
VII Simpósio Brasileiro de Arquitetura de Computadores . Processamento de Alto Desempenho 621

IMPLEMENT ATION OF THE MULTIPLUSIMULPLIX
PARALLEL PROCESSING ENVIRONMENT

Júlio S. Aude
Alexandre M. Meslin

Aluísio A Cruz
Cláudio M. P. Santos

Gerson Bronstein
Iuri N. Cota

Luiz F. M. Cordeiro
Márcio O. Barros

Mário João Jr.
Serafim B. Pinto
Sidney C. Oliveira

NCEIUFRJ
Caixa Postal 2324

Rio de Janeiro- RJ- 20001-970
e-mail: salek@nce.ufij.br

ABSTRACT

The MULTIPLUS project aims at the development of a modular distributed shared
memory parai lei architecture able to support up to 1024 processing elements based on
SPARC microprocessors and at the implementation ofMULPLIX, a Unix-like operating
system which provides a suitable parallel programming environment for the
MUL TIPLUS architecture. After reviewing the main features o f the definition o f the
MULTIPLUS architecture and the MULPLIX operating system, this paper describes in
detail the current implementation o f the main modules o f the MUL TIPLUS architecture
and presents, with an illustration example, the parallel programming primitives already
implemented within MULPLIX.

622 XV Congresso da Sociedade Brasileira de Computação

1. INTRODUCilON

The MULTIPLUS project [AUDE91, AUDE94] has been under development at
NCEIUFRJ for some years now and has provided a nice and challenging frarnework for
research work in several areas related to the world of High-Performance Computing:
Parallel Architectures, Operating Systems, IC Design, CAD Tools for IC Design and
Parallel Algorithms.

The main objectives o f the MUL TIPLUS project includes the development o f a
distributed shared-memory parallel architecture and the MULPLIX operating system.
General aspects o f the MUL TIPLUS architecture have been discussed in previous papers
[BRON90, MESL90, OLIV90, MESL92, OLIV92, BRON93] as well as the main
features of the MULPLIX operating system [AZEV90, AZEV93]. The focus of this
paper is to give some detailed insight into aspects of the implementation of the first
prototype o f the MUL TIPLUSIMULPLIX environment for paralell processing
applications.

Section 2 o f this paper reviews the main features o f the MUL TIPLUS architecture and
o f the MULPLIX operating systems. Section 3 presents the current implementation of
each processing element within the MUL TIPLUS architecture. In Section 4, the
implementation of the multistage interconnection network and of its interface to each
MUL TIPLUS cluster o f processors is presented. Section 5 comments on the
implementation of the 110 Processor and its control system. Section 6 describes the
parallel prograrnming primitives which have been implemented within MULPLIX and
illustrates the use o f these primitives in a very simple parai lei application. Finally, Section
7 comments on the current status o f the project and its perspectives for the near future.

2. THE MULTIPLUS/MULPLIX PARALLEL PROCESSING ENVIRONMENT

MUL TIPLUS is a distributed shared-memory high-performance compu ter designed to
have a modular architecture which is able to support up to I 024 processing elements
and 32 Gbytes of global memory address space. The MULPLIX operating system has
been designed to adequately support parallel applications within the MULTIPLUS
architecture. Section 2. I describes the main aspects o f the MUL TIPLUS architecture
while Section 2.2 presents the main features ofthe MULPLIX operating system. Current
implementation details o f the MUL TIPLUS architecture modules and o f the MULPLIX
para! lei prograrnming environment are given in the following sections o f the paper.

2. 1 The MUL TIPLUS Architecture

Figure I shows the MUL TIPLUS basic architecture. Within MUL TIPLUS, up to eight
processing elements can be interconnected through a 64-bit double-bus system making
up a cluster. Each bus follows a similar protocol to the one defined for the SPARC
MBus (CATA94], but is implemented as an asynchronous bus.

The MUL TIPLUS architecture supports up to 128 clusters interconnected through an
inverted n-cube multistage network. Through the addition of processing elements and
clusters. the architecture can cover a broad soectrum of comoutina oower. ranaiml from

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 623

workstations to powerful parallel computers. With the adopted structure, the cost and
delay introduced by the interconnection network is small or even no~ent in the
implementation of parallel computers with up to 64 processing elements. On the other
hand, very large parallel computers can be built without the use of an extremely
expensive or slow interconnection network.

