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Abstract 

T his paper studies the performançe of Andorra-I , a parallcllogic programmingsystem that 
exploits and-parallelism and or-parallelism with a novel strategy to distribute and-work and or
work among processors. T he strategy, worl:-guided guides it.s decisions by looking at thc amount of 
current and-work and or-work available in an application during execution. Thc schedulcr decision 
strategy moves workers from onc parallel task to another according to the tasks sizes. Result.s show 
that Lhe work-guided strategy works quite wcll and produces better result.s than the ones produccd 
with a version of Andorra-! that does not a llow dynamic migration of workers during exccution. 
We believe that this stratcgy can be applied to other parallel logic programming systems that aim 
to exploit both and- and or-parallelism in a single framework. 
Keywords: and-or scheduling, and-or parallelism, logic programming, parallelism, Andorra-I, 
performance evaluation 

1 Introduction 

There are two main sources of parallelism in logic programming, namely or-parallelism 
and and-parallelism. Or-parallelism is exploited when severa! alternative clauses to a goal 
are executed in parallel. And-parallelism is exploited when two or more goals in the body 
of a clause a rP. executed simultaneously. Exploitation of full or- and and-parallelism is 
limited by the number of physical processors available in a. system. And-parallelism is also 
limited by t he inte rdependente among goals. 

When allowing and-goals to proceed in parallel, t he Jogic programming system needs 
to choose what goal to select next. This job is usually done by a.n and-sclleduler. When 
allowing severa! clauses to proceed in parallel, t he system needs to choose what a lternative 
from whlch branch to select next. This task is usually performed by an or-scheduler. There 
are severa.! and-scheduling techniques (14, 6, 20] implemented for scheduling and-pa.rallel 
work in systems that exploit a nd-parallelism only, such as &-Prolog [13] and commited
choice la.ngua.ges systcms (7, 4]. There are a.lso severa.! or-scheduling techniques (12, 2, 19] 
implemented in systems that exploit only or-parallelism such as the Aurora [15], Muse [1], 
Delphl [5], and Opera (3] systems. 

So far, only t he problem of and-scheduling a.lone a.nd or-scheduling a.lone have been 
tackled by the parallel logic programming resea.rchers. Scbeduling both and-work and 
or-work is a new and hard problem to be solved in parallel logic programming systems. 
When allowing both kinds of parallelism to be exploited in a single framework, t he system 
needs to dea.l with an extr a problem that is wha.t kind of work to choose from : and- or 
or-. 
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In figure 1 we show a tree that contains diffe.rent kinds of parallel work. ln this tree 
we have severa! branches with choicepoints that cont ·n alternatives left open, and each 
branch can produce some amount of and-work througl the execution of parallel and-goals. 
The problem that arises is how to distribute the two different kinds of work among the 
processors. For example, if the and-work in the left ar of the t ree is fine grained, it can be 
a good strategy to allocate only one processar to this are and to allocate more processors 
to expand the open altero atives located on the third are o f the tree. Moreover, only one 
processar should be allocated to the task in the sec nd are. As ali solutions are to be 
found , ali ares need to be expanded anyway, but the ay and the order they are expanded 
will lead to an earlier or longer time to produce a so ution. 

Figure 1: OtFFERENT KINDS OF WO K IN AN AND-OR TREE 

This paper studies a dynamic strategy that s ·lves this problem in the context of the 
Andorra- I parallel logic programming system [23, 6, 22). 

Most scheduling strategies reported in the "terature are applied to scientific ap
plications that ha.ve a very regular task structur . Therefore most of the solutions are 
static scheduler strategies. Our strategy is dyna ic and applied to irregular computa
tions. We implemented the strategy in the Andor a-I parallel logic programming system 
and evaluated it by showing results for a wide ra e of applications. 

In an ea.rlier work [8) we described brielly ti e first work-based strategy and showed 
some results for a. very small number of processar and different applications. In another 
work [9) , the work-guided strategy is compared th another scheduling strategy. In this 
work we discuss the benefit of adding dynamic d stribution of workers in Andorra-I and 
compare the performance of the old version of An orra-1 that does not implement dynamic 
distribution of workers with the performance ach eved with the work-guided strategy. 

The paper is organised as follows. Sectio 2 describes brielly the first version of 
Andorra.-! that did not allow dynamic migra.tio of workers between and-work and or
work. Section 4 describes the work-guided strate heuristics used to guide the scheduler 
in the new version of Andorra-I. Section 3 des ribes the applications uscd to test t he 
stra.tcgy. Section 4.2 evaiuates the work-guided strategy and shows results produced for 
a wide range of applications. Finally, section 5 raws some important conclusions of this 
work and presents alternative solutions and fut re work. 

