VI Simpésio Brasileiro de Arquitetura de Computadores 3

On Packing and Embedding Hypercubes
into Star Graphs

Marcelo Moraes de AzevedoT: Shahram Lai,‘iﬁI and Nader Bagherzadehf

iDept.. of Electrical and Computer Engineering iDepl.. of Electrical and Computer Engineering

University of California, Irvine University of Nevada, Las Vegas
Irvine, CA 92717 Las Vegas, NV 89154-4026
email: mazevedo, nader@ece.uci.edu email: latifi@jb.ee.unlv.edu

Abstract — Packing is a graph simulation technique by which pr node-disjoint copies of a guest graph G(k)
are embedded inlo a host graph H(n). Many advantages resull from this technique as opposed to a simple
embedding of G(k) into H(n). The multiple copies of G(k) can ezecute different instances of any algorithm
designed to run in G(k), providing high throughput via an efficient, low-expansion utilization of H(n). Task
migration mechanisms between the multiple copies of G(k) also become possible, allowing a proper allocation
of the processors of H(n), load balancing and support of fault tolerance. Other advantages that arise from
a well-devised packing technique are variable-dilation embeddings and multiple-sized packings. A variable-
dilation embedding consists of connecting ¢ copies of a graph G(k), packed into a host graph H(n) with dilation
d, such as o obtain an embedding of a graph G(k+¢£), £ > 0, into H(n). The resulting embedding has dilation
d when the nodes of G(k+£) communicate over the first k dimensions of G(k+¢£), and dilation d; > d when a
dimension i, k < i < k+ £, is used. Since many parallel algorithms use a restricled number of dimensions of
the guest graph at any given step (e.g., SIMD-based algorithms), the resulting communication slowdown can
be made significantly small on the average. We also extend the concept of connecting node-disjoint copies of
a graph G(k) to obtain multiple-sized packings, in which graphs G(k),G(k+1),...,G(k+ £) of vartous sizes
are packed into a host graph H(n). Multiple-sized packings allow tasks with different processor requiremcnts
1o be allocated proper guest graphs G(k + j) in H(n) (variable-dilation embeddings result when j > 0).

This paper focuses on the problem of packing hypercubes Q(n — 2) and Q(n — 1) into a star graph S(n)
with dilation 3. We show that 3- |n/2]!- |(n = 1)/2]! copies of @(n —2) or |n/2]!- [(n — 1)/2]! copies of
Q(n—1) can be packed into S(n), with ezpansion Wﬁﬂm and W_’:’;‘Wm‘, respectively.
We also show how to connect packed Q(n — 1)’s to oblain a variable-dilation embedding of Q(n — 1 + £),
£ < |loga(|n/2)! - |(n — 1)/2)1)], inte S(n). Such an embedding has dilation 3 for the first (n—1) dimensions
of Q(n — 1+ £) and guarantees a minimal slowdown by using a slightly higher dilation (4 in most cases) for
the remaining dimensions of Q(n — 1 + £). Finally, we also address the issue of multiple-sized packings of
hypercubes into S(n).

Key words — Graph simulation, interconnection networks, hypercube embedding, hypercube packing, parallel
processing, star graph, variable-dilation embeddings.

1 Introduction

The star graph was proposed as an attractive interconnection network for massively parallel processing [1],
[2], featuring rich symmetry properties, and a degree and diameter that are sublogarithmic on the number of
processors in the graph. These properties compare favorably with hypercube networks [3], as described in [1]

*This research is supported in part by Conselho Nacional de Desenvolvimento Cientifico e Tecnolégico (CNPq - Brazil), under
the grant No. 200392/92-1.

4 XIV Congresso da Sociedade Brasileira de Computacio

and [4]. However, the earlier introduction of hypercube networks, along with their interesting characteristics,
has given to such networks a considerable popularity. A number of hypercube-configured massively parallel
processors (MPPs) were built in recent years [5], [6], [7], and various hypercube-compatible algorithms have
been developed and tested in these MPPs. It is therefore of particular interest to reuse such algorithms in
star graph-configured MPPs via proper hypercube simulation mechanisms.