The MUL TIPLUS architecture can be classified as a Non-Uniform Memory Access
(NUMA) architecture since a processing element access to memory can be performed in
four different ways. The fastest memory access is a direct read operation on the local
caches, which is performed within a processor cycle. The second fastest memory access
is any readlwrite operation within the local bank of memory since, in principie, it does
not require the use o f the cluster bus system for its completion. The third fastest memory
access is a write or a read access with cache failure to a memory position belonging to an
externai memory bank within the same cluster. In this case, the bus system must be used
and the bus arbitration time is added to the access time. Lastly, there are the accesses
generated by a processing element requesting information which is not in its local caches
but is stored within a memory bank sitting on another cluster. In this case, the bus system
o f the source cluster , the multistage interconnection network and the bus system o f the
destination cluster need to be used for the access operation to be performed. Therefore,
the arbitration times of both bus systems and the multistage interconnection newtork
delay are added to the access time.

MULTISTACII

INTIIRCONNIICTION

IUTWORIC

Figure 1: The MULTIPLUS Architecture

624 XV Congresso da Sociedade Brasileira de Computação

As shown in Figure l, MULTIPLUS uses a distibuted 110 system architecture. It is
possible to assign ali processing elements within a cluster to a single 110 processor
which is responsible for dealing with ali 110 requests to or from mass storage devices
started by these processing elements.

Two design decisions have been taken to simplify the problem of maintaining
consistency among the private caches of the processing elements within the
MUL TIPLUS architecture. The first one is to have in every cluster one bus dedicated to
data read/write operations and the other one dedicated to instruction read operations.
Under this scheme, only the data bus needs to be "snooped" by the cache controller and,
as a result, the cache consistency problem can be solved within a cluster with the
methods usually adopted in bus-based systems. The second design decision was to
irnpose some restrictions on the type of information which is cacheable within
MUL TIPLUS. Read-only data and instructions are always cacheable. However, data
which can be modified is only cacheable within a cluster. With this approach, cache
consistency does not need to be maintained through the multistage intercoMection
network and the consequent loss in performance can be rninimized through careful
consideration of data location.

Simulation experiments [MESL92] have shown that the use of the data bus by the
processing elements is much more intense than the use of the instruction bus, since the
hit rate o f instruction caches is significantly higher than that o f the data caches. Because
o f that, the instruction bus is also used for data block transfers which occur in 110 or in
memory page rnigration or copy operations. The use of the instruction bus for these
operations caMot cause any cache consistency problem since the operating system
flushes ali cache positions occupied by data which are to be overwritten by block
transfers.

l.l The MULPLIX Operating System

MULPLIX is a UNIX-Iike operating system designed to support medium-grain
parallelism and to provide an efficient environment for running parallel applications
within MUL TIPLUS. In its initial version, MULPLIX will result from extensions to
Plurix, an earlier Unix-like operating system developed to support multiprocessing within
the Pegasus architecture [FALL89].

Plurix main goal was to provide an efficient environment for running general-purpose
processes on an architecture consisting of a few processors and a global memory which
can be accessed with the sarne time penalty by ali processors. Therefore, Plurix supports
only large-grain parallelism or concurrency and assumes that the underlying rnachine is
implemented by a Uniform Memory Access architecture.

For the MULTIPLUS environment it is essential for the operating system to be very
efficient in supporting applications which consist o f a large number o f processes that may
run in parallel, demanding synchronization and, consequently, a lot of context switching
operations. One of the basic conditions to reach this goal is to heavily reduce the
overhead in such operations.

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 625

To solve this problem, one major extension to Plurix included in the MULPLIX
definition is the concept o f thread. Within MULPLIX, a thread is basically defined by an
entry point within the process code. A parallel application consists of a process and its
set of threads. Therefore, when switching between threads of a sarne process, only the
current processor context needs to be saved. Information on memory management and
resource allocation is unique for the process as a whole and, therefore, remains
unchanged in such context-switching operations.

