VII Simpdsio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 581

A Tool for Modeling and Simulation of Computer Architectures Using’
Petri Nets

Marcelo H. Cintra’
Wilson V. Ruggiero"

'Laboratério de Sistemas Integraveis
e-mail: meintra@lsi.usp.br
""Laboratério de Arquiteturas e Redes de Computador
e-mail: wilson@larc.usp.br

Universidade de Sdo Paulo

Abstract

The developments in the field of computer architecture, especially parallel systems, lead
to the design of even more complex architectures, making it difficult to take decisions
that would increase the performance of the system. In order to analyze objectively the
advantages of different architectural choices, it is important to have modeling and
analysis techniques and tools that can efficiently acquire data about the system's
performance.

Petri nets have been used successfully as a modeling tool for computer
architectures. However, the analysis of the complex nets needed to model real systems
has become a limiting factor for using Petri nets. To efficiently use Petri nets for
modeling these complex systems, one needs powerful computer simulation tools.

In this paper we present the program RP_SIM, an object oriented tool for the
simulation of Petri nets. We use this simulator to analyze a simple computer architecture
model, showing the viability of the use of Petri nets, together with the tool presented, to
model general computer architectures.

1 Introduction

In the pursuit of more powerful computers, many different architectures have
been proposed. Those computers have great differences with respect to the number and
type of processors, memory configuration and hierarchy, interconnection network,
synchronization support, and many other factors that affect the overall performance of
the computer system.

To make an objective analysis of the advantages of a given architecture over
other proposals, both to help in the design and to compare existing machines, it is
convenient to use models and simulations. With this approach one can accelerate the
design of new machines and reduce the need for experiments with real systems, which
are usually expensive and time-consuming,

' This research was supported in part by Conselho Nacional de Desenvolvimento Cientifico e
Tecnolégico (CNPq - Brazil)

582 XV Congxe%o da Sociedade Brasileira de Computagio

Petri nets have been used successfully to ﬁ'lodel computer architectures. This
technique has proven itself adequate to model both parallelism and conflict(l], two
important characteristics present in modern computer systems. Besides the capacity of
the original net to model the flow of control and data, extensions such as timed and
stochastic Petri nets are also powerful techniqueg for analyzing the performance of
systems. Zuberek(!6] used timed Petri nets to get performance indices of some computer
architectures. Shaefer(!4] used basic Petri nets to model the control of massively parallel
computers. Petri nets can also be used to model a microprocessor’s internal operation, as
was done by Razouk(!1],

The complexity of the analysis of the Petri nets created to model real computer
systems requires the use of computer simulation tools. Many tools for that purpose have
been proposed in the literature, as in [2] [3] [6] [9]. These tools were developed to run in
different platforms and have distinct features and graphical user interfaces. We believe
that an important feature that will prove to be extremely useful is the possibility of step-
by-step simulation, as is done in [6]. By doing steﬁ-by-step simulation, one can analyze
very complex Petri nets without the need to use traditional analytical methods that
involve the computation of the net’s reachability set, whose complexity tends to grow
exponentially with the problem size.

In this paper we present the simulator RP_SIM as an object oriented tool that can
solve complex Petri nets, step-by-step, in non- ive personal computers. The
organization of this paper is as follows: in section 2 we present a short introduction to
Petri nets, in section 3 we present an overview of’ [the simulator and its features, and in
section 4 we use the simulator to analyze a queuing system M/M/2/B. In section 5 we
use the simulator in a simple model of a compufer architecture, mostly to demonstrate
the potential of the use of Petri net modeling and the tool presented. In section 6 we
present some conclusions and final remarks and we discuss some desired improvements
in the program, which shall be implemented in the flilture.

|

2 Petri Nets ;

A basic Petri net may be defined as a graph created with three sets: a set of
places P, a set of transitions T and a set of directed arcs A. Arcs may link places to
transitions or transitions to places. A formal deﬁnit?on of a basic Petri net would be:

PN={P, T, A} !

P - {pli p2> PJ» Wiy Pn} i

T = {t1, t2, t3, ..., tm} ;‘

A c {TxP} u {PxT} !

