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ABSTRACT 

The MULTIPLUS project aims at the development of a modular distributed shared
memory parai lei architecture able to support up to 1024 processing elements based on 
SPARC microprocessors and at the implementation ofMULPLIX, a Unix-like operating 
system which provides a suitable parallel programming environment for the 
MUL TIPLUS architecture. After reviewing the main features o f the definition o f the 
MULTIPLUS architecture and the MULPLIX operating system, this paper describes in 
detail the current implementation o f the main modules o f the MUL TIPLUS architecture 
and presents, with an illustration example, the parallel programming primitives already 
implemented within MULPLIX. 
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1. INTRODUCilON 

The MULTIPLUS project [AUDE91, AUDE94] has been under development at 
NCEIUFRJ for some years now and has provided a nice and challenging frarnework for 
research work in several areas related to the world of High-Performance Computing: 
Parallel Architectures, Operating Systems, IC Design, CAD Tools for IC Design and 
Parallel Algorithms. 

The main objectives o f the MUL TIPLUS project includes the development o f a 
distributed shared-memory parallel architecture and the MULPLIX operating system. 
General aspects o f the MUL TIPLUS architecture have been discussed in previous papers 
[BRON90, MESL90, OLIV90, MESL92, OLIV92, BRON93] as well as the main 
features of the MULPLIX operating system [AZEV90, AZEV93]. The focus of this 
paper is to give some detailed insight into aspects of the implementation of the first 
prototype o f the MUL TIPLUSIMULPLIX environment for paralell processing 
applications. 

Section 2 o f this paper reviews the main features o f the MUL TIPLUS architecture and 
o f the MULPLIX operating systems. Section 3 presents the current implementation of 
each processing element within the MUL TIPLUS architecture. In Section 4, the 
implementation of the multistage interconnection network and of its interface to each 
MUL TIPLUS cluster o f processors is presented. Section 5 comments on the 
implementation of the 110 Processor and its control system. Section 6 describes the 
parallel prograrnming primitives which have been implemented within MULPLIX and 
illustrates the use o f these primitives in a very simple parai lei application. Finally, Section 
7 comments on the current status o f the project and its perspectives for the near future. 

2. THE MULTIPLUS/MULPLIX PARALLEL PROCESSING ENVIRONMENT 

MUL TIPLUS is a distributed shared-memory high-performance compu ter designed to 
have a modular architecture which is able to support up to I 024 processing elements 
and 32 Gbytes of global memory address space. The MULPLIX operating system has 
been designed to adequately support parallel applications within the MULTIPLUS 
architecture. Section 2. I describes the main aspects o f the MUL TIPLUS architecture 
while Section 2.2 presents the main features ofthe MULPLIX operating system. Current 
implementation details o f the MUL TIPLUS architecture modules and o f the MULPLIX 
para! lei prograrnming environment are given in the following sections o f the paper. 

2. 1 The MUL TIPLUS Architecture 

Figure I shows the MUL TIPLUS basic architecture. Within MUL TIPLUS, up to eight 
processing elements can be interconnected through a 64-bit double-bus system making 
up a cluster. Each bus follows a similar protocol to the one defined for the SPARC 
MBus (CATA94], but is implemented as an asynchronous bus. 

The MUL TIPLUS architecture supports up to 128 clusters interconnected through an 
inverted n-cube multistage network. Through the addition of processing elements and 
clusters. the architecture can cover a broad soectrum of comoutina oower. ranaiml from 
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workstations to powerful parallel computers. With the adopted structure, the cost and 
delay introduced by the interconnection network is small or even no~ent in the 
implementation of parallel computers with up to 64 processing elements. On the other 
hand, very large parallel computers can be built without the use of an extremely 
expensive or slow interconnection network. 

