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Abstract - Packing is a graph simulation technique hy which p~ node-disjoint copies of a guest graph G(k) 

are embedded into a host graph H(n). Many advantages result from this technique as opposed to a simple 

emhedding of G(k) into H(n). The multiple copies of G(k) can execute dif!erent instances of any algorilhm 

designed to run in G(k), providing high throughput via an effici ent, low-expansion utilization of H(n) . Task 

migralion mechanisms helween lhe multiple copies o f G(k) also hecome possihle, allowing a pro per al/ocation 

of lhe processors of H(n), load balancing and support of fault lolerance. Other advantages that arise from 

a we/1-devised packing t echnique are variable-dilation embeddings and multiple-sized packings. A variahle

dilation emhedding consists of connecting c copies of a graph G(k), packed inlo a host graph H(n) wilh dilalion 

d, such as to obtain an emhedding of a graph G(k+l), l >O, into H(n). The resulting embedding has dilalion 

d when lhe nodes ofG(k+l) communicate over lhe first k dimensions ofG(k+l), and dilation d; > d when a 

dimension i, k < i $ k + t, is used. Since many parai/e/ algorithms use a restricted number o f dimensions o f 

lhe guest graph at any given step (e.g., SIMD-based algorithms), lhe resulting communication slowdown can 

be made significantly sma/1 on the average. We also extend lhe concept of connecting node-disjoint copies of 

a graph G(k) to obtain multiple-sized packings, in which graphs G(k), G(k + 1), ... , G(k + t) o f various sizes 

are packed into a host graph H(n ). Multiple-sized packings allow tasks wilh dif!erent processar requiremcn ls 

to be allocated proper guest graphs G(k + j) in H(n) (variahle-dilation embeddings result when j > 0). 

This paper focuses on the prohlem of packing hypercubes Q(n- 2) and Q(n- 1) inlo a star graph S(n) 

wilh dilation 3. We show that 3 · Ln/2J! · L(n- l )/2J! copies ofQ(n- 2) or ln/2J! · L(n- 1)/2J! copies of 

Q(n- 1) can be packed into S(n), with expansion J ·[n/2J!·((n"::t)/2]!·2·-> and [n/2J!· [(n~i)/2]!·2·-•• respeclivtly. 

We also show how lo connect packed Q(n- 1) 's lo obtain a variahle-dilation emhedding o f Q (n- 1 + l), 

l $ Llog2(ln/2J! · L(n- I)/2J!)J , into S(n) . Such an emhedding has dilalion 3 for lhe firsl (n- 1) dimensions 

o/ Q(n- I+ t) and guarantees a minimal slowdown by using a s/ightly higher di/ation (4 in most cases) for 

lhe remaining dimensions o f Q( n - I + t). Finally, we ais o address lhe issue o f multiple-siud packings o f 

hypercubes inlo S(n). 

K ey words - Graph simulation, interconneclion networks, hypercube embedding, hypercube packing, 11arallel 

processing, star graph, variable-dilalion embeddings. 

1 Introduction 

T he star graph was proposed as an attractive interconnection network for massively parallel proccssing (1], 
[2). featuring rich symmetry properties, and a degree and diameter that are sublogarithmic on the numbcr of 

proccssors in the graph. T hese properties compare favorably with hypercube networks (3], as descri bcd in [I] 

• Ttus n::sea.rch is supported in part by Conselho Nacional de Desenvolvimento CienLifieo e Tecnológico (CNPq · Brazil), under 
lhe granl No. 200392/92- J. 
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and (4] . However, the earlier introduction of bypercube networks, along with their interesting characteristics, 

has given to such networks a considerable popularity. A number of hypercube-configured massively parallel 
processors {MPPs) were built in recent years [5], (6], [7] , and various hypercube-compatible algorithms havé 
been developed and tested in these MPPs. lt is therefore of particular interest to reuse such algorithms in 

star graph-configured MPPs via proper hypercube simulation mechanisms. 

A graph G(k) modeling a particular interconnection network can be described by a set of nades V(G) and 

a set of links E(G). One possible mechanism for simulating G(k) in a second graph H(n) is referred to as 

embedding G(k) into H(n). The embedding of G(k) = {V(G), E(G)} into H(n) = {V( H), E( H)} consiste of 
a mapping of V(G) into V(H) and of E(G) in lo paths of H(n). The set of nades resulling from the mapping 

M : V(G) ,_. V(H) is Vc(H) C V(H) . The graph thal is being embedded (G(k)) is referred to as the guesl 

graph, while the graph that receives the embedding (H(n)) is referred to as the hosl graph (8] . The load of 
an embedding is the maximum number of nades of the guest graph that are embedded in any single node of 
the host graph. We assume in this paper that each node of G(k) is mapped to a distincl nade of H(n), i.e. 

the load of the embedding is 1. Clearly, in arder to achieve such embedding we must have IH(n)l ~ IG(k)l . 

The ratio IH(n)I/IG(k)l is called the u:pansion of the mapping. Tbe dilation of the embedding is the longest 

pa~h in H(n) used to map any link Eu,v = (u, v) E E(G), u, v E V(G). We refer to the expansion of an 
embedding with load À and dilation das X(Ã,d) . 