2 Andorra-I in the Past 

Andorra-I is a systcm tha.t exploits multiple ~ rms of parallelism. Systems that exploit 
se,·eral forms of parallclism. such as Andorra-I. face a. new problem: how to tronsparently 
mui efficienlly distribui e and-work and or-work hnt arise dynamically and irregularly dur
ing lht compulnlion of a progmm? By lrouspa nl we mean that t he systcm should exploit 
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paralJelism without any user's intervention. By efficient wc mean to distribute both kinds 
of work and achieve speedups dose to a possible optimal. By dynamic and ir·regu/ar we 
mean thM the sizes and forms of parallelism vary with time. 

Andorra-I is based on the Basic Andorra Model (21]. The Basic Andorra Model 
assumes that goals that match M most one solution are to bc executed in parallel, and 
that alternatives left open in the execution tree can be executed in parallel. Goals that 
match at most one solution are called determinate goa.ls. In the Basic Andorra Model, 
these goals are executed eagerly and in parallel. Andorra-I implements and-parallelism in 
the same way as lhe JAM abstract machine [7], and it expoits or-parallelism in much the 
same way as the Aurora or-parallel system [15]. 

The system is designed in a way that workers are grouped into teams. Each team 
is composed of a master and some slaves. Workers in a team cooperate to share available 
and-parallel work, while teams cooperate with each other to exploit or-parallelism. Before 
ou r work, the user had to choose a fixed configuration of masters and slaves to exploit the 
parallelism available. This brought three main drawbacks to the system: 

• It was very inconvenient and difficult to use, and it was inconsistent with the aim of 
exploiting parallelism implicitly. 

• For most cases, the user would choose a configuration of workers that WCluld produce 
results far from being optimal. 

• Because of the varying nature of parallelism in some programs, the system would still 
produce performance be.low the best achievable, even if the user could (somehow) 
choose the best fixed configuration. 

The main objective of dynamic dsitribution of workers is to distribute workers au
tomaticalJy between the two kinds of work available, and thus release the user from the 
burden of having to adjust manually fixed configuration~ of masters and slaves in to teams. 

ln order to achieve this goal, and hence make Andorra-! a practical system for the 
user , there are at least t hree possible approaches. In the first approach we can use compile
time analysis of the programs for a certain set of queries (probably the most common) to 
generate information about the best fixed configuration of masters and slaves that should 
be used for that particular computation. In the second approach the work distribution is 
decided at runtime. In the tlürd approach the work distribution is decided at runtime, 
but guided by information generated through compile-time analysis. 

The first approach has three main disadvantages: 

• The fixed configuration is set forever in the beginning of the computation and never 
changes. This may lead to loss of parallelism, since the parallelism varies along the 
execution time. 

• The process of collecting information about the amount of parallelism in a program in 
order to find a suitable fixed configu ration of workers in to teams is very complicated 
and sometimes does not produce the precise and expected results. First because the 
computation of an application varies greatly with different queries and different sizes 
of data. Second because some variable dependencies in the program are only solved 
at runtime, which makes the task of generating precise or even useful information 
more difficult. 

• Usually, the process of obtaining useful information through compile-time analysis is 
ve.ry slow, therefore the overall gain in running the application in a parallel system 
may not be justified. 
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The second approach seems to be better than th first one. Dynamic reconfiguration 
allows the workers to react to the runtime system, d therefore gives a chance to the 
workers to change its position according to events t at happen at runtime. It has also 
some disadvantages. The first one is that dynamic str egies, in general, do not find global 
optimums. However a fixed configuration would not ieve a global optimum either. The 
second disadvantage is that we have the overhead of scheduling at severa! stages of the 
computation. But as long as we keep scheduling o rhead costs and frequency of task 
switchin~ low, this disadvantage is manageable. 

The third approach, which is to combine a sta c schedule with dynamk schedul.ing 
seems to be the best choice, as long as the static nformation can guide the dynamic 
scheduling decisions whenever possible, and overhea sare kept low. 

Although we think that the combination of ynamic plus static information is a 
better choice to guide scheduling decisions, we cone ntrated only on the dynamic aspect 
of the problem (leaving scope to static information be used), as the issue of generating 
static information for the programs is a whole subje t by itself. In any case, as we believe 
that static information alone is not sufficient to do good schedule, but totally dynamic 
scheduling will suffice, we concentrated on the m · problem, that is to find a dynamic 
solution for distributing work that varies dynamica ly. 