The MUL TIPLUS architecture can be classified as a Non-Uniform Memory Access 
(NUMA) architecture since a processing element access to memory can be performed in 
four different ways. The fastest memory access is a direct read operation on the local 
caches, which is performed within a processor cycle. The second fastest memory access 
is any readlwrite operation within the local bank of memory since, in principie, it does 
not require the use o f the cluster bus system for its completion. The third fastest memory 
access is a write or a read access with cache failure to a memory position belonging to an 
externai memory bank within the same cluster. In this case, the bus system must be used 
and the bus arbitration time is added to the access time. Lastly, there are the accesses 
generated by a processing element requesting information which is not in its local caches 
but is stored within a memory bank sitting on another cluster. In this case, the bus system 
o f the source cluster , the multistage interconnection network and the bus system o f the 
destination cluster need to be used for the access operation to be performed. Therefore, 
the arbitration times of both bus systems and the multistage interconnection newtork 
delay are added to the access time. 

MULTISTACII 

INTIIRCONNIICTION 

IUTWORIC 

Figure 1: The MULTIPLUS Architecture 
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As shown in Figure l, MULTIPLUS uses a distibuted 110 system architecture. It is 
possible to assign ali processing elements within a cluster to a single 110 processor 
which is responsible for dealing with ali 110 requests to or from mass storage devices 
started by these processing elements. 

Two design decisions have been taken to simplify the problem of maintaining 
consistency among the private caches of the processing elements within the 
MUL TIPLUS architecture. The first one is to have in every cluster one bus dedicated to 
data read/write operations and the other one dedicated to instruction read operations. 
Under this scheme, only the data bus needs to be "snooped" by the cache controller and, 
as a result, the cache consistency problem can be solved within a cluster with the 
methods usually adopted in bus-based systems. The second design decision was to 
irnpose some restrictions on the type of information which is cacheable within 
MUL TIPLUS. Read-only data and instructions are always cacheable. However, data 
which can be modified is only cacheable within a cluster. With this approach, cache 
consistency does not need to be maintained through the multistage intercoMection 
network and the consequent loss in performance can be rninimized through careful 
consideration of data location. 

Simulation experiments [MESL92] have shown that the use of the data bus by the 
processing elements is much more intense than the use of the instruction bus, since the 
hit rate o f instruction caches is significantly higher than that o f the data caches. Because 
o f that, the instruction bus is also used for data block transfers which occur in 110 or in 
memory page rnigration or copy operations. The use of the instruction bus for these 
operations caMot cause any cache consistency problem since the operating system 
flushes ali cache positions occupied by data which are to be overwritten by block 
transfers. 

l.l The MULPLIX Operating System 

MULPLIX is a UNIX-Iike operating system designed to support medium-grain 
parallelism and to provide an efficient environment for running parallel applications 
within MUL TIPLUS. In its initial version, MULPLIX will result from extensions to 
Plurix, an earlier Unix-like operating system developed to support multiprocessing within 
the Pegasus architecture [FALL89]. 

Plurix main goal was to provide an efficient environment for running general-purpose 
processes on an architecture consisting of a few processors and a global memory which 
can be accessed with the sarne time penalty by ali processors. Therefore, Plurix supports 
only large-grain parallelism or concurrency and assumes that the underlying rnachine is 
implemented by a Uniform Memory Access architecture. 

For the MULTIPLUS environment it is essential for the operating system to be very 
efficient in supporting applications which consist o f a large number o f processes that may 
run in parallel, demanding synchronization and, consequently, a lot of context switching 
operations. One of the basic conditions to reach this goal is to heavily reduce the 
overhead in such operations. 
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To solve this problem, one major extension to Plurix included in the MULPLIX 
definition is the concept o f thread. Within MULPLIX, a thread is basically defined by an 
entry point within the process code. A parallel application consists of a process and its 
set of threads. Therefore, when switching between threads of a sarne process, only the 
current processor context needs to be saved. Information on memory management and 
resource allocation is unique for the process as a whole and, therefore, remains 
unchanged in such context-switching operations. 

In relation to synchronization, MULPLIX makes available to the user synchronization 
primitives for the manipulation of mutual exclusion and partial order semaphores. In 
addition, MULPLIX implements the busy-waiting primitives in a different way, since it is 
essential to avoid hot spots through the interconnection network. The algorithm which 
has been adopted for the solution to this problem is an adaptation o f the one proposed by 
Anderson [ANDE90] and is based on the following ideas [AZEV90]: the use of a 
circular buffer to implement the queue of processors waiting for the binary semaphore 
and thc detection o f the availability of a binary semaphore by testing a cacheable local 
variable. 