A place pj is said to be an input place of|a given transition t; if there is an arc
directed from pj to tj. Similarly a place pj is said lo be an output place of t; if there is a
directed arc from t; to p;. |

10={p | (0.1 A

0m={p | t,p) € A} |

Besides the sets defined above, a marked +etri net is also identified by a marking
M. Tokens are assigned to places and the marking in a given state of the net is defined by
the set of all tokens currently assigned to each place in the net:

MS = {msl'l mg2, Mg3, ..., mSII}

VII Simpdsio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 583

where mg; represents the number of tokens in place i in the marking Ms. Mg represents
the initial state of the net. \

The execution of a Petri net is done by the firing of transitions. A transition may
fire if it is enabled, a situation that happens when all its input places have at least one
token. The firing of a transition involves removing a token from all the input places and
putting a token in each output place, thus generating a new marking M. Based on this
definition, one can see that the number of tokens in the net changes when
| 1(t) | | octi) |

With respect to these basic transitions, the firing is immediate and in the case that
two transitions be in conflict, i.e., both are enabled in a given marking Mg and the firing
of one transition disables the other, the choice of which one to fire is non deterministic.

Many extensions have been proposed to increase the modeling power of the basic
Petri nets. Some extensions are;
* Arcs with multiplicity k: in this case a transition is enabled only if the number of tokens
in each of its input places is greater than or equal to the multiplicity of the arc linking the
place to the transition. The firing of a transition, then, involves removing from the input
places as many tokens as the multiplicity of the incoming arc, and assigning to the output
places as many tokens as the multiplicity of the outgoing arc.
« Inhibitor arcs: inhibitor arcs indicate that the absence of tokens in an input place enables
the transition and the presence of a token disables the transition. The firing of the
transition follows the same rules of the basic net except that the input place connected to
the inhibitor arc remains untouched.
* Colored nets: in this special net, the tokens may be assigned an identification (color)
and the enabling of a transition may depend on the colors of the tokens in the input
places. The firing of a transition may remove tokens of a given color from the input
places and put tokens of a different color in the output places, thus changing the colors
of the tokens as they move through the net.
* Timed nets: the time factor may be introduced in the places so that a new token is only
available to a transition after some time delay. More commonly, one associates time to
transitions in which case there are two possibilities: a transition may require a given
enabling time, after which the firing is immediate; or the transition may fire as soon as it
is enabled but the firing may take some time.
« Stochastic nets: in this case one associates a random time to the firing or enabling time
of transitions. In the GSPN model, transitions can also be defined as immediate, and they
have priority of firing over transitions with non zero time. There is also the DSPN net
that is a GSPN net that can handle both random and deterministic firing times.

For more details about Petri nets the reader is referred to Peterson’s bookl19].

3 The Simulator RP_SIM

The simulator RP_SIM is a tool for simulation of Petri nets that is capable of
dealing with deterministic and stochastic Petri nets (DSPN) and which also supports
colored tokens and arcs with multiplicity. This program was initially developed by
Sangiorgiol!2] and is currently being improved and extended. Different from the majority
of the existing tools, this simulator presents an open architecture, allowing the user to
extend the tool by adding its own code, written in a language developed with some
features offered by the object oriented programming language C++15). This particular

|
584 XV Congrm& da Sociedade Brasileira de Computagdo

|
!
|

feature of the simulator makes it highly flexible, mc{easmg, however, the complexity of

its use.
Due to its open architecture, the s1mulator||s not an executable program, but
consists of codes written in C++ - RP_SIM.CPP and SIM_OBS.H - that must be
compiled along with the user’s code, called RP_SIM.-H. The executable program
generated may be run in PC-type computers, vmhout demanding requirements of
hardware and software. |

This program can simulate the step-by-step execution of Petri nets, firing the
transitions and generating the new markings. A di of the overall operation of the
simulator is shown in figure 1. As can be seen in figure 1, the simulation is divided in
well-defined phases. Because of the simulator’s open architecture it is possible for the
user to access each one of these phases, both for acquisition and for taking decisions
regarding the flow of the simulation. The access to the simulation phases is done by code
added to the routines shown in figure 1. This codF must be written in C++ and it may
include some extensions created to describe and with Petri nets. These extensions
were created with some features of the C++ language, such as classes, operator overload
and member functions. The extensions help describe and manipulate Petri nets and are
described in more detail in [4] [12] and [13]. |

Pre Simulat ionRout ine

End?