A dynamic strategy not only solves the pro !em of making Andorra-I a practical 
system, but can also allow the system to exploit ore parallelism from programs where 
and- and or-parallelism vary with time. A very sim !e exarnple is a program whose search 
tree produces and-parallelism in the beginning of the execution, say to set up a set of 
constraints, and !ater produces or-parallelism to earch for a solution. No single fixed 
configuration of reasonable number of workers (25 workers arranged in 5 teams would do 
the job!) in to teams solves this problem optimall because the system should be able to 
configure workers in order that they exploit and- arallelism in the beginning, and !ater, 
work independently in each or-parallel branch. 

3 About the Benchmarks 

All programs used as the benchmark set were sei cted according to their degree of paral
lelism. One group of programs has predominant y and-parallelism, another has predom
inantly or-parallelism, another has both kinds f parallelism in different phases of the 
computation, and another has both kinds of par llelism appearing at the same computa
tional phase. 

Some of the benchmarks are specially wri ten to test t he reconfigurer. Others are 
real applications used by companies or by aca emic people. The idea behind writing 
special programs is to predict the behaviour of the reconfigurer and evaluate closely the 
scheduling strategies. 

A detailed decriplion of t he benchmarks an be found in [lO]. 

4 Andorra-I with the R econfig rer 

4.1 Showing the Benefits of Dynami R econfiguring 

Th(' work-guided strategy bases its decision; n a set of parameters: cost to redeplo~· a 
worker to and-work. costto redeploy a worker o or-work. elifferent priorities to give work . 
correction factor between and-work anel or-wo k. size of goals anel size of alternatives. We 
made experiments for a wiele range of combi u:!d parameter values. In this chapter we 
present results obtained with a single param ter setting that proeluced the bes1 results 
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over ali benchmark set. Initial values for some of the parameters were taken from a 
performance analysis of the Andorra-I system. A range of integer values greater t han and 
lesser than those values were tried. Not ali combination of parameter values were tried as 
this would lead to an infinite set of experiments. Our main conclusion for the pararneter 
settings tried is that although, for some benchmarks, some variation of parameter values 
can affect performance, we could choose overall one single set of pararneters that produced 
good performance on all benchmarks. Some experiments with different parameter settings 
can be found in [10]. More detailed study of variation of pararneters for ten processors 
can also be found in [10] . 

Another important pararneter is the starting configuration to run Andorra-I with 
the reconfigurer. The starting configuration could have been obtained through compile
time analysis of the programs. But sometimes compile-time analysis would not be able 
to infer any starting configuration due to the complexity of the problem. In that case we 
would be back to the same problem of having to choose different configurations for each 
computation. The reconfigurer, therefore, uses a standard initial configuration, which is 
chosen to be a single team (i.e., a configuration that supports and-parallelism, but not 
or-parallelism). This was an arbitrary choice, but as we will see !ater, this choice for 
the starting configuration does not cause any impact on the performance, because the 
reconfiguring overheads are very low. 

In this section we intend to show the benefits of adding a reconfigurer to the Andorra
I system. Our objective is to show that Andorra-I with a reconfigurer is much more user 
friendly, while achieving very good performance. In order to do that we compare t he per
formance of our reconfigurer with the performance achieved by different versions of the old 
Andorra-I corresponding to different fixed configurations chosen. This method of compar
ing Andorra-I with the reconfigurer with the old version of Andorra-I seems reasonable, 
since as we take real results produced in practice with plausible fixed configurations. 

There is an infinite number of fixed configurations possible. We will lirnit ou r com
parison to tive plausible fixed configurations. As explained before, in Andorra-I, users can 
specify the number of tearns and number of slaves to run a computation, where the slaves 
are evenly allocated to each tearn. In order to allow the user to enter a more convenient 
fixed configuration for ali numbers of processors we assume that the system provides a 
formal way of choosing the configurations. In that case for a number of processors n 
we will use the following formula, where we only have plausible user choices, assuming 
a particular weight between and-parallelism and or-parallelism, and with teams having 
approximately t he same size. 

nP teams with n1-P workers each 

The number p corresponds to the proportion of or-parallelism, i.e. the relative weight 
we want to give to or-parallelism, and it is in the range O to I. We take the least integer 
approximation for nP and n1- P, with n being the number of processors. lf there are any 
remaining workers from the approximation to n l-p, they are allocated evenly as slaves to 
the existing teams, until there are no more remaining workers. This formula, allows the 
user to specify weights for and-parallelism and or-parallelism, and to use a single formula 
for any numbers of processors. 