Different techniques h ave been proposed for embedding a hypercube Q(k) into a star graph S(n) (9], (10]. 
Embeddings with load 1 and dilations of 2, 3 and 4 were considered in (9). The corresponding expansions of 
these embeddings are X(1,2) = (2t + 1)!/2t, X{1,3) = k!/ 2t , and X{1,4) ~ (2h + j)!/22'(h-2)+hi+2, where 

h~ 2 and j ~ 2t are some integers such that 2h(h- 2) + hj + 2 ~ k . Embeddings of Q(k) into S(n) with 
dilations of 1, 2 and 3 were proposed in [10] , with expansions X{1 , 1) = (3t+1)!/2t, X{1, 2) = {13j+2)!f 211i+2 

(where k = llj + 2 and n = 13i + 2), and X{1 ,3) = 2h!/2h2•-• (where k = h2h-l and n = 2h), respectively. 
T he dilation 1 and 2 embeddings proposed in (10] uode-dis01 364.99 318.63.3d7 7 0 Tdj
0.0456 Tc 0. 38 
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IH(n)l 
X(>.,d,pt) = PtiG(k)l' 

5 

( I) 

where >., d and Pt are respectively the load, the dilation, and the number of copies of G(k) resulting from 

the packing. 

Packing is a useful technique for exploiting the multitasking capability of a host graph H (n), and allows 

concurrent execution of algorithms originally designed to run in G(k). The processes running in each of the 

Pt copies of G(k) are either different instances of the same algorithm, or instances of any other algorithm 

executable in G(k). Task migration strategies between the multiple copies of G(k) also become possible, 

providing advantages such as load balancing and support of fault tolerante. Note that we will not be 

discussing task migration or processor allocation strategies in tbis paper. Rather, we present efficient packing 

techniques that are required to support these strategies in star graphs when multiple hypercubes are being 

simulated. We refer the reader to (11) and (12) if tbe particular issues of task migration and processor 

allocation in hypercubes is of interest. 

Let G(k) be a k-dimensional graph with hierarchical structure (2), such that a (k + 1)-dimensional graph 
G(k + 1) can be obtained recursively from c(k) copies of G(k). Severa( graphs belonging to the class of 

Cayley graph& have this recursive decomposition property, such as the hypercube (Q(k)) and the star graph 

(S(n)). Q(k + 1), for example, can be obtained by connecting two Q(k)'s , while S(n + 1) can be obtained by 

connecting ( n + 1) S( n )'s. 

A well-devised packing technique can be readily extended to support variable-dilation embeddings and 

multiple-&ized packing&. A variable-dilation embedding consists of simulating a single higher dimensional 

graph G(k + t), t >O, in H(n) by connecting c(k- k + t) = rr:=• c(k +i- I) packed copies of G(k). We 

refer to such ao embedding as having variable dilation due to the fact that the maximum number of links in 

H(n) that are required to simulate any given link (u, v) of G(k + l) depends on the dimension of (u, v). Let 

dt+l = (d1, d2, ••• , d;, ... , dt+t] be a dilation vector defining the maximum number o f links in H ( n) that is 

required to simulate any of the dimension i links of G(k + t) , 1 $ i $ k + t. For embeddings resulting from 

the paclling techoiques described in this paper, for example, the dilation along dimension i of G(k + t) is 

(2) 

Assume that the communication slowdown 'l(G(k) ,_. H(n)) resulting from simulating G(k) in H(n) 

is equal to the dilation of the embedding, namely 'l(G(k) ,_. H(n)) = d. A conservative estimate for the 

communication slowdown of a variable-dilation embedding V : G(k + l) ,_. H(n) would be 'l(G(k + l) ,_. 

H(n))ma~ = max(d,d;) = d', k < i $ k + l. Many algorithms, however, use a limited number of dimensions 

at any given step o f their execution, resulting in a smaller slowdown. Notably, algorithms following the SIM D 

computational model require that ali processors in the interconnection network must operate in a lockstep 

fashion, causing a unique dimension to be used at every step of the algorithm. Note that the slowdown 

resulting from running algorithms devised according to the MIMO computational model may also be smaller 

than '1(G(k + t) ...... H(n))m•~ • depending on how the dimensions of G(k + l) are used and on how the 

processors synchronize themselves during the execution of the algorithm. 
Let A be an algorithm devised to run in a SIMD version of an interconnection network G(k + l). Let the 

number of steps using dimension i of G(k + l), 1 $ i $ k + l, be r;. The communication slowdown in A's 
execution, resulting from a variable-dilation embedding of G(k + t) into H(n), is 
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k+t 

LT;d; 

'l(G(k + t) ,_ H(n)) = ;~~t 
LT; 
i:l 

(3) 

I f we make the simplifying aasumptions that A is such that r; = T, Vi, and that d; = d' for k < i ~ k + l, 
Equation 3 reduces to 

k 
q(G(k+l) ..... H(n)) = d' +/c +/d-d') (4) 

Notice that a major advantage of variable-dilation embeddings as opposed to conventional embedding 

methods is that the communication slowdown can be made significantly smaller on the average. A conven

tional embedding of a guest graph G(k + l) into a host graph H(n), however, often resulta in a large dilation 

d' being required along ali dimensions of G(k + l) if the expansion ratio of the embedding is at premium. 