Within Plurix the memory space allocated to a process consists of a data segment, a codc 
segment and a stack segment for the user and supervisor modes. Memory sharing 
between processes is not allowed. Within MULPLIX, it is essential for the memory 
management system to worry about data locality, to support the concept of a process 
consisting of several threads and to allow memory sharing between threads of the sarne 
process. The following facilities are supported by the MULPLIX memory management 
system: replication ofthe MULPLIX kemel code in cvery processing node; replication of 
the process code in every cluster where a given process is running; definition of an 
additional non-shared local data segment for each thread; definition of an additional local 
data segment in supervisor mode which is shared by ali threads running on the sarne 
processing node; and definition of stack segments i.n the user and supervisor modes for 
each thread. 

Process scheduling is another arca in which MULPLIX must use a different approach to 
the one adopted in Plurix. Within Plurix, there is a single queue of processes which are 
ready for execution and the scheduling policy does not take into consideration data 
Jocality. In addition, time-sharing between processes is always used. Within MULPLIX, 
a specified number o f processors will not run in time-sharing mode. Such processors will 
be scheduled to run threads of parallel scientific applications. The non-time sharing 
policy ensures that these threads may run as fast as possible and without interruptions as 
long as they can or wish. On the other hand, the execution of interactive processes is 
ensured by the fact that there will always be a rraction of processors running with time
sharing. 

Data locality is taken into consideration by the MULPLIX scheduling system through the 
use ofseparate queues ofthreads which are ready to be run in each cluster. Every queue 
can be accessed by any processor. However, a rree processor will only look for a thread 
to run in another cluster queue ifit finds its own cluster queue empty. 
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3, mE MULTIPLUS PROCESSING ELEMENT 

Each MUL TIPLUS processing element consists of: 

. a RISC microprocessor based on the SP ARC architecture definition; 

. a floating-point co-processor; 

. up to 32 Mbytes ofmemory belonging to the global address space; 

. separate instruction and data caches; 

. a serial interface; 

. aROM; 
. an identification register; 
. interruption registers 
. three timers ( one for ORAM refresh and two for general use) 

The current implementation o f the Processing Element is based on the use of a SP ARC 
chipset supplied by Cypress and Ross Technology running at 25 MHz. The chipset 
consists of the following modules: a CY7C601 (integer unit); a CY7C602 (floating 
point unit), a CY7C604 (memory management unit and cache controUer used for 
instruction accesses), a CY7C605 (memory management unit and cache controller for 
multiprocessing systems used for data accceses), four CY7C157 (128 Kbytes of cache 
RAM: 64Kbytes for the instruction cache and 64 Kbytes for the data cache). 

Figure 2 shows a block diagrarn of the Processing Element architecture which is built 
around the Cypress chipset. The number of address tines followed by the number of data 
I ines is annotated next to every bus in Figure 2. Each MUL TIPLUS processing element 
has separate data and instruction caches, but only the data cache controller needs to 
snoop the data bus. The data cache controller works in write-through mode with 
invalidation of shared cache copies, which is a very simple approach and has proved to 
be as efficient as the write-back mode in simulation experiments carried out considering 
typical values for the data cache bit rate and the rate ofwrite operations [MESL92]. 

As can be seen in Figure 2 the processing element can be split into two sections: one 
which deals with instructions and communicates with the MULTIPLUS Instruction Bus 
and the other one which deals with data and communicates with the MULTIPLUS Data 
Bus. Both the instruction and data sections access the same piece of the global memory 
which sits within the processing element. 
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DATA BUS -36164 