We consider the following five plausible configurations: 

l) give weight O to or-parallelism. In this case p =O. We have I team of n workers. 

2) give weight O to and-parallelism. In this case I - p = O, and p = I. We have n teams 
of I worker eacl1. 
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3) give equal weights to both and· and or-para.llelisD . In this case p = t and 1 - p = t· 
In that case we can have :;fii teams with :;fii w rkers each. 

4) give weight 2 to and-work and weight 1 to or-wo ~· In this case p = 5 and 1- p = ~
In that case we can have :;fii teams with ?'fi2 ' orkers each. 

5) give weight 1 to and-work and weight 2 to or-wo k. In this case p = ~ and I - p = k· 
In that case we can have ?'fi2 teams with :;fii orkers each. 

Benchmarks Speedup with weightir g, p- J1 Speedup with 
o * t ! 1 ll Reconfigurer 

ndetdet 2.037 4.673 5.913 7. 71 8.487 9.831 
mixed 0.980 1.920 2.642 3. 19 3.584 4.004 
detndet 1.044 1.622 2.052 2. 87 2.032 3.157 
bqu8 1.527 2.858 3.937 5. 87 7.516 4.474 
chat 0.666 1.578 2.502 3. 66 7.334 7.034 
cypher 1.147 2.164 2.875 4. 46 5.922 6.116 
mutest 0.584 1.386 2.071 3 50 5.959 6.025 
bqu6 1.499 2.562 2.940 3 132 3.137 2.920 
flypan2 6.203 4.105 3.507 I 964 1.007 6.307 
bt.cluster 6.002 4.353 3.947 1995 1.011 5.793 
flypan4 5.079 3.725 3.305 I 947 1.062 4.961 
scanner 5.009 5.460 4.992 4 087 3.226 5.414 
road_markings 4.887 3.452 2.479 1 790 0.965 4.269 
bcnet 3.226 3.763 3.336 .767 2.033 3.942 
crossll 2.666 1.647 1.615 .669 1.112 2.917 
flypan5 2.629 2.878 2.506 .139 1.335 3.382 
cross6 2.529 2.260 2.095 .342 0.964 2.260 

11 H.mean 1.656 2.505 2.787 1-574 1.836 11 4.258 11 

Table 1: ANDORRA· I IN THE PAST X ANDOR · I WITH TIIE RECON FIGU RER, AT I 0 
WORKERS 

As an example, for 10 workers, the system ould set a configuration of a team with 
10 masters for weighting 1, 1 team of 1 master nd 9 slaves for weighting 2, 3 teams of 
three masters with the first master having thr~ slaves and the two remaining masters 
having two slaves each for weighting 3, two tea s with 2 masters with 4 slaves each for 
weighting 4, and 5 teams with 5 masters with 1 slave each for weighting 5. The size of 
the teams for different choices gives the desired balance to exploit and-parallelism and 
o r· para.llelism. 

Table 1 shows speedups achieved at 10 pr cessors with the plausible fixed configu· 
rations, and the speedups achieved with the rec nfigurer. The five middle columns of the 
table give the speedups of the benchmark set fo r the five plausible fixed configurations, in 
increasing oróer of p. The column Reconfig giv s the speedups achieved by the reconfig· 
urer. Shaded rectangles show the best speedups chieved at different fixed configurations. 
T he benchmarks are presented in the following rder: artificial programs, programs that 



VII Simpósio Brasileiro de Arquitetura de Computadores· Processamento de Alto Desempenho 455 

contain predominantly or-parallelism in decreasing arder of arnount of or-pa.rallelism, and 
progra.ms tha.t contain predominantly and-parallelism, in decreasing arder of arnount of 
a.nd-parallelism. The last row of the ta.ble shows the harmonic mea.n over ali speedups. The 
reason for using the harmonic mea.n in this context is to find a.n overall mean performance 
for ali benchmarks, giving equal weight to ea.ch individual benchma.rk. 

For our benchma.rk set, despite the fact tha.t we ha.ve reconfiguring overheads with 
the work-guided stra.tegy, the work-guided stra.tegy is consistently dose to or better than 
the best of the five fixed configura.tions. The reconfigurer reaches a.n overall result tha.t is 
a.round 55% better ( ~ 1.5 times f as ter) tha.n the best result produced with a. single fixed 
configura.tion (which is given by the choice equal weights to both a.nd- a.nd or-parallelism). 
It is interesting to note tha.t p = ~ gives the best performance overall for the old Andorra-I, 
but is not the best individually for a.ny of the benchmarks. 