In relation to synchronization, MULPLIX makes available to the user synchronization
primitives for the manipulation of mutual exclusion and partial order semaphores. In
addition, MULPLIX implements the busy-waiting primitives in a different way, since it is
essential to avoid hot spots through the interconnection network. The algorithm which
has been adopted for the solution to this problem is an adaptation o f the one proposed by
Anderson [ANDE90] and is based on the following ideas [AZEV90]: the use of a
circular buffer to implement the queue of processors waiting for the binary semaphore
and thc detection o f the availability of a binary semaphore by testing a cacheable local
variable.

Within Plurix the memory space allocated to a process consists of a data segment, a codc
segment and a stack segment for the user and supervisor modes. Memory sharing
between processes is not allowed. Within MULPLIX, it is essential for the memory
management system to worry about data locality, to support the concept of a process
consisting of several threads and to allow memory sharing between threads of the sarne
process. The following facilities are supported by the MULPLIX memory management
system: replication ofthe MULPLIX kemel code in cvery processing node; replication of
the process code in every cluster where a given process is running; definition of an
additional non-shared local data segment for each thread; definition of an additional local
data segment in supervisor mode which is shared by ali threads running on the sarne
processing node; and definition of stack segments i.n the user and supervisor modes for
each thread.

Process scheduling is another arca in which MULPLIX must use a different approach to
the one adopted in Plurix. Within Plurix, there is a single queue of processes which are
ready for execution and the scheduling policy does not take into consideration data
Jocality. In addition, time-sharing between processes is always used. Within MULPLIX,
a specified number o f processors will not run in time-sharing mode. Such processors will
be scheduled to run threads of parallel scientific applications. The non-time sharing
policy ensures that these threads may run as fast as possible and without interruptions as
long as they can or wish. On the other hand, the execution of interactive processes is
ensured by the fact that there will always be a rraction of processors running with time
sharing.

Data locality is taken into consideration by the MULPLIX scheduling system through the
use ofseparate queues ofthreads which are ready to be run in each cluster. Every queue
can be accessed by any processor. However, a rree processor will only look for a thread
to run in another cluster queue ifit finds its own cluster queue empty.

626 XV Congresso da Sociedade Brasileira de Computação

3, mE MULTIPLUS PROCESSING ELEMENT

Each MUL TIPLUS processing element consists of:

. a RISC microprocessor based on the SP ARC architecture definition;

. a floating-point co-processor;

. up to 32 Mbytes ofmemory belonging to the global address space;

. separate instruction and data caches;

. a serial interface;

. aROM;
. an identification register;
. interruption registers
. three timers (one for ORAM refresh and two for general use)

The current implementation o f the Processing Element is based on the use of a SP ARC
chipset supplied by Cypress and Ross Technology running at 25 MHz. The chipset
consists of the following modules: a CY7C601 (integer unit); a CY7C602 (floating
point unit), a CY7C604 (memory management unit and cache controUer used for
instruction accesses), a CY7C605 (memory management unit and cache controller for
multiprocessing systems used for data accceses), four CY7C157 (128 Kbytes of cache
RAM: 64Kbytes for the instruction cache and 64 Kbytes for the data cache).

Figure 2 shows a block diagrarn of the Processing Element architecture which is built
around the Cypress chipset. The number of address tines followed by the number of data
I ines is annotated next to every bus in Figure 2. Each MUL TIPLUS processing element
has separate data and instruction caches, but only the data cache controller needs to
snoop the data bus. The data cache controller works in write-through mode with
invalidation of shared cache copies, which is a very simple approach and has proved to
be as efficient as the write-back mode in simulation experiments carried out considering
typical values for the data cache bit rate and the rate ofwrite operations [MESL92].

As can be seen in Figure 2 the processing element can be split into two sections: one
which deals with instructions and communicates with the MULTIPLUS Instruction Bus
and the other one which deals with data and communicates with the MULTIPLUS Data
Bus. Both the instruction and data sections access the same piece of the global memory
which sits within the processing element.