f’ PostsimuationRoutne

[EvatuationorenabledTransitions | F END

] |
|

| Evaiuationomewm. |

i

i
:

iringR

Figure 1 overall diagram of operation of the simulator RP_SIM. The simulation is divided in many
phassthatarercpresemedbyf\mcuonsﬂmcanbeaocesbedbyﬂwuser These phases correspond to the
beginning and end of the simulation and the beginning ahd end of each simulation cycle

E

The simulator does not use tradltlomil analytical methods to get Petri net
parameters such as net invariants, bounclednes.s,| liveness, conservativeness and safeness.
However, it can obtain many other important da.ramcters in an iterative way, along the
simulation, which is a feature that, as mentioned|above, does not require the computation
of the reachability set. Figure 2 shows the parameters related to places and transitions
obtained by the simulator in a given simulation. Besides these values, the simulator also
displays de total simulation time and the numbelf of simulation cycles.

\

VII Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 585

Place Transition
mean number of tokens time in firing state
mean holding time of a token number of firings
number of cycles without tokens mean firing rate
occupation factor

Figure 2 parameters related to places and transitions given by the simulator. The mean firing rate is
the ratio between the number of firings and the simulation time. The occupation factor is the ratio
between the time in firing state and the total simulation time

Before starting the simulation, the program asks the user to specify the desired
number of simulation cycles. Each simulation cycle corresponds to the firing of one
transition and the number of cycles in a given run is an important parameter for the
correctness of the results. Insufficient simulation cycles may lead to results that do not
express the normal operation of the net in steady state.

The user has also the option of asking for the interruption of the simulation after
the occurrence of some predefined event. In these cases, the simulation is paused and the
partial results for the parameters in figure 2 are shown. The simulation can be interrupted
in the following situations:

+ only at the end of simulation (no interruption)
« at every N cycles

+ when there are N tokens in a given place’

« after the firing of a given transition

After the displaying of the partial results, the user has the option to terminate the
simulation or continue it until the next occurrence of the event or until the number of
cycles reaches the limit, whichever happens first.

Because of the simulator's open architecture and the object oriented
programming in C-++, the user can create his or her own kinds of places and transitions,
derived from the basic types offered by the simulator. The user can also get data and
statistics beyond the ones mentioned in figure 2. This can be done by implementing
particular pre and post-firing and pre and post-cycle routines. In these routines the user
can, for instance, perform input and output of data specific to his or her own model.
These procedures may also reflect the user's net own semantics, plus the user can even
alter the standard operation of the Petri net, if so desired.

4 A Queuing System

To test the effectiveness of the simulator RP_SIM, we developed a Petri net
model of a queuing system of the type M/M/2/B. Figure 3 shows the model. This net was
then extensively simulated and some important parameters were measured.

\
\
586 XV Congresso da Sociedade Brasileira de Computagdo

Figure 3 Petri net model of a queuing sysleqi with two servers and B buffers

In the model of figure 3, place p2 repr#nts the client waiting on the line, and
places p31 and p32 represent the client being serviced by one of the servers. The
maximum number of clients in the system (buffer and servers) is limited by the number of
tokens in p6, which is limited to B. Place p7 serves the purpose of collecting data about
the services refused by the system. Since the simulator currently does not support
inhibitor arcs, transition t5 is explicitly disabled if there are tokens in p6. Places p51 and
p52 collect data about the services completed by 'each server. Transitions t1, t41 and t42
have an enabling time exponentially distributed with mean 1/A, 1/p and 1/p respectively.
Thus, the arrival rate of requests is A and the total service rate is 2*y. The load in such a
queuing system is defined as p=A/(2*p). Jain(®l presents a more detailed description of
queuing systems and presents some analytical formulas for the system's performance that
will be used in the following analysis. |

Some simulations were performed to ol?'tain the mean waiting time in the queue
(E[w]), the mean number of clients in the queue(E[n]), and the loss rate (y). The waiting
time is the time spent by a client waiting to t:&e serviced and the loss rate is the ratio
between the number of clients refused because the buffers are full and the total
simulation time. Figure 4a shows the simulation results for some values of p and figure
4b shows the values evaluated with the ana!ylichl expressions presented in [8].