Figure 2: The Processing Element Architecture 

The control logic o f the Processing Element is implemented with the use of six EPLDs. 
The first EPLD is used to control the Instrcution Section. It arbitrates the accesses to 
the IMBUS between requests issued by the MULTIPLUS Instruction Bus and by the 
lnstruction Cache Controller, performs the master and slave fuctions within the 
MULTIPLUS lnstruction Bus and arbitrates the use of the common bus for memory 
acces within the processing element bewteen requests issued by the IMBUS and the 
DMBUS. In the control ofthe data section, two EPLDs are used. The first one performs 
address decoding and control of the access to the processing element registers and 1/0 
devices. The second one performs the master and slave functions within the 
MULTIPLUS Data Bus and the arbitration ofthe DMBUS between requests issued by 
the MUL TIPLUS Data Bus and by the Data Cache Controller. The other three EPLDs 
perform the control of the Dynamic RAM. The first one decodes the access type and 
allows page mode access. The second one generates the memory control signals within 
the timing constraints and the third one implements an atomic fetch-and-increment 
instruction as a modification ofthe SPARC atomic instructions. 

Within the memory, a T AG bit is associated with each memory data block in order to 
indicate if a copy of this block may exist in another cache. The bit is set whenever the 
block is read by a different processing element sitting within the same cluster. It is reset 
whenever that block is rewritten by the local processing element. The importance o f this 
bit is to reduce the need for broadcasting any data access to the MUL TIPLUS Data Bus 
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in order to maintain cache consistency. If the T AG bit is not set, the data access can be 
performed within the Processing Element and without the use ofthe Data Bus. 

4. mE MULTISTAGE INTERCONNECfiON NETWORK 

The MULTIPLUS multistage intercoMection network is an inverted n-cube network 
consisting of 2x2 cross-bar switching elements. Separate networks are used to 
intercoMect the instruction and the data busses in different clusters. The adopted 
network topology provides the MUL TIPLUS architecture with two very desirable 
features: modularity and partitionability. The modularity provided by this network 
enables the MUL TIPLUS architecture to grow in numbers o f clusters through a simple 
addition o f extra switching elements to the network. No re-wiring o f the intercoMections 
between the elements already present in the network is required in such operations. The 
partitioning feature o f the network provides the MUL TIPLUS architecture with the 
po~~;ibility of supporting several independent or loosely-coupled groups of clusters. In 
fact, the network ensures that it is possible to choose groups of clusters such that the 
communication within a group does not interfere with the communication within any 
other group of clusters. 

The MULTIPLUS Multistage IntercoMection Network can support up to 128 clusters. 
Each communication path between switching elements in the newtork is unidirectional 
and nine bits wide. The transmitted messages can have variable length up to a maximum 
of 128 bytes. Worrnhole routing is used in the network anda single bit ofthe destination 
address field of the messages is examined by each stage of switching elements to direct 
the message to the next stage. 

Six types of message are supported by the Multistage Inteconnection Network: Write, 
Read, Write Reply, Read Reply, DMA and DMA Reply. Every message can have only a 
single source and single destination, therefore broadcast or multicast type messages are 
not handled by the network. 

A message can be seen as a sequence of packets consisting of eight data bits and one 
parity bit. In general, a message has three basic sections: the header, the preamblt" and 
the data. The header is four byte long and contains information on the destination 
address, message size, message type and identification o f the module that has generated 
the message within the source cluster. The preamble contains an image of the 64-bit 
address tines of the source cluster. lt is only needed in Read, Write, DMA and DMA 
Reply messages. 

Read and Write messages occur when a module within a cluster wants to access a 
memory position belonging to another cluster. The Write Reply message can be used to 
tell the module that has generated the write operation that the requested operation has 
been completed. The Read Reply message retums the requested data to the processing 
element which had issued the corresponding Read message. A DMA message sets the 
Multistage lntecoMection Network to perform a block transferrence of length up to 64 
Kbytes from a region of memory within a given cluster to the local memory of the 
processing element which issued the DMA request. The DMA Reply message uses the 



VII Simpósio Brasileiro de Arquitetura de Computadores · Processamento de Alto Desempenho 629 

Instruction Bus to transfer the requested data in blocks of 128 bytes between clusters. 
On completion of the DMA Reply operation, the Network Interface interrupts the 
processing element which issued the DMA request. 