A graph G(k) modeling a particular interconnection network can be described by a set of nodes V(G) and
a set of links E(G). One possible mechanism for simulating G(k) in a second graph H(n) is referred to as
embedding G(k) into H(n). The embedding of G(k) = {V(G), E(G)} into H(n) = {V(H), E(H)} consists of
a mapping of V(G) into V(H) and of E(G) into paths of H(n). The set of nodes resulting from the mapping
M :V(G)— V(H) is Vg(H) C V(H). The graph that is being embedded (G(k)) is referred to as the guest
graph, while the graph that receives the embedding (H(n)) is referred to as the host graph [8]. The load of
an embedding is the maximum number of nodes of the guest graph that are embedded in any single node of
the host graph. We assume in this paper that each node of G(k) is mapped to a distinct node of H(n), i.e.
the load of the embedding is 1. Clearly, in order to achieve such embedding we must have |H(n)| > |G(k)|.
The ratio |H(n)|/|G(k)| is called the expansion of the mapping. The dilation of the embedding is the longest
path in H(n) used to map any link Ey, = (u,v) € E(G), u,v € V(G). We refer to the expansion of an
embedding with load A and dilation d as X (X, d).

Different techniques have been proposed for embedding a hypercube Q(k) into a star graph S(n) [9], [10].
Embeddings with load 1 and dilations of 2, 3 and 4 were considered in [9]. The corresponding expansions of
these embeddings are X(1,2) = (2* + 1)!/2¥, X(1,3) = k!/2%, and X(1,4) < (2 + j)1/22" (h-2+hi+2 \where
h > 2 and j < 2* are some integers such that 2"(h — 2) + hj + 2 < k. Embeddings of Q(k) into S(n) with
dilations of 1, 2 and 3 were proposed in [10], with expansions X (1,1) = (3¥+1)!/2*%, X(1,2) = (13j+2)!/2!4+2
(where k = 11j + 2 and n = 13j +2), and X(1,3) = 2#1/252"™" (where k = h2"~1 and n = 2*), respectively.
The dilation 1 and 2 embeddings proposed in [10] use the concept of one-to-many mappings, in which each
node of the guest graph is mapped into multiple nodes of the host graph. This results in lower dilation than
that obtainable with one-to-one mappings.

A major drawback of the embeddings of Q(k) into S(n) proposed in [9] and [10] are their large expansion
ratios, which results in only a minor fraction of the available nodes in S(n) being used. Embeddings with
smaller expansions can be obtained, although at the expense of increased dilation [10].

As it is defined, the embedding of a guest graph G(k) into a host graph H(n) is concerned with simulating
a single copy of G(k) (namely, G1(k)) in H(n). In embeddings with large expansion ratios (as is the case of
embeddings of a hypercube into a star graph), a more efficient utilization of H(n) can be obtained if nodes in
V(H)—Vg,(H) are used to build additional node-disjoint copies of G(k) (namely, Ga(k), Ga(k), ..., Gp(k)). A
number of advantages results from such multiple embeddings, as we shall see shortly. Such a graph simulation
technique is referred to as packing G(k) into H(n).

In its simplest form, the packing of a graph G(k) = {V(G), E(G)} into a graph H(n) = {V(H), E(H)}
consisl:s of a mapping of V(G) into node-disjoint sets Vg, (H), Vg, (H), ..., Ve,(H) C V(H), and of E(G) into
paths of H(n), such that p; copies of G(k) (i.e., Gy(k), Ga(k), ..., Gp(k)) are simulated in H(n). These copies
do not share any common processing node in H(n) (i.e., Vg, (H)NVg,(H)N...NVg,(H) = B, and the dilation
of each Gj(k) being simulated in H(n) is d. In addition, we assume in this paper that the packing of G(k)
into H(n) uses a one-to-one, load 1 mapping P : V(G) — Vg, (H), V(G) = Va,(H),...,V(G) — Vg, (H).
Note that packing is an extension of the embedding problem, in which the mapping P must be choscn such
as to maximize the number of node-disjoint copies of G(k) into H(n). We define the ezpansion of a packing
of G(k) into H(n) as the ratio:

VI Simpésio Brasileiro de Arquitetura de Computadores 5

|H(n)|

X(A.d,m)=m: (1)

where A, d and p; are respectively the load, the dilation, and the number of copies of G(k) resulting from
the packing,.

Packing is a useful technique for exploiting the multitasking capability of a host graph H(n), and allows
concurrent execution of algorithms originally designed to run in G(k). The processes running in each of the
px copies of G(k) are either different instances of the same algorithm, or instances of any other algorithm
executable in G(k). Task migration strategies between the multiple copies of G(k) also become possible,
providing advantages such as load balancing and support of fault tolerance. Note that we will not be
discussing task migration or processor allocation strategies in this paper. Rather, we present efficient packing
techniques that are required to support these strategies in star graphs when multiple hypercubes are being
simulated. We refer the reader to [11] and [12] if the particular issues of task migration and processor
allocation in hypercubes is of interest.

Let G(k) be a k-dimensional graph with hierarchical structure [2], such that a (k + 1)-dimensional graph
G(k + 1) can be obtained recursively from c(k) copies of G(k). Several graphs belonging to the class of
Cayley graphs have this recursive decomposition property, such as the hypercube (Q(k)) and the star graph
(S(n)). Q(k+1), for example, can be obtained by connecting two Q(k)’s, while S(n + 1) can be obtained by
connecting (n + 1) S(n)’s.

A well-devised packing technique can be readily extended to support variable-dilation embeddings and
multiple-sized packings. A variable-dilation embedding consists of simulating a single higher dimensional
graph G(k + €), £ > 0, in H(n) by connecting c(k — k + £) = H|€=1 e(k + i — 1) packed copies of G(k). We
refer to such an embedding as having variable dilation due to the fact that the maximum number of links in
H(n) that are required to simulate any given link (u,v) of G(k + £) depends on the dimension of (u,v). Let
eyt = [d1,da,...,di,...,diye] be a dilation vector defining the maximum number of links in H(n) that is
required to simulate any of the dimension i links of G(k + £), 1 < i < k + £. For embeddings resulting from
the packing techniques described in this paper, for example, the dilation along dimension i of G(k + £) is

d ifi <k
d‘={2d ifk<i<k4l @
Assume that the communication slowdown n(G(k) ~— H(n)) resulting from simulating G(k) in H(n)
is equal to the dilation of the embedding, namely n(G(k) — H(n)) = d. A conservative estimate for the
communication slowdown of a variable-dilation embedding V : G(k 4 £) ~ H(n) would be n(G(k + £)
H(n))mar = max(d,d;) = d', k < i < k+ £. Many algorithms, however, use a limited number of dimensions
at any given step of their execution, resulting in a smaller slowdown. Notably, algorithms following the SIMD
computational model require that all processors in the interconnection network must operate in a lockstep
fashion, causing a unique dimension to be used at every step of the algorithm. Note that the slowdown
resulting from running algorithms devised according to the MIMD computational model may also be smaller
than 5(G(k + €) — H(n))maz, depending on how the dimensions of G(k + £) are used and on how the
processors synchronize themselves during the execution of the algorithm.
Let A be an algorithm devised to run in a SIMD version of an interconnection network G(k + £). Let the
number of steps using dimension i of G(k + €), 1 < i < k + £, be 7;. The communication slowdown in A's
execution, resulting from a variable-dilation embedding of G(k + £) into H(n), is

6 XIV Congresso da Sociedade Brasileira de Computacio

k42

E 7id;

Gk + €) — H(n)) = =2 (3)

k+t
Ti

i=1

If we make the simplifying assumptions that A is such that 7; = 7, Vi, and that d; = d' for k < i < k +¢,
Equation 3 reduces to

k
k+e
Notice that a major advantage of variable-dilation embeddings as opposed to conventional embedding
methods is that the communication slowdown can be made significantly smaller on the average. A conven-
tional embedding of a guest graph G(k + £) into a host graph H(n), however, often results in a large dilation
d' being required along all dimensions of G(k + £) if the expansion ratio of the embedding is at premium.