Consequently, a larger communication slowdown d' resulta. On the other hand, variable-dilation embeddings 

can still achieve low expansion ratios with smaller slowdown by forcing the dilation along the first k dimen

sions of G(k + l) to be d < d' . As explained earlier, this is achieved by generating the embedding of G(k + l) 

from packed copies of lower dimensional graphs G(k). The expansion of such a variable-dilation embedding 

is: 

- IH(n) l IH(n)l 
X(A, dHt) = IG(k +l)l = c(k- k + l)IG(k)l' 

(5) 

where c(k - k + l) is the number of packed copies of G(k) required to form a (k + l)-dimensional graph 

G(k +l). 
The concept o f connecting packed copies of a guest graph G(k) can also be used for mu/tip/e-sized packings, 

in which graphs of various sizes IG(k)l, IG(k + 1)1, ... , IG(k +i) I, ... , IG(k + l)l are packed into a host graph 

H(n). Let c(k - k + j) be the number of packed copies of G(lc) required to form a (/c+ j)-dimensional 

graph G(/c + j), and let Pt+; be the oumber of copies of G(/c + j) packed into H(n). Since ali packed G(lc)'s 

are node-disjoint, the multiple-sized packing resulting from connecting these G(k)'s also yields node-disjolnt 

graphs G(k + j), O ~ j ~ l. For j > O, a graph G(k + j) is embedded into H(n) via a variable-dilation 

mapping, as described in Equation 2. Let dt+; be the dilation vector resulting from simulating a graph 

G(k + j) via packed G(lc)'s. The expansion of a given multiple-sized packing Pm is 

X(A,dt+i) = t IH(n)l 

LPt+iiG(k +i) I 
j:O 

IH(n)l 
t 

LPHic(k--+ k + i)IG(k)l 
j:O 

Multiple-sized packings allow tasks with different processor requirementa to be allocated proper guest 

graphs G(k + j) in H(n), while still providiog smaller commuoicatioo slowdown since a variable-dilation 

embeddiog is used for each G(/c + j). 

This paper considers the packingofhypercubes Q(n -2) and Q(n - 1) into astar graph S(n) with dilation 

3. Our packing technique uses a two-step mapping, in which hypercubes are initially packed with dilation 1 

into an (n- 1)-dimensional mesh M(n - 1) of size 2 x 3 x ... x (n- 1) x n. This (n- 1)-dimensional mesh 

is then embedded into S(n) with dilation 3, load 1 and expansion 1 via the mapping proposed by Ranka et 

ai. in [13] . 
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We show that 3 · Ln/2J! · L(n- 1)/2J! copies of Q(n- 2) or Ln/2J! · L(n- 1)/2J! copies of Q(n- 1) can be 

packed into S(n), with expansion J· (n/2]!-((nn~l)/l)!·l·-• and (n/l)!·[(n:i)/2]!-l•-•• respectively. We also show 

how toobtain avariable-dilationembeddingofQ(n-1+1.),1. :=; Llog2(Ln/2J! · L(n -1)/2J !)J, into S(n). The 
resulting embedding has dilation 3 for the first (n- 1) dimensions of Q(n- 1 + t) and guarantees a minimal 

slowdown by using a slightly higher dilation (4 in most cases) for the remaining dimensions of Q(n- 1 + t). 
In addition, we also address the issue of multiple-sized packings of hypercubes into star graphs. 

2 Background 

2.1 The hypercube 

A k-dimensional hypercube graph Q(k) = {V(Q), E(Q)} contains 2t nodes which are labeled with binary 
strings of length k. In this paper, we use the digits {0, 1} to form the node labels of Q(k) . A node 
</1 = q1 q2 ... q; ... qn is connected to n distinct nodes, respectively labeled with strings </1; = q1 q2 ... q; . .. qn, 

1 :=; i :=; n. In other words, node </1 is connected to other n nodes whose labels are the binary strings resulting 

from complementing the digit in position i in </1, where 1 ::; i::; n [3]. A 9-dimensional hypercube is shown 

in Figure 1. Note that a link connecting a node </1 = q1q2 ... q; ... qn to a node </1; = q;q2 ... q; ... qn is labeled 
i to indicate a connection along the ith dimension of Q( k). 

Figure 1: A 3-dimensional hypercube Q(3) 

Q(k) is a regular graph with degree cS(Q(k)) = k and diameter d(Q(k)) = k (3) . Q(k) is vertex and 
edge-symmetric, has hierarchical structure and supports node communication via simple routing algorithms. 

2.2 The star graph 

An n-dimensionalstar graph S(n) = {V(S), E(S)} contains n! nodes which are labeled with the n! possible 
permutations ofn distinct symbols. In this paper, we use the digits {1 , 2, ... , n} to label the nodes of S(n). 
A node ,. = p1p2 ... p; ... Pn is connected to ( n - 1) distinct nodes, respectively labeled with permutations 

,., = PiP2 .. ·Pi-IPIPi+l .. -Pn, 2 ::; i ::; n . In other words, node ,. is connected to other (n- 1) nodes 
whose labels are the permutations resulting from exchanging the digit in position i in ,. with the first digit 
of "'• where 2 :=; i:=; n (1), (2). A ~-dimensional star graph is shown in Figure 2. A link connecting a node 

"'= P1P2 ... p; .. -Pn to a node "'' = PiP2 .. ·Pi-IPIPi+l .. · Pn is labeled i to indicate a connection along the ith 
dimension of S(n). S(n) is a regular graph with degree cS(S(n)) = n -1 and diameter d(S(n)) = L3(n -1)/2J 
(1]. Similarly to Q(k), S(n) is a hierarchical graph featuring simple routing and both vertex and edge 
symmetry. 

2.3 Embedding an (n- !)-dimensional mesh into S(n) 

As mentioned earlier, the packing and embedding techniques presented in this paper use a two-step mapping, 

in which hypercubes are initially packed into an (n- !)-dimensional mesh of size 2 x 3 x . .. x (n- 1) x n, 
namely M(n- 1) = {V(M) , E(M)}. M(n- 1) is then embedded into S(n) with load 1, dilation 3, and 
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u 

Figure 2: A ./-dimensional star graph S( 4) 

expansion 1 via the mapping proposed by Ranka et ai. in (13] . A brief review of this mapping is presented 

below. 