The architecture of the switching element of the IntercoMection Network implements a 
2x2 cross-bar switch with FIFO buffers assigned to each switch output. lts detailed 
design has been presented by Bronstein [BRON90]. Each switching element has been 
implemented with a single EPLD, which performs the function of the 2x2 switch, and 
two 2Kx8 FIFOs. 

The Network Interface intercoMects the cluster bus systerns to the Multistage 
IntercoMection Network and also performs the functions of bus arbiter and bus reset 
generation. The Newtork Interface consists o f two identical sections: one that deals with 
the Instruction Bus and another which deals with the Data Bus. In addition, it has a 
DMA Controller which is programmed through the Data Bus and performs data block 
transfers through the lnstruction Bus. Within each section, the Network Interface 
consists of 8 modules: the bus interface module with a master and a slave section, the 
FIFO memory for messages to be transmitted, the message transmission module, a duai
port memory for received messages, the message reception module, registers, the bus 
arbiter and the logic for bus reset generation. 

The implementation o f the Network Interface has been carried out with 11 EPLDs, five 
for each section and one for the DMA Controller. The five EPLDS in each section 
perform the following functions: master of the bus; slave of the bus; message 
transmission control; message reception control; store the status o f the messages sent by 
the interface and generate the address ofthe memory for received messages. 

The Master section o f the Network Interface is activated when some remo te Read, Write 
or DMA message arrives at the Interface or when a Write Reply message is received. 
The Slave section is activated either when a remote access is generated within the cluster 
or when a Read Reply message is received. In the first case, the infomation on the 
requested access is stored in the memory for messages to be transmitted for later 
processing. The Read Reply message occurs because at some point a cluster module 
requested a remote read operation to the Network Interface. As an immediate answer to 
this read request, the Slave section sent an instruction for the cluster module to 
relinquish the use of the cluster bus and retry the read operation !ater on. Hopefully, in 
the meantime, the Newtork Interface has enough time to process the read request and 
get a Read Reply message as a result. Therefore, when the cluster module retries the 
read operation, the Slave section is able to send back the requested data to the cluster 
module. This appraoach avoids blocking the cluster bus while the Network Interface gets 
the answer for a remote read operation. 

The Message Transmission Control module is responsible for taking messages byte by 
byte out of the memory for messages to be transmitted, packing them and transmitting 
them through the Interconnection Network. The Message Reception Control module 
receives the messages coming from the Interconnection Network, stores them in the 
memory for received messages and instructs the bus interface module to generate the 
appropriate cluster bus access. 
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In addition to the EPLDs, a FIFO memory has been used to implement the memories 
for the messages to be transmitted. This FIFO memory consists of two sections: a 64-bit 
wide data section and an 18-bit wide control section. The dual-port memories for 
message reception· consist o f 64-bit words and are divided into three different regions. 
The first one works as a FIFO for the received messages. The second one worlcs as a 
RAM which stores the replies to messages sent by modules within the local cluster and 
the third one stores an address and access code table for the interruption registers of ali 
the modules within the local cluster. From one port, this memory is accessed for the 
reception of messages coming from the Network in 8-bit packets. From the other port, 
this memory is connected to the corresponding 64-bit cluster bus and can be read by the 
master or slave section ofthe Interface and written by the slave section or by the DMA 

5. mE MUL TIPLUS I/0 PROCESSO R 

The architecture ofthe MULTIPLUS 110 processor is shown in Figure 3. lt consists of 
two bus systems: the CPU BUS and the DMA BUS. Attached to each bus there is a 
68020 CPU. The one associated with the CPU BUS is responsible for managing the 110 
requests sent by the processing elements to the 16 Kbyte dual-port Command Memory, 
for performing the Disk Cache control, for sending commands to be executed by the 
devices on the DMA BUS through the 4 Kbyte Communication Memory and for 
controlling a serial interface. It uses a 4 Mbyte RAM for its work area and a 64 Kbyte 
ROM to store the initialization procedure. 

The CPU on the DMA BUS controls \he execution of the internai tasks issued by the 
CPU BUS through the Communication Memory. Attached to the DMA BUS there are: a 
SCSI interface for the connection of disks, tapes and Ooppies; a parallel interface for the 
connection of printers; a 32 Mbyte write-through Disk Cache; a DMA Controller which 
is responsible for the data transfer from the SCSI and Parallel Interfaces to the Disk 
Cache; and an 8 Kbyte BIFIFO which is used as a temporary storage to transmit data 
between the Disk C ache and the processing elements through the MUL TIPLUS 
lnstruction Bus. 