From the figures shown in ta.ble 1, we ca.n summa.rise the following: 

• For computa.tions tha.t contain or-pa.rallelism only, chat a.nd mutest, the reconfigurer 
performs similarly to a. fixed con.figuration of n tearns with one worker ea.ch ( choice 
of user 1), which mea.ns that the overhead of reconfiguring slaves into masters is 
negligible. 

• For computations that contain and-parallelism only, bt_cluster, the reconfigurer 
performs sirnilarly to a fixed configuration of workers in a. single team ( choice of user 
2), which means that there was no overhead for reconfiguring during the computa
tion. 

• For computations with high degree of parallelism a.nd distinct phases of computation, 
and-parallel and or-parallel phase, despite the reconfiguring overheads, the work· 
guided strategy performs similarly or better than the fixed configurations. This is 
shown for computations ndetdet, detndet, flypan2, a.nd flypan5. 

• For computations that contain mainly one form of parallelism, but with small a.mounts 
of the other form, sometimes the work-guided strategy does not perform so well as 
one of the fixed configuration. This is shown for computations bqu8 and road.markings. 
The difference is very signilica.nt for bqu8. In other cases, as for mixed, cypher, 
flypan4 a.nd scanner, the performance obtained with the reconfigurer is compara.
ble with Andorra-I without the reconfigurer. 

• For computations with a low degree of parallelism, e.g. bcnet and cross11, the 
reconfigurer performs slightly better than any of the fixed configurations. For others 
like bqu6, one of the fixed configurations performs slightly better. 

In summary, we can condu de that Andorra-I with dynarnic reconfiguration is overall 
far better than any single fixed configuration, and even on individual benchmarks is gen· 
erally better than any fixed configuration that the user might plausibly choose. Moreover, 
this was achieved automatically without any user intervention. 

4.2 Performance Evaluation of the Work-Guided Strategy 

After showing that Andorra-I with the reconfigurer performs much better tha.n Andorra-I 
without the reconfigurer, in this section we intend to evaluate how good is the performance 
of the work-guided strategy compared with the best performance we rnight hope to a.chieve. 
This study is very importa.nt, since we are not only interested in showing the benefits of 
using dynamic reconfiguration· in Andorra-I, but also we are interested in obtaining the 
best possible performance. 
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There are severa! wa.ys tha.t ca.n be used to e ua.te the performance of the work
guided stra.tegy. One of them is to use a.n a.na!ytica! odel to eva!ua.te if the performance 
of the system corresponds to the optima! model of a.ch computation. Another method 
is to find the optima! performance of a computatio , for limited and unlimited number 
of processors by simula.ting the pa.ra.llel model. Ye another method is to eva!ua.te the 
performance through pure mea.surement, i.e., we h ve two different systems, Andorra
I without the reconfigurer a.nd Andorra-I with the econfigurer, we collect results from 
these two different systems and compare both perfo mances. 

The first method consists of devising a math a.tica! model for the computa.tions, 
where a mathema.tica! formula. would give an estima e of a. possible optimal speedup for a. 
computa.tion. This method is not suitable for logic programs, because the computa.tions 
are very irregular, therefore it would be difficult t find a good mathematica! model to 
describe the computationa! beha.viour of a. program 

The second method is a. whole subject by i self, a.nd not very trivial. The idea. 
is to simula.te the para.llel model a.nd estimate op imal speedups for the computations, 
with limited a.nd unlimited numbers of processors. he simula.tion ca.n be done at a. high 
levei, i.e., only simulate the conceptua! model, or i ca.n be done a.t a.low levei. Low level 
simula.tion is more rea.listic because it takes into account implementation issues of the 
system. Work done by Shen (18) provides such a. ool, but for studying the exploita.tion 
of or-parallelism combined with non-determinate i dependent and-para.llelism, which is a. 
very different model from what we are using. Ais Fernandez (11) studies ideal speedups 
for the same model. Both of them predict per~ rma.nce of a. model that combines or
para.llelism with independent and-pa.ra.llelism at u limited number of processors, and a.t a. 
limited number of processors by finding a. qua.si o timal schedule to run the a.pplications. 
Se h r ( 17) uses a yet different method to achieve t e same goal, by a.nnotating the Prolog 
progra.m with specia! predicates a.nd extra argu ent variables to pa.ss around goal and 
cla.use time informa.tion. 