WGk +£€) — H(n)) =d"+ (d—d') (4)

Consequently, a larger communication slowdown d' results. On the other hand, variable-dilation embeddings
can still achieve low expansion ratios with smaller slowdown by forcing the dilation along the first k dimen-
sions of G(k + £) to be d < d’. As explained earlier, this is achieved by generating the embedding of G(k +£)
from packed copies of lower dimensional graphs G(k). The expansion of such a variable-dilation embedding
is:

1H(n)]| |H(n)|

X(A-r-l-t) = |Gk +)] - c(k — k + O)|G(k)|’ 3

where ¢(k — k + £) is the number of packed copies of G(k) required to form a (k + £)-dimensional graph
Gk +¢£).

The concept of connecting packed copies of a guest graph G(k) can also be used for multiple-sized packings,
in which graphs of various sizes |G(k)|, |G(k +1)|,...,|G(k+)|, ..., |G(k + £)| are packed into a host graph
H(n). Let c(k — k + j) be the number of packed copies of G(k) required to form a (k + j)-dimensional
graph G(k + j), and let py4; be the number of copies of G(k + j) packed into H(n). Since all packed G(k)’s
are node-disjoint, the multiple-sized packing resulting from connecting these G(k)’s also yields node-disjoint
graphs G(k + j), 0 < j < £. For j > 0, a graph G(k + j) is embedded into H(n) via a variable-dilation
mapping, as described in Equation 2. Let Fﬂ be the dilation vector resulting from simulating a graph
G(k + j) via packed G(k)’s. The expansion of a given multiple-sized packing Py, is

XA\ dey) = [Hm : |H(n)]
S opeailG+) D prajelk — k+)IG(K)|
J=0 j=0

Multiple-sized packings allow tasks with different processor requirements to be allocated proper guest
graphs G(k + j) in H(n), while still providing smaller communication slowdown since a variable-dilation
embedding is used for each G(k + j).

This paper considers the packing of hypercubes Q(n—2) and Q(n— 1) into a star graph S(n) with dilation
3. Our packing technique uses a two-step mapping, in which hypercubes are initially packed with dilation 1
into an (n — 1)-dimensional mesh M(n — 1) of size 2 x 3 x ... x (n — 1) x n. This (n — 1)-dimensional mesh
is then embedded into S(n) with dilation 3, load 1 and expansion 1 via the mapping proposed by Ranka et
al. in [13].

VI Simpésio Brasileiro de Arquitetura de Computadores 7

We show that 3 - [n/2]!. |(n = 1)/2]! copies of @(n = 2) or |n/2|!: [(n=1)/2]! copies of Q(n — 1) can be
packed into S(n), with expansion ﬂ;fﬂ,—l—(ﬁwm and Wmn—flw, respectively. We also show
how to obtain a variable-dilation embedding of @(n—1+£), £ < |logy([n/2]! - [(n — 1)/2]")], into S(n). The
resulting embedding has dilation 3 for the first (n — 1) dimensions of Q(n — 1 + £) and guarantees a minimal
slowdown by using a slightly higher dilation (4 in most cases) for the remaining dimensions of Q(n — 1 + £).
In addition, we also address the issue of multiple-sized packings of hypercubes into star graphs.