Two EPLDs are used to perform some control functions within the 110 Processor. The 
first one performs the master/slave functions on the MUL TIPLUS Data Bus. The second 
one performs the master/slave functions on the MUL TIPLUS Instruction Bus and 
controls the burst data transfers between the Disk Cache and the BIFIFO on the DMA 
BUS. 

The operation o f the 110 Processo r is started when a processing element writes an 110 
command into its assigned region within the Command Memory. This generates an 
interruption to the CPU BUS 68020 which, then, interprets the command and, if 
necessary, splits it into sub-tasks that will be performed by the 110 Processor hardware 
attached to the DMA BUS. For instance, ifthe command is a disk block read operation, 
the CPU BUS 68020 firstly checks ifthe block is stored within the Disk Cache. lfit is, a 
command to transfer the block from the cache to the processing element memory is 
issued to the DMA BUS through the Communication Memory. O~erwise, the command 
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is split into two tasks: the reading of data from the disk to the cache under the 
supervision of the DMA Controller and the transferrence of the data from the cache to 
the processing element memory through the BIFIFO under the control of the EPLD. 
Again, both tasks are issued to the DMA BUS through the Communication Memory. 
Once ali steps of a processing element command have been executed by the DMA BUS, 
the CPU BUS does a write operation to the interruption register of the processing 
element through the MUL TIPLUS Data Bus. 

Figure 3: The 1/0 Processor Archltecture 

6. THE MULPLIX PARALLEL PROGRAMMING ENVIRONMENT 

The MULPLIX parallel programming cnvironment [AZEV93] provides a set of system 
calls for the development o f parai lei programming applications withln the MUL TIPLUS 
architecture. These primitives deal with the following aspects: the creation of threads; 
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memory allocation; and synchronizationo The current implementation of MULPLIX is 
running and under development on an EBC 32020, a 68020 based machine to which the 
Plurix operating system had been previously portedo Due to the linútations irnposed by 
this environrnent, the implementation of some of the prinútives has not been performed 
yet fully in accordance to the original specificationo 

The system call, "th_spawn", is provided for the creation of a group of threadso The 
number of threads to be created, the name of the procedure to be executed by these 
threads and a cornmon argument are the basic parameters o f this system call and the ones 
which are supported by the MULPLIX current implementationo However, two new 
parameters will be added to this system call. The first one, an optional parameter, is a 
vector which defines preferential processing elements for the execution of each thread to 
be createdo This facility will allow an experienced user to enforce the assignrnent of a 
particular thread to the processing element which is known to host the set of data to be 
mostly used by that threado The second extension to this systern call will allow 
synchronous as well as asynchronous creation of threadso If the thread creation is 
synchronous, the parent thread will suspend its execution until execution completion by 
ali the children threads it has started 

The memory allocation primitives can perform shared and private data allocationo For 
shared data, the primitive "me_salloc" offers two options: a concentrated and a 
distributed memory space allocationo In the first case, it is expected that most of the 
accesses to the memory space to be allocated will be performed by the thread which has 
performed the system cal! and, therefore, ali memory space is allocated within the local 
memory of the thr.ead preferential processing element. The distributed allocation is used 
when a uniformly distributed access pattem among the threads is expectedo Within the 
EBC 32020, there is only a single processing element and the concentrated/distributed 
option is meaninglesso Therefore it has not been implemented yet. The primitive which 
performs private memory allocation is "me_palloc"o 

The MULPLIX operating system offers two explicit synchronization mechanismso The 
first one is used for mutual exclusion relations and the second one is employed when a 
partia! ordering relation is to be achievedo For the manipulation of mutual exclusion 
semaphores, primitives are provided for creating ("mx_create"), allocating ("mx_lock"), 
extinguishing ("mx_delete") and releasing ("mx_free") a semaphoreo Simple and multiple 
mutual exclusion synchronizations are supportedo With multiple mutual exclusion, a 
maximum o f a given number o f threads can execute the criticai region simultaneously o 