The third approach consists of evaluating t e results by pure mea.surement by com
pa.ring our new Andorra-I system with the oiJ A dorra.-I system. Although this method 
does not eva!ua.te the system with respect to th best optimal a.chieva.ble speedups, it is 
still useful a.s an evaluation method. As we do no have a. tool to estimate the performance 
of the Andorra model or of the Andorra-I syste , we limited our study of performance 
to mea.surements of performance for different fix d configurations of workers, or in other 
words, different versions of the Andorra-I syste . Our ambitious goal is to a.chieve at 
lea.st the best performance achievable with a.ny fixed configuration, which is a difficult 
target given that the reconfigurer is dynamic (i urs overhea.ds ), and sometimes does not 
make the right choices due to the instant mea.sur s taken for the amounts of and-work and 
or-work . We wiU ca.ll it the target performance. We define the target performance a.s the 
one produced when we choose the best fixed co figuration of workers into teams for ea.ch 
computation at ea.ch number of processors. A most logic programs of our benchmark 
set can run rea.sonably well with the best confi ration of workers into teams, if we ca.n 
produce results similar or better than the ones a.chieved by this best ftxed configuration, 
then we are well enough able to say that our o jectives are completely sa.tisfied. 

Therefore, we compare the performance f the work-guided stra.tegy with what we 
defined a.s ou r t a rget performance. This target erforma.nce wa.s determined by running a.ll 
progra.ms with a.ll possible fixed teams confi a.tions, a.nd getting the best performance 
for ea.ch configuration. As a.n example, we sho in table 2 speedups a.chieved for the best 
llxed teams configuration of lO workers for eac of our benchmarks. The second column of 
the table (Target/Cfg) shows the speedups ac ieved by the best fixed configuration. The 
best fixed configuration is shown between pa entheses. For example, program detndet 
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achieves its best speedup, at 10 processors, with a fixed configura.tion of eight ma.sters and 
two sla.ves, i.e .. eight tea.ms, with two of them with two workers and the remaining six with 
only one worker. The third column of the ta.ble (Reconfig) shows the speedups a.chieved 
with the work-guided strategy. The results shown for the reconfigurer were produced with 
a singlP version of Andorra-I, where the reconfigurer sta.rts from a. configuration of only 
one team of workers . The la.sl row of lhe table (H .mean) shows lhe harmonic mea.n over 
ali lhe benchma.rks. 

The overall result shown by row H.mean confirms tha.t lhe work-guided stra.tegy 
performs similarly to lhe targel performance. For ea.ch benchma.rk individua.lly, the work
guided slrategy performs belter than the ta.rget performance for 10 benchma.rks. For the 
remaining 7 benchmarks, the work-guided slrategy does not reach ou r ta.rget performance, 
allhough the resulls are stiU good. given tha.t it is not a.n ea.sy ta.sk to alloca.te dyna.mica.lly 
lhe righl numbers of workers to lhe va.rying pa.rallel work a.vailable. 

Targel/Cfg 11 Reconfig 11 

ndetdet 8.487 {10M) 9.831 
mixed 3.997 (6M./S) 4.004 
dctndet 3.012 (8M2S) 3.157 
bqu8 7.516 {10M) 4.474 
chat 7.334 {10M) 7.034 
cypher 5.922 {10M) 6.116 
mutesl 5.959 {10M) 6.025 
bqu6 3.950 (9MJS} 2.920 
Oypan2 6.203 (9S) 6.307 
bt.clusler 6.002 (9SJ 5.793 
ftypan4 5.079 (9S) 4.961 
scanner 5.485 (2M8S) 5.414 
roadJDarkings 4.887 (9S) 4.269 
bcnet 3.746 (2M8S} 3.942 
cross1 1 2.666 (9S} 2.917 
flypan5 2.862 (2M8S) 3.382 
cross6 2.529 (9S) 2.260 

11 B.mean 11 4.407 4.258 11 

Ta.ble 2: BEST FIXED CONFIGURATION X RECONFIGURER, AT 10 WORKERS 

Next we evalua.te the work-guided stra.tegy up to 15 processors. In an ea.rlier paper (8] 
we described brietly the initial work-ba.sed stra.tegy and showed some results for a. very 
sma.ll number of processors and different benchma.rks, for the interpreted-ba.sed Andorra-
I (8]. 