VII Simpósio Brasileiro de Arquitetura de Computadores - Processamento de Alto Desempenho 627

DATA BUS -36164

Figure 2: The Processing Element Architecture

The control logic o f the Processing Element is implemented with the use of six EPLDs.
The first EPLD is used to control the Instrcution Section. It arbitrates the accesses to
the IMBUS between requests issued by the MULTIPLUS Instruction Bus and by the
lnstruction Cache Controller, performs the master and slave fuctions within the
MULTIPLUS lnstruction Bus and arbitrates the use of the common bus for memory
acces within the processing element bewteen requests issued by the IMBUS and the
DMBUS. In the control ofthe data section, two EPLDs are used. The first one performs
address decoding and control of the access to the processing element registers and 1/0
devices. The second one performs the master and slave functions within the
MULTIPLUS Data Bus and the arbitration ofthe DMBUS between requests issued by
the MUL TIPLUS Data Bus and by the Data Cache Controller. The other three EPLDs
perform the control of the Dynamic RAM. The first one decodes the access type and
allows page mode access. The second one generates the memory control signals within
the timing constraints and the third one implements an atomic fetch-and-increment
instruction as a modification ofthe SPARC atomic instructions.

Within the memory, a T AG bit is associated with each memory data block in order to
indicate if a copy of this block may exist in another cache. The bit is set whenever the
block is read by a different processing element sitting within the same cluster. It is reset
whenever that block is rewritten by the local processing element. The importance o f this
bit is to reduce the need for broadcasting any data access to the MUL TIPLUS Data Bus

628 XV Congresso da Sociedade Brasileira de Computação

in order to maintain cache consistency. If the T AG bit is not set, the data access can be
performed within the Processing Element and without the use ofthe Data Bus.

4. mE MULTISTAGE INTERCONNECfiON NETWORK

The MULTIPLUS multistage intercoMection network is an inverted n-cube network
consisting of 2x2 cross-bar switching elements. Separate networks are used to
intercoMect the instruction and the data busses in different clusters. The adopted
network topology provides the MUL TIPLUS architecture with two very desirable
features: modularity and partitionability. The modularity provided by this network
enables the MUL TIPLUS architecture to grow in numbers o f clusters through a simple
addition o f extra switching elements to the network. No re-wiring o f the intercoMections
between the elements already present in the network is required in such operations. The
partitioning feature o f the network provides the MUL TIPLUS architecture with the
po~~;ibility of supporting several independent or loosely-coupled groups of clusters. In
fact, the network ensures that it is possible to choose groups of clusters such that the
communication within a group does not interfere with the communication within any
other group of clusters.

The MULTIPLUS Multistage IntercoMection Network can support up to 128 clusters.
Each communication path between switching elements in the newtork is unidirectional
and nine bits wide. The transmitted messages can have variable length up to a maximum
of 128 bytes. Worrnhole routing is used in the network anda single bit ofthe destination
address field of the messages is examined by each stage of switching elements to direct
the message to the next stage.

Six types of message are supported by the Multistage Inteconnection Network: Write,
Read, Write Reply, Read Reply, DMA and DMA Reply. Every message can have only a
single source and single destination, therefore broadcast or multicast type messages are
not handled by the network.

A message can be seen as a sequence of packets consisting of eight data bits and one
parity bit. In general, a message has three basic sections: the header, the preamblt" and
the data. The header is four byte long and contains information on the destination
address, message size, message type and identification o f the module that has generated
the message within the source cluster. The preamble contains an image of the 64-bit
address tines of the source cluster. lt is only needed in Read, Write, DMA and DMA
Reply messages.

Read and Write messages occur when a module within a cluster wants to access a
memory position belonging to another cluster. The Write Reply message can be used to
tell the module that has generated the write operation that the requested operation has
been completed. The Read Reply message retums the requested data to the processing
element which had issued the corresponding Read message. A DMA message sets the
Multistage lntecoMection Network to perform a block transferrence of length up to 64
Kbytes from a region of memory within a given cluster to the local memory of the
processing element which issued the DMA request. The DMA Reply message uses the

VII Simpósio Brasileiro de Arquitetura de Computadores · Processamento de Alto Desempenho 629

Instruction Bus to transfer the requested data in blocks of 128 bytes between clusters.
On completion of the DMA Reply operation, the Network Interface interrupts the
processing element which issued the DMA request.