VII Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 587

E[w] E[n) Y
0.1 1.04x10°3 2.06x1073 0
0.2 3.91x10-3 15.5x10°3 0
0.3 9.81x1073 59.0x10°3 0
0.4 18.4x10-3 0.146 0
0.5 31.6x1073 0.315 0
0.6 60.7x10"3 0.727 0
0.7 102x10°3 1.44 0
0.8 202x10°3 3.21 0
0.9 410x1073 7.39 3.60x103

(a)

E[w] E[n] ¥
0.1 1.01x10-3 2.02x10-3 0(10766)
0.2 4.17x10°3 16.7x10°3 0(10-46)
0.3 9.89x10°3 59.3x1073 (10734
0.4 19.0x10-3 0.152 o 10-26)
0.5 33.3x10°3 0.333 0(]0-20)
0.6 56.2?{10'3 0.675 0(]0'“)
0.7 96.1x1073 1.35 0(10-10)
0.8 178x10-3 2.84 1.42x10"6
0.9 422x10°3 7.60 1.81x103

(b)

Figure 4 mean waiting time (E[w]), mean number of services in the queue (E[n]) and loss rate (y) (a)
from simulation (b) from analytical solution. For the simulation: B=66, p=10, N=2 and the number of
simulation cycles was 100000

Comparing the data from figures 4a and 4b, we can verify that the values
evaluated by the simulator are very close to the ones evaluated by analytical means. The
error for the mean waiting time was on the average 5.5% and the differences were all
between 0.8% and 13.5%. The error for the mean number of clients in the queue was on
the average 5.6% and the differences varied from 0.5% to 13%. As the seed for the
generation of pseudo-random values for the simulation is generated at the beginning of
the simulation, if we increase the number of simulations performed for the same value of
p it is possible to further reduce the errors. In figure 4 we can also observe that the
number of services refused was null for the majority of the cases. This happened because
the number of cycles of simulation is finite and not enough cycles were simulated to
reach the situation of firing of t5. On the other hand, the values from the analytical
expressions are for an ideal situation with an infinite observation time. From the
analytical values we can see that the loss rate was extremely small, requiring a huge
number of simulation cycles to achieve the expected results.

In addition, we also conducted another set of simulations to get the number of
buffers required to keep the loss rate below 0.01 (y<0.01). The simulations were
performed for the same queuing system and the results for the simulation and the
analytical expressions are shown in figure 5.

588 XV Congr&q'o da Sociedade Brasileira de Computagdo

]

—@— B simulation

—-o— B analytical

b
o
1

N
o

PEPETIPES BPETW O AR TP AR

number of buffers
w
o

—
o

o

0
>
ad|

Figure 5 number of buffers required to keep the loss rate bellow 0.01, For the simulation: p=10, N=2
and the number of simulation cycles was 100000

| e T T T 71
™~ 0 ©
o

T 1
<
o o

45

1 I I 1
pFR-LELD 8 IR0 © @
o TieNo o (=]

0.05
0.15
0.25
0.35
0.55
0.65
0.75
0.85

o0

{

Looking at figure 5 we can see that the simulation results were extremely close to
the expected values. In all cases the relative errars were very low, 5.9% in the worst
case. Moreover, one would expect the relative errors to be high because the number of
buffers is discrete. So, for example, if B=2 is not Jl.wﬂicient to keep y within the desired
limits, even for a little amount, the next possible|value for B would be 3, generating a
relative error of 50%. This peculiarity could in4ressc the simulation errors, but even
under this consideration the simulator reached aln1c>st exact results,

\
[
S A Computer Architecture Model :
|
Using Petri nets, we developed a modelfto represent, in a simplified manner, a
massively parallel computer architecture. This model represents a MIMD computer with
N processors connected through any static point-to-point interconnection network. This
computer has four levels of data access: register, cache memory, local memory and
remote memory (through distributed shared men{ory or message passing). The operation
of the computer under average conditions or under a specific algorithm can be modeled
through the probabilities of access to data at eaclfm one of these levels. Figure 6 shows the
Petri net model. JI
|

VII Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 589

Figure 6 Petri net model of a massively parallel computer architecture with N processors and point-to-
point static interconnection network

Figure 7a shows an example of interconnection network that can be modeled by
the Petri net in figure 6: a 2D mesh with 16 processors. The internal organization of a
processing node with microprocessor, cache and local memory is shown in figure 7b.

cessi od
A/pm e processing node
EI:I:' microprocessor
. el
1
network
local interface
memory -
N
point-to-point connection
(a) (b)

Figure 7 (a) representation of a 2D mesh interconnection network (b) internal organization of a
processing node