We assume that the nodes of M(n -1) are labeled with an (n- 1)-digit vector m1 m2 .. . m,_ 1, O ~ m; ~ 

s; - 1, where s; = i+ 1 is the size of the mesh along the ith dimension. 

The mapping of a node w = m1m2 . .. mn-1, w E V(M) , onto a node 1r = P1P2 .. ·Pn , 1r E V(S) , is 

accomplished by the algorithm shown below. We assume that the identity node of M(n- 1) (00 .. . 0) maps 

onto the identity node of S(n) (12 ... n). 

Algorithm 1 (Mapping M(n- 1) onto S(n)): 

mesh_to.star (int m( ], int n , int p(]) 

{ 
int i, j, temp; 

for (i= 1; i~ n ; i++) p(•1 =i; 

for (i= 1; i< n; i++) 

for (j =O; j < m[•1; j + +) { 

lemp = p(i- j]; 

} 

p(i- j] = p(i- j + 1]; 

p(i- j + 1] = temp; 

Algorithm 1 initially sets permutation ,.. to p( J = 12 . . . n . The next step of the algorithm consista of an 
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iterative inspection of the (n -1) coordinates of the mesh node (w = m( ]). Assuming that the coordinate of 
w along the ith dimension is m(•l. the ith iteration of the externai for loop resulte in the following sequence 
of transpositions: 

(p(~ +-+ p(i + 1]), (p(i- 1] +-+ p(i]) , ... , (p(i- m(•1 + 1] +-+ p(i- m(•1 + 2]) 

Let the transposition of two digite p., p, in 1r be denoted by (r s) (i.e. , (r s) corresponds to the exchange 
of the digite occupying the rth and the sth positions in permutation 1r). Table 1 liste the sequences of 

transpositions uaed by Algorithm 1 along the (n- 1) dimensione of the mesh. Note that i f the coordinate of 
tbe mesh node along dimension i is m(•1 , then only the first m(•1 transpositions of the sequence corresponding 

to dimension i are used. 

As an example, 888ume the mapping of node w = 103 E M(3) onto a node 1r E S(4). Initially, Algorithm 
1 sete 1r = 1234. Since m[1] = 1, a (12) transposition is performed on 1234 giving 2134. Next, the algorithm 
examines the coordinate of w along the 2nd dimension (m(2]). Since m(2] =O, no transpositions are performed 

at this step. Next, m(3] is examined, resulting in a sequence oftranspositions (3 4) (2 3) (1 2). Such sequence 
affecte 1r as shown below: 

2134--+ 2143--+ 2413--+ 4213 

Hence, w = 103 is mapped onto node 1r = 4213. Figure 3 shows the complete mapping of a $-dimensional 
mesh onto S(4) . 

Dimension (i) Sequence of transpositions 
1 (1 2) 
2 (2 3) (l 2) 

: 

n-1 (n- 1 n) (n- 2 n- 1) · · · (1 2) 

Table 1: Sequences of transpositions used by Algorithm 1 

The mapping algorithm described in this paper differs slightly from that proposed in (13] in respect to the 

definition of a transposition (r s). In Algorithm 1, (r s) corresponds to an exchange of the digite occupying 
the rth and the sth positions in permutation 1r. In the corresponding algorithm described in (13], (r s) 
corresponds to an exchange of dígíts r and s in 1r. Both approaches however result in a correct one-to-one 

mapping of M(n- 1) onto S(n). 
As shown in Table 1, communication between two nodes w ,w; E V(M) which are adjacent over the ith 

dimension of M(n- 1) requires a transposition (r s) which must be properly accomplished by means of star 
operations that are available in S(n). Let g be tbe star operation performed along the gth dimension of S(n) 

(i.e., g exchanges the first and the gth digit of a permutation of n digite). Assume that transposition (r s) 
is ordered such that r < s. Tberefore, (r s) can be minimally executed by the following sequences of star 

operations: 

( ) 
_ { s , if r = 1 

r 8 = s ~ r -+ s =: r --+ s --+ r , if r, s :P 1 

Note that transposition (r s) requires 1 star operation if r = 1 and 3 star operations otherwise. 

result can be extended to the following Lemma [13]: 

(6) 

This 

Lemma 1 Any two nodes w, w; E V(M) which are adjacent overtheith dímension o f M(n-1) , 1 $i$ n- 1, 
are connecled by a path contaíning either 1 o r 9 /in h in lhe corresponding embeddíng in to S( n ). 
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Figure 3: Mapping of M(3) onto S(4) 

3 Packing Hypercubes into Star Graphs 

The packing lechniques which are presenled in lhis paper lake advanlage of lhe regular slruclure of M(n- 1) 

lo achieve an efficienl ulilizalion of lhe processors of S(n). An imporlanl resull upon which our lechniques 

are based is given below: 

Lemma 2 Q(k) can be embedded into M(n- I) with load 1, dilation 1, for k ~ n- I. 

Proof: A basic requiremenl for a load I, dilalion I embedding of Q(k) inlo M(n - 1) is lhallhe degree of 

any node in M ( n - 1) musl be grealer lhan o r equal to lhe degree o f Q( k) . Since lhe degree of the nodes in 

M(n- 1) is at leasl (n- 1) and 6(Q(k)) = k , this condilion is satisfied for ali k ~ n- I. 