The architecture of the switching element of the IntercoMection Network implements a
2x2 cross-bar switch with FIFO buffers assigned to each switch output. lts detailed
design has been presented by Bronstein [BRON90]. Each switching element has been
implemented with a single EPLD, which performs the function of the 2x2 switch, and
two 2Kx8 FIFOs.

The Network Interface intercoMects the cluster bus systerns to the Multistage
IntercoMection Network and also performs the functions of bus arbiter and bus reset
generation. The Newtork Interface consists o f two identical sections: one that deals with
the Instruction Bus and another which deals with the Data Bus. In addition, it has a
DMA Controller which is programmed through the Data Bus and performs data block
transfers through the lnstruction Bus. Within each section, the Network Interface
consists of 8 modules: the bus interface module with a master and a slave section, the
FIFO memory for messages to be transmitted, the message transmission module, a duai
port memory for received messages, the message reception module, registers, the bus
arbiter and the logic for bus reset generation.

The implementation o f the Network Interface has been carried out with 11 EPLDs, five
for each section and one for the DMA Controller. The five EPLDS in each section
perform the following functions: master of the bus; slave of the bus; message
transmission control; message reception control; store the status o f the messages sent by
the interface and generate the address ofthe memory for received messages.

The Master section o f the Network Interface is activated when some remo te Read, Write
or DMA message arrives at the Interface or when a Write Reply message is received.
The Slave section is activated either when a remote access is generated within the cluster
or when a Read Reply message is received. In the first case, the infomation on the
requested access is stored in the memory for messages to be transmitted for later
processing. The Read Reply message occurs because at some point a cluster module
requested a remote read operation to the Network Interface. As an immediate answer to
this read request, the Slave section sent an instruction for the cluster module to
relinquish the use of the cluster bus and retry the read operation !ater on. Hopefully, in
the meantime, the Newtork Interface has enough time to process the read request and
get a Read Reply message as a result. Therefore, when the cluster module retries the
read operation, the Slave section is able to send back the requested data to the cluster
module. This appraoach avoids blocking the cluster bus while the Network Interface gets
the answer for a remote read operation.

The Message Transmission Control module is responsible for taking messages byte by
byte out of the memory for messages to be transmitted, packing them and transmitting
them through the Interconnection Network. The Message Reception Control module
receives the messages coming from the Interconnection Network, stores them in the
memory for received messages and instructs the bus interface module to generate the
appropriate cluster bus access.

630 XV Congresso da Sociedade Brasileira de Computação

In addition to the EPLDs, a FIFO memory has been used to implement the memories
for the messages to be transmitted. This FIFO memory consists of two sections: a 64-bit
wide data section and an 18-bit wide control section. The dual-port memories for
message reception· consist o f 64-bit words and are divided into three different regions.
The first one works as a FIFO for the received messages. The second one worlcs as a
RAM which stores the replies to messages sent by modules within the local cluster and
the third one stores an address and access code table for the interruption registers of ali
the modules within the local cluster. From one port, this memory is accessed for the
reception of messages coming from the Network in 8-bit packets. From the other port,
this memory is connected to the corresponding 64-bit cluster bus and can be read by the
master or slave section ofthe Interface and written by the slave section or by the DMA

5. mE MUL TIPLUS I/0 PROCESSO R

The architecture ofthe MULTIPLUS 110 processor is shown in Figure 3. lt consists of
two bus systems: the CPU BUS and the DMA BUS. Attached to each bus there is a
68020 CPU. The one associated with the CPU BUS is responsible for managing the 110
requests sent by the processing elements to the 16 Kbyte dual-port Command Memory,
for performing the Disk Cache control, for sending commands to be executed by the
devices on the DMA BUS through the 4 Kbyte Communication Memory and for
controlling a serial interface. It uses a 4 Mbyte RAM for its work area and a 64 Kbyte
ROM to store the initialization procedure.