In order to reduce the complexity of this section we present gra.phs for some repre
senta.tive classes of progra.ms of our benchma.rk set. They fa.ll in to six subgroups depending 
on whether the pa.ra.llelism is high or low, a.nd whether it is mainly a.nd-para.llelism or or
pa.ra.llelism. For brevity, we ca.ll these groups: (1) only or, (2) only and, (3) high or, low 
and, (4) high and, low or, (5) low or, lower and, a.nd (6) low and, lower or. Group (1) 
ha.s only or-pa.ra.llelism. Group (2) ha.s only a.nd-para.llelism. Group (3) ha.s a. high degree 



458 XVCoogr da Sociedade Brasileira de Computação 

of or-pa.rallelism with low degree of and-pa.rallelism Group (4) ha8 a high degree of and
pa.rallelism, and low degree of or-pa.rallelism. Grou (5) ha8 a low degree of or-pa.rallelism 
and low degree of and-pa.rallelism, but the amo t of or-pa.rallelism is bigger than the 
amount of and-pa.rallelism. Group (6) ha8 a low d ee of and- and or-pa.rallelism, but the 
amount of and-pa.rallelism is bigger than the amou t of or-pa.rallelism. 

8.1 
" ]8 
"" cn6 

4 

2 

Figure 2: WORK-GUIDED STRATEGY: ONLY OR BENCBMARKS 
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Figure 3: WORK-GUIDED STRATEG 
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The graphs in figures 2, 3, 4, 5, 6 and 7 show the compa.rison between the work
guided strategy and our ta.rget performance. e thick line in the graphs representa the 
performance of the work-guided strategy, while the thin line representa our ta.rget perfor
mance. Note that for some of the benchma.rks, e need different weights for and- andor-, 
which means that we may need different confi ations of ma8ters and slaves at different 
nurnbers of processors in order to achieve best speedups with a fixed configuration. The 
fixed configuration that produced the best s up is attached to the fixed configuration 
curve (these are shown a8 amall numbers in t e graph. For example, 11M3S in figure 4 
shows that, at 14 processors, the best fixed nfiguration for the benchma.rk ndetdet ia 
the one with 11 teams, three of them with 2 workers and the remainiag with only one 
worker) . 
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Computations that contain or-parallelism only achieves best performance with a 
fixed configuration tuned to exploit or-parallelism only, i.e., severa! teams with only one 
master (choice of weighting 1). Computations that contain and-parallelism only achieve 
best performance with a fixed configuration tuned to exploit and-parallelism only, i.e., one 
team of one master and severa! slaves ( choice of weighting 2). The work-guided strategy 
performs s~arly to these different versions of Andorra-I, as is shown by benchmarks 
chat and lllUtest in figure 2, and benchmark bt..c:luster in figure 3. This means that the 
overhead of rearranging workers into teams is very low. 

For programa that contain a mixture of both kinds of parallelism, we would like the 
work-guided strategy to perform similarly or better than the target performance, although 
this is a difficult t.arget. Indeed the reconfigurer reaches the target performance for most 
of the benchmark programa that contain a mixture of both forms of parallelism ( e.g., 
ndetdet in figure 4, flypan2 in 5, and bcnet in figure 7). 

Figure 4: WORK·GUIDEO STRATEGY: BJGB OR, LOW ANO BENCBMARKS 
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Figure 5: WORK·GUIDED STRATEGY: BIGB ANO, LOW oa BENCBMARKS 
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The computation flypan2 (figure 5) is an example of a program where no fixed 
configuration would achieve best performance, because it contains two distinct phases of 
computation, an and-parallel phase followed by an or-parallel phase. In practice, with 
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this particular class of computations ( that includes ill computations that contain dis
tinct phases), we showed that using dynamic reconfi~ation of workers into teams we 
achieve better speedups than setting the best fixed co ltiguration. This is also true for the 
benchmark detndet (figure 6). • 

Figure 6: WORK-GUIDED STRATEGY: LOW OI, LOWER AND BENCHMARKS 
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Figure 7: WORK-GUIDED STRATEGY: LOW I'ND, LOWER OR BENCBMARKS 
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For the program flypan2, we can show by pimple analysis that our strategy obtains 
the best speedup possible with the Andorra-I Íll plementation. As program flypan2 has 
two distinct phases of computation, we can say the program is executed optimally in 
parallel by Andorra-I within the following time: 

Dp +!I 

where Dp is the time taken to execute the and-p frallel phase in parallel, and Np is the time 
taken to execute the or-parallel phase in parai e!, i.e., the determinate phase taking Dp 
time units to finish and the non-determinate p~ase taking NP time uiuts to finish. Let D, 
be the time to execute the and-parallel phase sfquentially, and N, be the time to execute 
the or-parallel phase sequentially. From our periments with Andorra-I, taking as an 
example runs for 10 processors, we have the fo owing time information for this program: 
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(1) D, + N, = 13.727secs, this corresponds to the average time taken to execute the 
program sequentia.lly; 

(2) D, + N, = 2.422secs, this is the average time taken to execute the program with only 
and-para.llelism, at 10 processors; 

(3) D, + N, = 13.646secs, this is the average time taken to execute the program with 
only or-para.llelism, at 10 processors. 