To complete the proof, we give aslraighlforward mappingoflhe nodes of Q(k) onto the nodes of M(n-1) 

(Aigorithm 2). Algorilhm 2 does a one-to-one mapping in which mesh nodes whose firsl k coordinates are 

eilher O or 1 are selecled lo embed Q(k). Note lhal such a mapping is possible due the facl that the size of 

M(n- 1) along any dimension is al leasl 2. A null value is selected for the remaining (n -1- .1:) coordinales 

of lhese nodes, allhough differenl values could have been used as well. Note lhal Q(k) can be seen as a 

.\:-dimensional mesh of size 81 x 8 2 x ... x 8t = 2 x 2 x ... x 2, which corresponds to using a limited range of 

lhe coordinates available in M(n- 1). O 

Algorilhm 2 (Mapping Q(k) onto M(n- 1)): 

cube-lo_mesh (int q(]. inl .1:, inl n , inl m(]) 

{ 

} 

int i ; 

for (i= I; i~ k; i ++) m(i] = q(i]; 

for (i= k + I ; i< n; i++) m(i] =O; 
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A natural extension of Algorithm 2 consista of selecting proper values for the coordinates of the mesh 

nodes, such that node-disjoint mappings of Q(k) onto M(n- 1) result. This is exactly the basis for the 
packing techni.::·~cs we will be presenting next . Two distinct cases are considered in the remainder of this 

section: packing Q(n -1) into M(n -1) and packing Q(n- 2) into M(n- 1). Our resulta are then extended 

via a subsequent embedding of M(n - 1) into S(n) using the mapping given by Algorithm 1. 

3.1 Packing Q(n- 1) into S(n) 

Theorem 1 /! i& po&&ible to pack Pn- l node-disjoint copies of Q(n - 1) into S(n), with load 1, dilation 3, 

and e:tparuion X(1 , 3,Pn-1), where 

Pn-l=l~J! · ln;IJ! and X(l.3.Pn-l)=l'iJ! · l;J!· 2n-~ 
Proof: The size of M(n - 1) along the ith dimension is s; = i+ 1 (i.e., the ith coordinate of the nodes of 
M(n- 1) ranges from O to i). lt is possible to partition M(n - 1) along dimension i into Ls;/2j (n- !)
dimensional submeshes whose size along that dimension is at least 2. !f tbis process is repeated for ali 

dimensions of M(n- 1), the resulting number of (n- 1)-dimensional submesbes of size at least 2 along any 

dimension is 

-l81 J ls2J lSn-1 J -l2J l 3J l4J lnJ -lnJ I ln - IJ I Pn-1 - 2 X 2 X oo. X - 2- - 2 X 2 X 2 X oo. X 2 - 2 . · - 2 - . 

Due to the partitioning process, these submeshes are node-disjoint. In addition, by applying Lemma 2 we 

note that it ia possible to embed Q(n - 1) with load 1, dilation 1 into each ofthese Pn- l submeshes. Hence, it 

ia possible to pack Pn- l node-diajoint copies of Q(n -I) in to M (n -1), with load I and dilation 1. !f we now 
embed M(n-1) into S(n) using the mappinggiven by Algorithm 1, a load 1, dilation 3 packing resulta. The 

fact that the load remains 1 follows from the observation that Algorithm 1 provides a one-to-one mapping 

(13] . The dilation, however , increases from 1 to 3 as a direct consequence of Lemma 1. 

To complete the proof, we note that the expansion of the packing can be obtained by direct application 

of Equation 1, noting that IS(n) l = n! and IQ(n - 1)1 = 2n- 1.D 

We now present an algorithm that packs Q(n- 1) into S(n): 

Algorithm 3 (Packing Q(n- 1) into S(n)): 

pack_cube_n_1 (int q( ), int C, int n , int p(]) 

{ 

} 

int i, offset( ], m( ]; 

for (i= 1; i< n; i++) m(a1 = q(s1; 
for (i = 3; i < n ; i+ +) { 

o[f&el(•1 = 2 (l L tJ! xCL ~ J! J mod li~ 1 J) 
m(s1 = m(s1+ offse1(•1 ; 

} 
mesh.to.star ( m( ), n, p( ]) 

lnitially, the algorithm copies the coordinates o f the hypcrcubc node ( q(]) onto the coordinates o f a mesh 

node m( ]. Let q(] be a node belonging to the Cth packed hypercube, O :::; C :::; Pn - l - I. Algorithm 
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3 computes an offset vector ( off$el[ ]) to correctly map any node belonging to the Cth hypercube onto a 
node-disjoint submesh. This offset is added tom(), completing the mapping onto M(n- 1). The resulting 

mesh coordinate is finally mapped onto S(n) via a call to Algorithm I. Table 2 shows the offset vectors·that 

are required to pack Q(S) into S(6). Note that according to Theorem 1 it is possible to pack 12 copies of 
Q(5) into S(6). 

Hypercube number (C) o 1 2 3 4 5 6 1 8 9 10 11 

off$el[3) = 2 (C mod 2) o 2 o 2 o 2 o 2 o 2 o 2 

offsel[4) = 2 (l ~ J mod 2) o o 2 2 o o 2 2 o o 2 2 

off$el[5) = 2 ( l ~ J mod 3) o o o o 2 2 2 2 4 4 4 4 

Table 2: Mesh coordinate offsets used in the packing of Q(5) into S(6) 

3.2 Packing Q(n- 2) into S(n) 

Theorem 2 It is possible to pack Pn-2 node-di$joint copies of Q(n- 2) into S(n), with load 1, dilation 3, 

and ezpan$ÍOn X(1,3,Pn-2), where 

Proof: Partitioning M(n - 1) into ls;/2J submeshes along dimension i, as described in the proof of Theorem 
1, results in unused nodes whenever s; is odd. Notably, the largest underutilization of M(n- 1) occurs for 

i = 2, when 1/3 of the nodes are discarded by the partitioning process. These nodes can actually be used 
while packing Q(n- 2) into S(n) , if we partition M(n- 1) into (n- 2)-dimensional submeshes instead. 