The CPU on the DMA BUS controls \he execution of the internai tasks issued by the
CPU BUS through the Communication Memory. Attached to the DMA BUS there are: a
SCSI interface for the connection of disks, tapes and Ooppies; a parallel interface for the
connection of printers; a 32 Mbyte write-through Disk Cache; a DMA Controller which
is responsible for the data transfer from the SCSI and Parallel Interfaces to the Disk
Cache; and an 8 Kbyte BIFIFO which is used as a temporary storage to transmit data
between the Disk C ache and the processing elements through the MUL TIPLUS
lnstruction Bus.

Two EPLDs are used to perform some control functions within the 110 Processor. The
first one performs the master/slave functions on the MUL TIPLUS Data Bus. The second
one performs the master/slave functions on the MUL TIPLUS Instruction Bus and
controls the burst data transfers between the Disk Cache and the BIFIFO on the DMA
BUS.

The operation o f the 110 Processo r is started when a processing element writes an 110
command into its assigned region within the Command Memory. This generates an
interruption to the CPU BUS 68020 which, then, interprets the command and, if
necessary, splits it into sub-tasks that will be performed by the 110 Processor hardware
attached to the DMA BUS. For instance, ifthe command is a disk block read operation,
the CPU BUS 68020 firstly checks ifthe block is stored within the Disk Cache. lfit is, a
command to transfer the block from the cache to the processing element memory is
issued to the DMA BUS through the Communication Memory. O~erwise, the command

VII Simpósio Brasileiro de Arquitetura de Computadores- Processamento de Alto Desempenho 631

is split into two tasks: the reading of data from the disk to the cache under the
supervision of the DMA Controller and the transferrence of the data from the cache to
the processing element memory through the BIFIFO under the control of the EPLD.
Again, both tasks are issued to the DMA BUS through the Communication Memory.
Once ali steps of a processing element command have been executed by the DMA BUS,
the CPU BUS does a write operation to the interruption register of the processing
element through the MUL TIPLUS Data Bus.

Figure 3: The 1/0 Processor Archltecture

6. THE MULPLIX PARALLEL PROGRAMMING ENVIRONMENT

The MULPLIX parallel programming cnvironment [AZEV93] provides a set of system
calls for the development o f parai lei programming applications withln the MUL TIPLUS
architecture. These primitives deal with the following aspects: the creation of threads;

632 XV Congresso da Sociedade Brasileira de Computação

memory allocation; and synchronizationo The current implementation of MULPLIX is
running and under development on an EBC 32020, a 68020 based machine to which the
Plurix operating system had been previously portedo Due to the linútations irnposed by
this environrnent, the implementation of some of the prinútives has not been performed
yet fully in accordance to the original specificationo

The system call, "th_spawn", is provided for the creation of a group of threadso The
number of threads to be created, the name of the procedure to be executed by these
threads and a cornmon argument are the basic parameters o f this system call and the ones
which are supported by the MULPLIX current implementationo However, two new
parameters will be added to this system call. The first one, an optional parameter, is a
vector which defines preferential processing elements for the execution of each thread to
be createdo This facility will allow an experienced user to enforce the assignrnent of a
particular thread to the processing element which is known to host the set of data to be
mostly used by that threado The second extension to this systern call will allow
synchronous as well as asynchronous creation of threadso If the thread creation is
synchronous, the parent thread will suspend its execution until execution completion by
ali the children threads it has started

The memory allocation primitives can perform shared and private data allocationo For
shared data, the primitive "me_salloc" offers two options: a concentrated and a
distributed memory space allocationo In the first case, it is expected that most of the
accesses to the memory space to be allocated will be performed by the thread which has
performed the system cal! and, therefore, ali memory space is allocated within the local
memory of the thr.ead preferential processing element. The distributed allocation is used
when a uniformly distributed access pattem among the threads is expectedo Within the
EBC 32020, there is only a single processing element and the concentrated/distributed
option is meaninglesso Therefore it has not been implemented yet. The primitive which
performs private memory allocation is "me_palloc"o