For partia! ordering semaphores, which implement barrier-type synchronization, 
prinútives for creating ("ev_create"}, asynchronous signalling ("ev_signal"), waiting on 
the event occurrence ("ev_wait"), synchronous signalling ("ev_swait") and extinguishing 
("ev_delete") an event are providedo 

The following example illustrates the use of some of these pnrrut1ves in the 
implementation of a parallel dot product , vete = veta o vetb, assurning that the vectors 
are o f size "n" and that P processing elements are available to run the algorithrno 
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#include <threads.h> 
#include <stdio.h> 

float veta[n], vetb[n], vetc[n]; 
EVENT produto; 

main () 
{ 

int i; 
float soma; 

produto= ev_create (P, I); 
th_spawn {P, prod_escalar, O); 
ev _ wait (produto); 
soma =0.0; 
for (i= O; i< P; i++) 

soma = soma+ vetc[i]; 
printf("Produto escalar: %f\n", soma); 
ev _ delete (produto); 

prod _escalar ( arg, p) 

int arg; 
int p; 
{ 

int i; 
vetc[p] = 0.0; 

for (i= p•(niP); i< (p+l)•n/P; i++) 
vete [p] = vetc[p] + veta[i] • vetb[i]; 

ev _ signal (produto); 

In this example, the system call"th_spawn" issued by the main thread starts P threads to 
run the procedure prod_escalar with no common argument. The main thread waits on 
the event produto, which has been defined as an event to be signalled by P threads (first 
parameter ofthe ev_create system call) and to be recognized by a single thread (second 
parameter o f the ev _ create system cal!). Each o f the P threads receives from the system 
information on its order in the group of threads that has been created through the 
variablep, calculates the dot product associated with the section number p oflength niP 
of veta and vetb, stores the result in the corresponding p position of vector vete and 
signals the event produto. The main thread restarts on the ocurrence ofthe event produto 
and sums up ali the elements ofvetc to find the final result ofthe dot product. 
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7. CURRENT STATUS AND PERSPECTIVES 

The MULTIPLUS architecture definition and detailed logic design have been completed. 
Currently, we are working in the implementation and test of an initial prototype with 8 
Processing Elements and a single 110 Processar organized into up to four clusters. 

In parallel, we are undertaking a new design o f the Processing Element based on the use 
of a the Texas SuperSPARC chip, which implements a superscalar architecture, and a 
new design ofthe lnterconnection Network and Network Interface, which will use faster 
and denser EPLDs and a custom CMOS chip to implement the bus arbiters. As a 
research investigation we are also looking into the problem of implementing a virtual 
shared memory scheme within the MUL TIPLUS architecture. 

The implementation of the MULPLIX initial version as an evolution of Plurix is under 
development on EBC 32020 computers. Up to the moment the implementation of an 
initial version of the new system calls has been performed. Currently we are .working in 
the development o f a library o f functions suitable for use in a multithreaded enviomment 
and in the migration of the system kemel to Sparcstations with re-writing of the 
assembly code of the kemel and the development of a memory management moóule 
which conforms to the SPARC MMU Reference [CATA94). In adddition, the 
implementation of PVM primitives within the MULPLIX environment is being 
performed. The goal here is to simplifY the portability to MUL TIPLUS o f parallel code 
written for different PVM platforms and also to create an opportunity to have an 
implementation of a High Performance Fortran compiler under design at CT A running 
within the MUL TIPLUSIMULPLIX platform. 

lt is expected to have an initial MUL TIPLUS prototype running under the MULPLIX 
initial version by the end of 1995. The ideais to make this proptotype available for use 
by other research groups, in particular those at the Federal University ofRio de Janeiro, 
which are currently involved with work in severa! areas that may benefit from the 
MUL TIPLUS computing power and paratlel environment. lt is through such experience 
of use that we hope to have new insights into the problem of parallel processing and, 
therefore, be able to improve the performance o f the MUL TIPLUSIMULPLIX system. 
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