We modify the partitioning of M(n- 1) as follows. lnitially, M(n- 1) is partitioned into 3 (n- 2)
dimensional meshes along dimension 2. For the remaining dimensions, the partitioning process occurs as 

described in T heorem I. Hence, the resulting number of ( n - 2)-dimensional submeshes o f size at least 2 
along any dimension is 

Pn-2 = l ~ J X 3 X l T J X .. ·X l 8"2 1 J = l~J x 3 x l~J X .. ·X l iJ = 3 ·l iJ!-l n; 1 J! 
Due to the partitioning process, these submeshes are node-disjoint. In addition, by applying Lemma 2 we 

note that it is possible to embed Q( n - 2) with load I, dilation 1 in to each o f these Pn-2 submeshes. Hence, 
it is possible to pack Pn-2 node-disjoint copies of Q(n- 2) into M(n - 1), with load 1 and dilation I. I f we 

now embed M(n -I) into S(n) using the mapping given by Algorithm I, a load I , dilation 3 packing results. 
The derivation o f the expansion ratio is done as in the proof o f Theorem I. O 

A straightforward extension of Algorithm 3 that packs Q(n- 2) into S(n) follows: 
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Algorithm 4 (Packing Q(n - 2) into S(n)): 

pack_cube_n..2 (int q[ ], int C, int n, int p[]) 
{ 

} 

int i, offset[ ], m[ ]; 
m[1] =q[1]; 

m[2] = C mod 3; 

for (i = 3; i < n; i+ +) { 

offset[ i] = 2 ( l3 x l ~ J ~x l? J ! J mod l i ~ 1 j ) 
m[i] = q[i- 1]+ offset[i]; 

} 

mesh_to..star (m[ ], n , p[]) 

3.3 Results on packing Q(n- 1) and Q(n- 2) into S(n) 

13 

Table 3 dcpict.s the number of packed hypercubes and the expansion ratios resulting from the techniques 

described in this section. Note that low expansion ratios are obtained, meaning that a large portion of the 

nodes of S(n) are used in the packing. Smaller expansion ratios are obtained when packing Q(n- 2) into 

S(n), since a more efficient partitioning strategy of M(n - 1) is possible in this case. In addition, note that a 

slight increase in the expansion ratios occurs whenever n is incremented to an odd number, which can also be 

explained by the partitioning strategy described in the proofs of Theorems 1 and 2. Finally, we observe that 

the unused nodes resulting from the partitioning process could be used for packing additional hypercubes at 

the expense of higher dilation . 

S(n) I S(3) I S(4) I S(5) I S(6) I S(7) I S(8) I S(9) I S(10) I 
No. o{ packedQ(n-1)'s(pn-l) 1 2 4 12 36 144 576 2,880 

Expansion ratio (X(1, 3,Pn-t)) 1.50 1.50 1.88 1.88 2.19 2.19 2.46 2.46 

No. o{ packed Q(n- 2) 's (Pn-2) 3 6 12 36 108 432 1,728 8,640 

Expansion ratio (X(1,3,Pn-1)) 1.00 1.00 1.25 1.25 1.46 1.46 1.64 1.64 

Table 3: Result.s on packing Q(n- 1) and Q(n- 2) into S(n) 

4 Variable-Dilation Embeddings of Q(n- 1 +f) into S(n) 

In this section, we describe how an (n -1 +l)·dimensional hypercube can be embedded with variable dilation 

into S(n). 2t packed copies of Q(n- 1) are required for such an embedding, where l is limited by 

(7) 
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Figure 4: A variable-dilation embedding of Q(4) into M(3) 

Figure 4 depicts ao example of the technique we will be describing in this section. A -l-dimensional 

hypercube is embedded into M(3) as the result of the connection of two packed Q(3)'s. Note tbat tbe 

dilation of sucb ao embedding along the ith dimension of Q(4) is 

d. - { 1 • if i ~ 3 
• - 2 • ifi = 4 

As defined in section 1, Figure 4 corresponds to a variable dilation embedding whose dilation vector is 

d4 = [1 , 1, 1, 2). lf we now map M(3) into 5(4) using Algorithm 1, the dilation vector of the corresponding 

embedding of Q(4) into 5(4) becomes d; = [3, 3, 3, 4). 
The dilation along the first 3 dimensions of Q(4) increases from 1 to 3 as a direct consequence of Lemma 

1. The fact that the dilation along the 4th dimension of Q( 4) increases from 2 to 4 is justified by the following 

Lemma: 

Lemma 3 Let w = m 1m2 ... m1 ... mn-1 . "'1+2 = m1m2 . .. (m1 + 2) .. · ffin-1 E V(M) be a pair of node& 
&eparated by I! links along the ith dimen&ion of M(n- 1), 2 ~ i~ n- 1. In the corresponding embedding of 

M(n- 1) into 5(n), w and "'1+2 are connected by a path containing at most ./ links. 