The MULPLIX operating system offers two explicit synchronization mechanismso The
first one is used for mutual exclusion relations and the second one is employed when a
partia! ordering relation is to be achievedo For the manipulation of mutual exclusion
semaphores, primitives are provided for creating ("mx_create"), allocating ("mx_lock"),
extinguishing ("mx_delete") and releasing ("mx_free") a semaphoreo Simple and multiple
mutual exclusion synchronizations are supportedo With multiple mutual exclusion, a
maximum o f a given number o f threads can execute the criticai region simultaneously o

For partia! ordering semaphores, which implement barrier-type synchronization,
prinútives for creating ("ev_create"}, asynchronous signalling ("ev_signal"), waiting on
the event occurrence ("ev_wait"), synchronous signalling ("ev_swait") and extinguishing
("ev_delete") an event are providedo

The following example illustrates the use of some of these pnrrut1ves in the
implementation of a parallel dot product , vete = veta o vetb, assurning that the vectors
are o f size "n" and that P processing elements are available to run the algorithrno

VII Simpósio Brasileiro de Arquitetura de Computadores -Processamento de Alto Desempenho 633

#include <threads.h>
#include <stdio.h>

float veta[n], vetb[n], vetc[n];
EVENT produto;

main ()
{

int i;
float soma;

produto= ev_create (P, I);
th_spawn {P, prod_escalar, O);
ev _ wait (produto);
soma =0.0;
for (i= O; i< P; i++)

soma = soma+ vetc[i];
printf("Produto escalar: %f\n", soma);
ev _ delete (produto);

prod _escalar (arg, p)

int arg;
int p;
{

int i;
vetc[p] = 0.0;

for (i= p•(niP); i< (p+l)•n/P; i++)
vete [p] = vetc[p] + veta[i] • vetb[i];

ev _ signal (produto);

In this example, the system call"th_spawn" issued by the main thread starts P threads to
run the procedure prod_escalar with no common argument. The main thread waits on
the event produto, which has been defined as an event to be signalled by P threads (first
parameter ofthe ev_create system call) and to be recognized by a single thread (second
parameter o f the ev _ create system cal!). Each o f the P threads receives from the system
information on its order in the group of threads that has been created through the
variablep, calculates the dot product associated with the section number p oflength niP
of veta and vetb, stores the result in the corresponding p position of vector vete and
signals the event produto. The main thread restarts on the ocurrence ofthe event produto
and sums up ali the elements ofvetc to find the final result ofthe dot product.

634 XV Congresso da Sociedade Brasileira de Computação

7. CURRENT STATUS AND PERSPECTIVES

The MULTIPLUS architecture definition and detailed logic design have been completed.
Currently, we are working in the implementation and test of an initial prototype with 8
Processing Elements and a single 110 Processar organized into up to four clusters.

In parallel, we are undertaking a new design o f the Processing Element based on the use
of a the Texas SuperSPARC chip, which implements a superscalar architecture, and a
new design ofthe lnterconnection Network and Network Interface, which will use faster
and denser EPLDs and a custom CMOS chip to implement the bus arbiters. As a
research investigation we are also looking into the problem of implementing a virtual
shared memory scheme within the MUL TIPLUS architecture.

The implementation of the MULPLIX initial version as an evolution of Plurix is under
development on EBC 32020 computers. Up to the moment the implementation of an
initial version of the new system calls has been performed. Currently we are .working in
the development o f a library o f functions suitable for use in a multithreaded enviomment
and in the migration of the system kemel to Sparcstations with re-writing of the
assembly code of the kemel and the development of a memory management moóule
which conforms to the SPARC MMU Reference [CATA94). In adddition, the
implementation of PVM primitives within the MULPLIX environment is being
performed. The goal here is to simplifY the portability to MUL TIPLUS o f parallel code
written for different PVM platforms and also to create an opportunity to have an
implementation of a High Performance Fortran compiler under design at CT A running
within the MUL TIPLUSIMULPLIX platform.

lt is expected to have an initial MUL TIPLUS prototype running under the MULPLIX
initial version by the end of 1995. The ideais to make this proptotype available for use
by other research groups, in particular those at the Federal University ofRio de Janeiro,
which are currently involved with work in severa! areas that may benefit from the
MUL TIPLUS computing power and paratlel environment. lt is through such experience
of use that we hope to have new insights into the problem of parallel processing and,
therefore, be able to improve the performance o f the MUL TIPLUSIMULPLIX system.