Adding (2) and (3), we get: 

D, + N, + D, + N, = 16.068 

Subtracting (1), we get, 
D, + N, = 2.341 

i.e., the time to execute the program optima.lly with and-para.llelism and or-para.llelism 
with 10 processors should be around 2.341 secs. The best fixed configuration of workers in 
Andorra-I executes this program at 10 processors in time 2.422 secs, while the work-guided 
strategy produces execution time of 2.172 secs. This means not only that the reconfigurer 
produces a better speedup than the target speedup, but it manages to achieve slightly 
better speedups than the best predicted by the preceding analysis. This is explained by 
the fact that, if there is little and-parallelism available, and there are more workers in 
a team than necessary to exploit the parallelism, Andorra-I behaves very inefficiently. 
IdJe slaves in a team can steal the work of any other worker, and the execution may be 
swapped from one worker to another very frequently. The immediate disadvantage of 
this phenomenon is that processors need to reload their caches frequently. While using 
fixed configuration of workers, Andorra-I incurs more overheads with workers in a team 
competing to execute the work available. While using dynarnic reconfiguring, workers 
instead of competing to obtain more work in its team, have a chance of being redeployed 
to elsewhere, and do not disturb the execution of other workers. As the reconfigurer 
preventa slaves of disturbing each other by redeploying them to elsewhere, and the total 
cost of reconfiguring is much lower than the costs of sharing para.llel and-work or parallel 
or-work in a fixed configuration, the reconfigurer achieves slig~tly better speedups than 
the best possible computed from real runtime units. 

If we apply the same reasoning to program detndet, the result is similar, with the 
reconfigurer perforrning around 10% better in average than the best possible, predicted 
analytically. 

For some of the computations (e.g., bqu8, in figure 4), the work-guided strategy 
achieves good performance, but it does not reach the target performance. This is explained 
by the fact that the or-para.llel phase in these computations is dominant, but there is a 
very sma.ll amount of and-para.llelism in the or-parallel branches. Because the reconfigurer 
uses instant runtimé information to redeploy workers, it believes that there is more and
parallelism than the program really contains (although the run queue has plenty of goals, 
they are finished very shortly), and preventa slaves from becoming masters to exploit the 
or-parallelism available. 

5 Conclusions 

In this work we performed two important evaluations. First, we evaluated the benefits of 
using dynamic reconfiguring in the Andorra-I system. Second, we studied the performance 
of the work-guided reconfiguring strategy. 
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We showed how Andorra-I with dynamic recon guration compares with Andorra-I 
with no dynamic reconfiguration using the work-guide reconfigurer as an example of dy
namic reconfiguring. We did a comparison for some p ausible fixed configurations, where 
we give different weights to and-parallelism and to r-parallelism. We concluded that 
Andorra-I with dynamic reconfiguring is much better than Andorra. I without a reconfig
urer, for three reasons: 

• The user does not have the burden of deciding hich configuration to use. 

• Overall, the reconfigurer performs much better han any one of the fixed configura
tions. 

• For individual benchmarks, the reconfigurer p forros as weU as or better than any 
of the fixed configurations. 

We also attempted to evaluate whether the per ormance of the work-guided strategy 
is as good as it could be by comparing it with a t rget performance given by the best 
speedup achievable by any fixed configuration. 

The comparison with the target performance d pends on the k.ind of application. For 
programs that present only one forro of parallelism, the work-guided strategy performed 
similarly to the target performance, which implies that rearrangement of workers into 
teams does not incur much overhead. For programs hat present both k.inds of parallelism 
with a reasonable grain size, the work-guided stra egy performs around 6.5% better in 
average than the target performance, at 10 proces rs. For programa that contain both 
kinds of parallelism, but with fine grain size, the WOl' -guided strategy still performs better 
than the target performance for some cases, is si · ar to the target performance in other 
cases, and does not perform very well for certain ê es. 

Although dynamic reconfiguring was applied o a particular parallel logic program· 
ming syotem, we believe that the same idea can be pplied to other parallellogic program
ming system that aims to exploit both and- and o parallelism. 
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