Proof: By inspection of Algorithm 1 and Table 1, we note that the mapping of "'1+2 E V(M) onto 11'1+2 E V(5) 

uses a sequence of transpositions of the form: 

0'1+2 =(a b)(c d) .. . (i j)(k l)(m n)(o p) .. . (y z) 

Accordingly, w is mapped onto 1r via a sequence of transpositions of the form: 

O'= (a b)(c d) .. . (i j)(o p) .. . (y z) 

Although identical transpositions are used in O' and 0'1+2 , the mapping sequence of "''+2 has two transpo
sitions more than the mapping sequence o f w1. Ao inspection o f Table 1 reveals that the extra transpositions 

(k I) and (m n) are actually two consecutive transpositions along the ith dimension, whose generic format is 
(z z + l)(z- I z) = (s t)(r s), r= s- 1 = t- 2. According to Equation 6, these two transpositions can be 

accomplished via a sequence of star operations as follows: 

, i f r= 1 
, if r ;é 1 (8) 

Note that the execution of the two transpositions require either 2 or 4 star operations. We can actually 

concatenate (s t)(r s) in to a single permutation cycle (14) of the form (r s t). Let the digits occupying the rth, 
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the sth and the tth positions of the permutation resulting from applying transpositions (a b )(c d) . .. (i j) E 

u, 0';+2 to the identity 123 .. . n be respectively d, , d2 and da. Therefore, cycle (r s t) moves d1 into d2's 

position, d2 into ds's position, and ds into d, 's position. Since u and O'i+2 have the same transpositions 

except for the cycle (r s t), ,.. and 11'i+2 will differ only in the final positions occupied by digits d 1, d2 and 

ds. Let these positions be a , P and "'f · Therefore, if in ,.. we have p0 = d, , PfJ = d,, and p., = ds , in "'i+2 we 

have Po = d3 , PfJ = d1 and p.., = d2 • Therefore, routing from ,.. to "';+2 requires a single cycle (a P "'f), which 

corresponds to a path containing at most 4 links in S(n) as indicated by Equation 8. o 

We now state without proof the following lemma (proof is actually analogous to that of Lemma 3): 

Lemma4 Letw = m,m2···m; ... mn-lo Wi+2 = m,m2···(m; +4) . .. mn-l E V(M) be a pair ofnodes 

separated by ./ links along the ith dimension of M(n- 1), 4::; i :S n- 1. In lhe corresponding embedding of 

M(n- 1) into S(n), w and w;+4 are connected by a palh conlaining at most 6 linl:s. 

Theorem 3 For n ~ 4, there is a load 1, variable-dilation embedding o f Q(n-1 +l) in to S(n) , O < l :S n-3, 
whose dilation vector and e:rpansion rotio are respectively 

d·-{ 3 ,i/i:Sn-1 
' - 4 , if n :S i :S n - 1 + l and 

n! n! 
X(1 , dn-l+t) = 2n-1-l ~ 22n-4 

Proof: Due to the partitioning process described in the proof of Theorem 1, at least 2 equal-sized sets of 

packed Q(n- 1) 's can be found if M(n- 1) is traversed along dimension i , i~ 3. lf we connect the packed 

hypercubes along t o C these dimensions as shown in Figure 4, a variable-dilation embedding of Q( n - 1 + t) 
into M(n- i ) results. The dilation vector of such an embedding is: 

d· _ { 1 , i f i::; n- 1 
' - 2 , if n :S i :S n - 1 + l 

Note that an extra hypercube dimension can be created with dilation 2 along each dimension i ~ 3 via 

the technique depicted in Figure 4. Since in M(n -1) there are (n- 3) such dimensions, the embedding must 

observe the constraint O ::; l :S n - 3. 

If we now map M(n- i ) onto S(n) via Algorithm 1, the dilation vector claimed in the theorem results 

as a direct consequence of Lemmas I and 3. Finally, the expansion of the embedding can be obtained by a 

simple application of Equation 5. O 

Theorem 4 For n ~ 8, there is a load 1, variable-dilation embedding of Q(n - I+ l) into S (n), O < l ::; 

2n- 10, whose dilation vector and expansion ratio are respectively 

{ 

3 , i/i :S n-1 
d; = 4 , i/ n :S i :S 2n - 4 and i :S l 

6 , if 2n - 3 :S i :S t 
and 

- -- n! n! 
X( i, dn - l+t} = 2n-l-l ~ 23n-11 

Proof: As described in the proof of Theorem 3, for n ~ 4 up to 2"-3 packed Q(n - 1)'s can be con

nected in M(n - 1) , resulting in an (2n - 4)-dimensional hypercube whose dilation vector is d2n_4 = 
[1,1 , ... , 1,2, 2, . . . , 2]. 

For n ~ 8, there are (n- 7) dimensions along which M(n- i)'s size is s; ~ 8. In addition , at most one 

half of the packed Q(n - 1)'s along these dimensione is used by the technique depicted in Figure 4 when 

forming Q(2n- 4) . It is therefore possible to form additional Q(2n - 4) 's with the unused Q(n- 1)'s. Once 

these Q(2n - 4) hypercubes are properly connected, higher dimensional hypercubes result. In fact, a new 

hypercube dimension can be created with dilation 4 by connecting Q(2n- 4)'s along each dimension i ~ 7 in 