ACKNOWLEDGEMENTS

The authors would like to thank FINEP, CNPq and RHAE for the support giveri to the
development ofthis research work.

REFERENCES

[ANDE90) Anderson, T.E., "The performance of spin lock altematives for shared
memory multiprocessors", IEEE Transactions on Parallel and Distributed Systems, vol.
1, no. 1, pp. 6-16, January 1990

VII Simpósio Brasileiro de Arquitetura de Computadores. Processamento de Alto Desempenho 635

[AUDE91] Aude, J.S., et. ai. , "Multiplus: A Modular High-Perfonnance
Multiprocessor", Proc. ofthe EUROMICRO 91, Vienna, Austria, pp. 45-52, Sep. 1991

[AUDE94] Aude, J.S., "Multiplus/Mulplix: An Integrated Environment for the
Development of Parallel Applications", Proc. ofthe IEEE/USP International Workshop
on High Performance Computing- WHPC'94, pp. 245-255, São Paulo, March 1994

[AZEV90] Azevedo, G.P., Azevedo R.P., Figueira, N.R., Aude, J.S., "MULPLIX: Um
Sistema Operacional tipo UNIX para o Multiprocessador MULTIPLUS", Proceedings
of the m Brazilian Symposium on Computer Architecture - Parallel Processing, Rio de
Janeiro, RJ, pp. 122-137, November 1990

[AZEV93) Azevedo, R.P., Azevedo, G.P., Silveira, J .T .C, Aude, J.S., "Prinútivas para
Programação Paralela no MULTIPLUS", Proceedings ofthe V Brazilian Symposium on
Computer Architecture, Florianópolis, pp. 761-775, Sepetember 1993

[BRON90) Bronstein, G., Cruz, A.J.O, Duarte, O.C.M.B., "Anâlise de Desempenho de
Redes de Interconexão para Máquinas Paralelas", Proc. ofthe lli Brazilian Symposium
on Computer Architecture- Parallel Processing, Rio de Janeiro, pp. 345-360, Nov. 1990

[BRON93) Bronstein, G., "O Subsistema de Interconexão do Multiprocessador
MUL TIPLUS", Proceedings o f the V Brazilian Symposium on Computer Architecture,
Florianópolis, pp. 166-173, Sepetember 1993

[C~TA94) Catanzaro, B. "Multiprocessor System Architectures", Sun Microsystems
Prentice-Hal~ 1994

[FALL89) Faller, N., Salenbauch, P., "Plurix: A multiprocessing Unix-like operating
system", Proceedings of the 2nd Workshop on Workstation Operating Systems, IEEE
Computer Society Press, Washington, DC, USA, pp. 29-36, September 1989

[MESL90] Meslin, A.M, Pacheco, A.C., "Sistemas de Memórias Multicache para uma
Máquina Paralela MIMD: Projeto MULTIPLUS", Proc. ofthe III Brazilian Symposium
on Computer Architecture- Parallel Processing, Rio de Janeiro, pp. 179-193, Nov. 1990

[MESL92] Meslin, A.M., Pacheco, A.C., Aude, J.S., "A Comparative Analysis ofCache
Memory Architectures for the MUL TIPLUS Multiprocessor", Proceedings of the
EUROMICRO 92, Paris, France, pp. 555-562, September 1992

[OLIV90] Oliveira, S.C., Aude, J.S., "O Subsistema de Memória de Massa do
Multiprocessador MULTIPLUS", Proceedings of. the UI Brazilian Symposium on
Computer Architecture- Parallel Processing, Rio de Janeiro, RJ, pp. 298-313, Nov 1990

[OLIV92] Oliveira, S.C, Aude, J.S., "Uma Avaliação do Impacto das Operações de EiS
no Desempenho do Multiprocessador MULTIPLUS", Proccedings of the IV Brazilian
Symposium on Computer Architecture- São Paulo, SP, pp. 379-394 , October 1992