2 Background

2.1 The hypercube

A k-dimensional hypercube graph Q(k) = {V(Q), E(Q)} contains 2*¥ nodes which are labeled with binary
strings of length k. In this paper, we use the digits {0, 1} to form the node labels of Q(k). A node
¢ = q192...4i...qn is connected to n distinct nodes, respectively labeled with strings ¢; = q1¢2...3 .. .¢n,
1 € i € n. In other words, node ¢ is connected to other n nodes whose labels are the binary strings resulting
from complementing the digit in position i in ¢, where 1 < i < n [3]. A 9-dimensional hypercube is shown
in Figure 1. Note that a link connecting a node ¢ = q1¢2...¢i...¢n to a node ¢; = gig2...7; . ..qn is labeled
i to indicate a connection along the ith dimension of Q(k).

0ot 101
— i T

010 m

Figure 1: A 3-dimensional hypercube Q(3)

Q(k) is a regular graph with degree 6(Q(k)) = k and diameter d(Q(k)) = k [3]. @Q(k) is vertex and
edge-symmetric, has hierarchical structure and supports node communication via simple routing algorithms.

2.2 The star graph

An n-dimensional star graph S(n) = {V(S), E(S)} contains n! nodes which are labeled with the n! possible
permutations of n distinet symbols. In this paper, we use the digits {1, 2, ..., n} to label the nodes of S(n).
A node ¥ = pyp2...pi...pn is connected to (n — 1) distinct nodes, respectively labeled with permutations
T = PiP2...Pi-1P1Pi41..-Pn, 2 £ ¢ < n. In other words, node 7 is connected to other (n — 1) nodes
whose labels are the permutations resulting from exchanging the digit in position i in = with the first digit
of m, where 2 < i < n [1], [2]. A 4-dimensional star graph is shown in Figure 2. A link connecting a node
T =pP1P2..-Pi.--Pn toanode 7 = pip2...Pi—1P1Pi+1 - - - Pn is labeled i to indicate a connection along the ith
dimension of S(n). S(n) is a regular graph with degree §(S(n)) = n—1 and diameter d(S(n)) = |3(n—1)/2|
[1). Similarly to Q(k), S(n) is a hierarchical graph featuring simple routing and both vertex and edge
symmetry.

2.3 Embedding an (n — 1)-dimensional mesh into S(n)

As mentioned earlier, the packing and embedding techniques presented in this paper use a two-step mapping,
in which hypercubes are initially packed into an (n — 1)-dimensional mesh of size 2 x 3 x ... x (n—=1) x n,
namely M(n — 1) = {V(M),E(M)}. M(n — 1) is then embedded into S(n) with load 1, dilation 3, and

XIV Congresso da Sociedade Brasileira de Computacio

Figure 2: A 4-dimensional star graph S(4)

expansion 1 via the mapping proposed by Ranka et al. in [13]. A brief review of this mapping is presented
below.

We assume that the nodes of M(n — 1) are labeled with an (n — 1)-digit vector myma...mp_1,0 < m; <
s; — 1, where s; = i + 1 is the size of the mesh along the ith dimension.
The mapping of a node w = mymy...my-1, w € V(M), onto a node # = p1ps...pa, # € V(S), is

accomplished by the algorithm shown below. We assume that the identity node of M(n — 1) (00...0) maps
onto the identity node of S(n) (12...n).

Algorithm 1 (Mapping M(n — 1) onto S(n)):

mesh.tostar (int m[], int n, int p[])
{
int i, j, temp;
for(i=1;i<n;i++)pli]=1;
for(i=1;i<n;i++)
for (j = 0; j < m[i); j ++) {
temp = pli — jl;
pli—j)=pli—j+1);
pli—j+ 1] = temp;
}
}

Algorithm 1 initially sets permutation = to p[] = 12...n. The next step of the algorithm consists of an

VI Simpésio Brasileiro de Arquitetura de Computadores 9

iterative inspection of the (n — 1) coordinates of the mesh node (w = m|[]). Assuming that the coordinate of
w along the ith dimension is mli], the ith iteration of the external for loop results in the following sequence
of transpositions:

(pli] = pli+ 1), (pli = 1] = plil), - .-, (pli — mi] + 1] = pli — m3] + 2])

Let the transposition of two digits p,, p, in 7 be denoted by (r s) (i.e., (r s) corresponds to the exchange
of the digits occupying the rth and the sth positions in permutation 7). Table 1 lists the sequences of
transpositions used by Algorithm 1 along the (n — 1) dimensions of the mesh. Note that if the coordinate of
the mesh node along dimension i is m[i], then only the first m[i] transpositions of the sequence corresponding
to dimension i are used.