In the model, the number of tokens in p1 indicates the number of processors that
are executing instructions. The instruction fetch is assumed to take one clock cycle, and
to execute the instruction the processor performs a data fetch. The data can be in the
registers, in cache, in local memory or in remote memory. In the case of the data being in
register, the access can be assumed to be immediate if a pipeline is used (actually the data
fetch takes another cycle but the pipeline can hide this latency). In the other cases the
data fetch imposes a delay during which the processor goes idle. This model does not
currently implement latency hiding techniques present in some modern high performance
computers. To model the parallel execution of instructions and data access by many
processors, the firing rates of transitions t1, t4, t6 and t9[i] are adjusted according to the

590 XV Congmso’da Sociedade Brasileira de Computagio

|

number of tokens in their input places. So, for instance, the firing rate of t1 in a given
simulation cycle is given by m(p1)/Tproc, where m(pl) is the number of tokens in pl.
This technique for modeling parallel activities is not exact but is a good approximation
for the ideal model, which would consist of many places and transitions connected in
parallel and with fixed firing rates. The blocks formed by p6[i], t8[i] e t9[i] represent the
access to a remote memory distant i+1 hops. The enabling times of transitions t9[i] have
an exponential distribution and are proportional to the number of hops to the processing
node and inversely proportional to m(pé6[i]). Thus, for;[instance, the mean access time for
data distant 5 hops is (5*Thop)/m(p6[4]), where Thop is the access time for data located
in a neighboring node. With this Petri net we can model a system with an arbitrary
number of processors and an interconnection network lwnh diameter d, with a reasonably
small number of places and transitions. szsn

Initially, we used the above net to model a ively parallel computer with 512
processing nodes, with one processor at each node and with a 3D torus interconnection
network. The diameter d of a torus with N nodes, dimension D and width w is given by:

w="N 5

o3 w

So, for N=512 and D=3 we have d=12. example of a real computer
architecture that is similar to the model described is the Cray T3D system, which has a
3D torus interconnection network with at most 1024 processing nodes with local
memory and two processors per nodel’], To evaluate the probability of access to the
different levels of the memory hierarchy we used results presented in [7] for the
instruction mix for a general RISC processor. The probabilities of access to the different
levels are modeled by the random switch formed by 2, t3, t4 and t7, whose probabilities
of firing are Preg, Pcache, Plocal and Prem, respectively. Thus, we assumed that for data
located in the same processing node the probabilitthhat the data be in the register is
75%, i.e., Preg=(1-Prem)*0.75. If the data is in the node but is not in the register the
probability of the data being in the cache is 95%, i.e., Pcache=(1-Prem)*0.25*%0.95. The
probability that the data be in the local memory is then 5%, ie., Plocal=(1-
Prem)*0.25%0.05. We performed a series of simulations for many values of Prem and we
estimated the performance loss due to inter processor communication, using as reference
the case N=512 and Prem=0, which represents the ideal case of no communication
overhead. In this initial situation we considered that the remote data are equally
distributed among the other processing nodes. So, we supposed that on the average this
situation would be equivalent to accessing all remote data from a node d/2 hops away.
For these simulations we used processing time Tproc=1, cache access time Tcache=3,
local memory access time Tlocal=10 and remote meﬂlory access time Thop=1000 cycles.
The results obtained are shown in figure 8. ’

VII Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 591

relative performance (%)

0 1 LI) I I 1 L] I 1 I I
0 02 04 06 08 1 12 14
remote memory access (%)

Figure 8 relative performance loss for the case of 512 processors, using as reference the ideal case of
no inter processor communication overhead. The horizontal axis is the probability of access to data in
the remote memory. The number of simulation cycles used was 400000

To calculate the performance loss we first considered the ideal case, with no
remote access, and we obtained the number of instructions executed per unit time for
that case (execution rate). To measure the number of instructions executed we added the
number of firings of transitions t2, t4, t6 and t9[i]. The execution rate is the ratio
between the number of instructions executed and the total simulation time. We then
obtained the execution rate for the other cases and the relative performance loss for each
case is the ratio between this execution rate and the sequencial execution ratc.

Based on figure 8 we can detect that the performance of the architecture is
extremely sensitive to the data distribution. With a small fraction of the data being
accessed remotely the achievable speedup may become very small. This matches the
results found in real massively parallel systems, in which the actual performance in most
applications is just a small fraction of the peak performance.

