that contain a mixture of both forms of parallelism (e.g.,
ndetdet in figure 4, flypan2 in 5, and benet in figure 7).

Figure 4: WORK-GUIDED STRATEGY: HIGH OR, LOW AND BENCHMARKS
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Figure 5: WORK-GUIDED STRATEGY: HIGH AND, LOW OR BENCHMARKS
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The computation flypan2 (figure 5) is an example of a program where no fixed
configuration would achieve best performance, because it contains two distinct phases of
computation, an and-parallel phase followed by an or-parallel phase. In practice, with
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this particular class of computations (that includes all computations that contain dis-
tinct phases), we showed that using dynamic reconfiguration of workers into teams we
achieve better speedups than setting the best fixed configuration. This is also true for the
benchmark detndet (figure 6). *

Figure 6: WORK-GUIDED STRATEGY: LOW 07, LOWER AND BENCHMARKS
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Figure 7: WORK-GUIDED STRATEGY: LOW AND, LOWER OR BENCHMARKS
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For the program f1ypan2, we can show by simple analysis that our strategy obtains
the best speedup possible with the Andorra-I iniplementation. As program flypan2 has
two distinct phases of computation, we can say the program is executed optimally in
parallel by Andorra-I within the following time: |

D, + N{,
where D, is the time taken to execute the and- pira.ﬂe! phase in parallel, and N, is the time
taken to execute the or-parallel phase in par el i.e., the determinate phase taking D,
time units to finish and the non-determinate p ta.kmg N, time units to finish. Let D
be the time to execute the and-parallel phase sequentially, and N, be the time to execute
the or-parallel phase sequentially. From our experiments with Andorra-I, taking as an
example runs for 10 processors, we have the following time information for this program:
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(1) D, + N, = 13.727secs, this corresponds to the average time taken to execute the
program sequentially;

(2) Dp+ N, = 2.422secs, this is the average time taken to execute the program with only
and-parallelism, at 10 processors;

(3) D, + N, = 13.646secs, this is the average time taken to execute the program with
only or-parallelism, at 10 processors.

Adding (2) and (3), we get:
D,+ N,+ D, + N, = 16.068

Subtracting (1), we get,
D, + N, = 2.341

i.e., the time to execute the program optimally with and-parallelism and or-parallelism
with 10 processors should be around 2.341 secs. The best fixed configuration of workers in
Andorra-I executes this program at 10 processors in time 2.422 secs, while the work-guided
strategy produces execution time of 2.172 secs. This means not only that the reconfigurer
produces a better speedup than the target speedup, but it manages to achieve slightly
better speedups than the best predicted by the preceding analysis. This is explained by
the fact that, if there is little and-parallelism available, and there are more workers in
a team than necessary to exploit the parallelism, Andorra-I behaves very inefficiently.
Idle slaves in a team can steal the work of any other worker, and the execution may be
swapped from one worker to another very frequently. The immediate disadvantage of
this phenomenon is that processors need to reload their caches frequently. While using
fixed configuration of workers, Andorra-I incurs more overheads with workers in a team
competing to execute the work available. While using dynamic reconfiguring, workers
instead of competing to obtain more work in its team, have a chance of being redeployed
to elsewhere, and do not disturb the execution of other workers. As the reconfigurer
prevents slaves of disturbing each other by redeploying them to elsewhere, and the total
cost of reconfiguring is much lower than the costs of sharing parallel and-work or parallel
or-work in a fixed configuration, the reconfigurer achieves slightly better speedups than
the best possible computed from real runtime units.

If we apply the same reasoning to program detndet, the result is similar, with the
reconfigurer performing around 10% better in average than the best possible, predicted
analytically.

For some of the computations (e.g., bqu8, in figure 4), the work-guided strategy
achieves good performance, but it does not reach the target performance. This is explained
by the fact that the or-parallel phase in these computations is dominant, but there is a
very small amount of and-parallelism in the or-parallel branches. Because the reconfigurer
uses instant runtime information to redeploy workers, it believes that there is more and-
parallelism than the program really contains (although the run queue has plenty of goals,
they are finished very shortly), and prevents slaves from becoming masters to exploit the
or-parallelism available.

5 Conclusions

In this work we performed two important evaluations. First, we evaluated the benefits of
using dynamic reconfiguring in the Andorra-I system. Second, we studied the performance
of the work-guided reconfiguring strategy.
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We showed how Andorra-I with dynamic reconfiguration compares with Andorra-I
with no dynamic reconfiguration using the work-guided reconfigurer as an example of dy-
namic reconfiguring. We did a comparison for some plausible fixed configurations, where
we give different weights to and-parallelism and to or-parallelism. We concluded that
Andorra-I with dynamic reconfiguring is much better than Andorra-I without a reconfig-
urer, for three reasons:

o The user does not have the burden of deciding which configuration to use.

o Overall, the reconfigurer performs much better than any one of the fixed configura-
tions.

e For individual benchmarks, the reconfigurer performs as well as or better than any
of the fixed configurations.

We also attempted to evaluate whether the performance of the work-guided strategy
is as good as it could be by comparing it with a target performance given by the best
speedup achievable by any fixed configuration.

The comparison with the target performance depends on the kind of application. For
programs that present only one form of paral]elism.,l the work-guided strategy performed
similarly to the target performance, which implies/ that rearrangement of workers into
teams does not incur much overhead. For programs that present both kinds of parallelism
with a reasonable grain size, the work-guided strategy performs around 6.5% better in
average than the target performance, at 10 processors. For programs that contain both
kinds of parallelism, but with fine grain size, the work-guided strategy still performs better
than the target performance for some cases, is similar to the target performance in other
cases, and does not perform very well for certain cases.

Although dynamic reconfiguring was applied to a particular parallel logic program-
ming system, we believe that the same idea can be dpplied to other parallel logic program-
ming system that aims to exploit both and- and or'-paral]el.ism.
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