M(n-1), as shown in Figure 5. Hence, at most (n-7) extra dimensions can be obta.ined with this technique, 

which results in the following dilation vector for the embedding of Q(n - 1 + l) into M(n- 1): 
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, ifi~n - 1 
, i f n ~ i ~ 2n - 4 and i ~ i 
, if 2n - 3 ~ i ~ t 

lf we now map M(n- 1) onto S(n) via Algorithm 1, the dilation vector claimed in the theorem results 

as a direct consequence of Lemmas 1, 3 and 4. Finally, the expansion of the embedding can be obtained by 

a simple application of Equation 5. O 

--- =-~ --= -~ofM~~) ~~~Dimensioni 

xOOO x100 x010 x110 x001 x101 x011 x111 

- Dllatlon 1 connection _ _ Dllation 2 connection -- Dllation 4 connection 

Figure 5: Embedding 3 dimensions of Q(n- 1 + l) along the ith dimension of M(n- 1), i~ 7 

Communication s1owdown resu1ting from variab1e-dilation embeddings 

As explained in Section 1, variable-dilation embeddings can achieve a considerably smaller communication 

slowdown for certain classes of algorithms. Figure 6 gives an estimate for the communication slowdown 

IJ(Q(k) ...... S(n)), which was computed from Equation 3 assuming an algorithm where each dimension ofQ(k) 

is used during an equal number of steps. In other words, the communication slowdown is estimated by the 

average dilation of the embedding. 

4.5 .--~---.-----~-----.---~---, 

5(8} 
5(9) 5(10) 

4.0 

5(5) 5(6) 

3.0 

2.5 L--~----'--~-----'---~---'---~-_J 

0.0 5.0 10.0 15.0 20.0 

Number of dimensions of the embedded hypercube (k) 

Figure 6: Average dilation of embeddings of Q(n - 1 + t) into S(n) 



VI Simpósio Brasileiro de Arquitetura de Computadores 17 

In Lhe case of S(IO) , for example, Figure 6 shows LhaL Q(k) can be embedded with fixed dilation 3 for 

k ~ 9, which is a consequence of Lemma 2. For 10 ~ k ~ 16, a variable- dilation embedding resulting from 

the connection of packed Q(9)'s causes Lhe average dilation to increase slowly up to 3.44. The dilation vectors 

used in the case 10 ~ k ~ 16 are as defined in Theorem 3. For 17 ~ k ~ 19, a variable-dilation embedding 

resulting from the connection of Q(16)'s causes the average dilation to increase ata slightly faster ratio up 

to 3.84. The dilation vectors used in the case 17 ~ k ~ 19 are as defined in Theorem 4. 

Finally, if Equation 7 is compared with the highest dimension k obtainable with the technique ofTheorem 4 

(k = 3n- 11), we note that it is possible to embed Q(20) into S(10) with variablc dilation by connecting 

packed Q(9)'s properly. A special connection technique allows such an embedding, whose dilation vector is 

given by: 

{ 

3 , ifi ~ n -I 
d· _ 4 , i f n :5 i~ 2n- 4 

' - 6 , if 2n - 3 ~ i ~ 3n - 12 
8 , if 3n - li ~ i ~ 3n - lO 

(9) 

Although a dilation of 8 results for the two highest dimensions of Q(20), the average dilation is nearly one 

half of that value (4.25). For conciseness, we will not present the connection arrangement required to embed 

Q(20) in toS( lO) with variable dilation here. In fact, such an arrangement is also required for variable-dilation 

embeddings of Q(ll) into S(7), Q(14) into S(8) , and Q(17) into S(9) . 

5 Multiple-Sized Packings 

Table 4 depicts packings o f hypercubes o f various sizes in to S( n ). These packings result from connecting 

Q(n- l)'s, such that a variable-dilation embedding is actually required for each packed Q(k), k > n- 1, as 

defined in Equation 9 and Theorems 3 and 4. 

Note that Table 4 simply lists how many Q(k)'s can be packed into S(n) , without truly reflecting ~he 
flexibility existing in a multiple-sized packing. lt is possible, for instance, to simultaneously pack 1 Q(16) , 1 

Q(15) , 2 Q(13)'s and 8 Q(12)'s into S(9) via simple partitioning mechanisms. Notably, processor allocation 

strategies can use the concept of multiple-sized packings to efficiently map hypercube-compatible algorithms 

with different computational requirements into S(n). 

6 Conclusion 

This paper addressed the issue of packing hypercubes into the star graph. Efficient packing techniques 

achieving low dilation and low expansion ratios were presented. Variable-dilation embeddings resulting from 

connecting packed Q(n- 1) 's into S(n) demonstrated th~ possibility of embedding large hypercubes into 

the star graph , with corresponding small expansion while still maintaining a low dilation on the average. 

Such an embedding technique is advantageous for different classes of algorithms that have been devised for 

the hypercube, providing a significantly smaller communication slowdown when the star graph is used for 

hypercube simulation purposes. Finally, we also introduced the concept of multiple-sized packings, which 

can provide the required support for processor allocation and task migration strategies in applications where 

S(n) must handle a workload of parallel programs originally written for a hypercube-configured MPP. 



18 XIV Congresso da Sociedade Brasileira de Computação 

S(n) S(3) S(4) S(5) S(6) S(7) S(8) S(9) 

No. ofQ(n - l) 's 1 2 4 12 36 144 576 

No. ofQ(n)'s - 1 2 6 18 72 288 

No. ofQ(n+ 1) 's - - 1 3 9 36 144 

No. ofQ(n + 2)'s - - - I 4 18 72 

No. ofQ(n + 3)'s - - - - 2 9 36 

No. ofQ(n + 4) 's - - - - I 4 18 

No. ofQ(n + 5)'s - - - - - 2 9 

No. of Q(n + 6) 's - - - - - 1 4 

No. of Q(n + 7) 's - - - - - - 2 

No. ofQ(n+8)'s - - - - - - I 

Table 4: Some possible packings of Q(k) into S(n), k ~ n- I 
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