We then conducted an analysis of the sensibility of the architecture to the
placement of the remote data. We considered in this case that the overall probability of
access to remote data is 0.5%. To analyze the case of hotspots we considered that for
remote data access the probability of the access being to a generic node k hops away is
always 2%, except for the hotspot, whose probability of access given that the access is
remote is 78%. Figure 9 shows the results of these simulations.

592 XV Congresso|da Sociedade Brasileira de Computagio
|

E-Y
o

[V
o

(%)

NN W
g O

o

=y
L4,

relative performance

ks
o

o O

1 2 3 4 5 6 7/8 9 10 11 12
hotspot,

Figure 9 relative performance loss for the case of 512 prodessors and remote access with hotspot. In
these cases the remote access probability is 0.5% and the ni of simulation cycles is 400000

From figure 9 we can observe that the performance of the system suffers a
significant degradation as the data required for the computation move to the more distant
nodes. The impact of moving the data away is, however, bigger for the nodes closer to
the processing node. This suggests that if an optimal data distribution is not possible,
thus generating a high inter processor communicdtion, then the impact of the actual
remote access time is no longer so significant. Considering the preceding assertion,
reducing the remote access time in machines with a large number of processors working
together in a single problem is not as important as achieving a better data distribution and
reducing the need for inter processor communication.

The model presented in this section, although simple, can model a general class of
massively parallel computer systems, and many important performance indices can be
obtained. We intend to extend the model, increasing the level of detail, making it an even
better model of the real Cray T3D system. We also plan to embed existing algorithms in
the model through the probabilities of access to the different levels of the memory
hierarchy. With that, it will be possible to model h)oth the computer hardware and the
algorithm. l‘

|
6 Conclusion and Future Work |
The ability to analyze computer architectures through modeling and simulation is
increasingly becoming an important issue in the design of new machines with reduced
cost and development time. The analysis performed in this paper, though with a simple
model, presented very promising results, showing that the joint use of Petri nets and the
simulator RP_SIM can be used to analyze real computer architectures.
The simulator has a unique configuration, based on a step-by-step simulation and
iterative evaluation of the relevant net parameters| We believe that this configuration can

VII Simpésio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 593

solve nets with a higher degree of complexity than current Petri net tools can. Despite
this unique configuration, the correctness of the simulator was verified through the
analysis of a queuing system, whose analytical solution is known.

Though the simulator proved to be a powerful tool, its user interface still needs
some refinements, specially the addition of a graphical user interface. The fact that the
simulator uses an unusual method for solving the Petri net, does not discard the
possibility of inclusion, in future versions, of traditional methods based on the
reachability set. These additions would greatly improve the simulator's power and ease of
use.

With the current features and future improvements we hope to offer a powerful
tool both for teaching purposes and for helping in the development of new complex
computer architectures.

References
[1] Agerwala, T., "Putting Petri Nets to Work", Computer, December 1979, pp. 85-94

[2] Atamna, Y., "RPTS: A Tool for Stochastic Timed Petri Nets", Proceedings of the 5th
International Workshop on Petri Nets and Performance Models, 1993

[3] Ceska, M. and Skacel, M., "Petri Net Tool PESIM: the tool for Petri net drawing,
simulation and analysis", Proceedings of the 5th International Workshop on Petri Nets
and Performance Models, 1993

[4] Cintra, M. H., Manual do Usudrio do Programa RP_SIM - Simulador de Redes de
Petri Interpretadas, Technical Report, Universidade de Sdo Paulo, 1994

[5] Cray, Cray T3D System Architecture Overview Manual, Cray Research, 1993

[6] Gellot, F., Carre-Menetrier, V., Lecolier, G. V., "PETRILAM: A Tool for Petri Nets
Analysis and Simulation", Proceedings of the 5th International Workshop on Petri Nets
and Performance Models, 1993

[7]1 Hennessy, J. and Patterson, D., Computer Architecture a Quantitative Approach,
Morgan Kaufmann, 1990

[8] Jain, R., The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling, John Wiley & Sons,
1992

[9] Lindemann, C., "DSPNexpress: A Software Package for the Efficient Solution of
Deterministic and Stochastic Petri Nets", Proceedings of the 5th International Workshop
on Petri Nets and Performance Models, 1993

[10] Peterson, J. L., Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981