As an example, assume the mapping of node w = 103 € M(3) onto a node = € S(4). Initially, Algorithm
1 sets 7 = 1234. Since m(1] = 1, a (12) transposition is performed on 1234 giving 2134. Next, the algorithm
examines the coordinate of w along the 2nd dimension (m[2]). Since m[2] = 0, no transpositions are performed
at this step. Next, m[3] is examined, resulting in a sequence of transpositions (3 4) (2 3) (1 2). Such sequence
affects m as shown below:

2134 — 2143 — 2413 — 4213

Hence, w = 103 is mapped onto node = = 4213. Figure 3 shows the complete mapping of a 3-dimensional
mesh onto S(4).

Dimension (i) Sequence of transpositions
(12)
2 (23) (12)
T TN L e T

Table 1: Sequences of transpositions used by Algorithm 1

The mapping algorithm described in this paper differs slightly from that proposed in [13] in respect to the
definition of a transposition (r s). In Algorithm 1, (r s) corresponds to an exchange of the digits occupying
the rth and the sth positions in permutation x. In the corresponding algorithm described in [13], (r 5)
corresponds to an exchange of digits r and s in x. Both approaches however result in a correct one-to-one
mapping of M(n — 1) onto S(n).

As shown in Table 1, communication between two nodes w,w; € V(M) which are adjacent over the ith
dimension of M(n — 1) requires a transposition (r s) which must be properly accomplished by means of star
operations that are available in S(n). Let g be the star operation performed along the gth dimension of S(n)
(i.e., g exchanges the first and the gth digit of a permutation of n digits). Assume that transposition (r s)
is ordered such that r < s. Therefore, (r s) can be minimally executed by the following sequences of star
operations:

(rs)E{s yifr=1 6)

s—r—sg=r—s—r ,ifrs#l
Note that transposition (r s) requires 1 star operation if r = 1 and 3 star operations otherwise. This
result can be extended to the following Lemma [13]:

Lemma 1 Any two nodes w, w; € V(M) which are adjacent over the ith dimension of M(n—1),1 <i < n-1,
are connected by a path containing either 1 or § links in the corresponding embedding into S(n).

10 XIV Congresso da Sociedade Brasileira de Computagio

Figure 3: Mapping of M(3) onto S(4)

3 Packing Hypercubes into Star Graphs

The packing techniques which are presented in this paper take advantage of the regular structure of M(n—1)
to achieve an efficient utilization of the processors of S(n). An important result upon which our techniques
are based is given below:

Lemma 2 Q(k) can be embedded into M(n — 1) with load I, dilation 1, for k <n-—1.

Proof: A basic requirement for a load 1, dilation 1 embedding of Q(k) into M(n — 1) is that the degree of
any node in M(n — 1) must be greater than or equal to the degree of Q(k). Since the degree of the nodes in
M(n — 1) is at least (n — 1) and §(Q(k)) = k, this condition is satisfied for all k < n— 1.

To complete the proof, we give a straightforward mapping of the nodes of Q(k) onto the nodes of M(n—1)
(Algorithm 2). Algorithm 2 does a one-to-one mapping in which mesh nodes whose first k coordinates are
either 0 or 1 are selected to embed Q(k). Note that such a mapping is possible due the fact that the size of
M(n — 1) along any dimension is at least 2. A null value is selected for the remaining (n — 1 — k) coordinates
of these nodes, although different values could have been used as well. Note that Q(k) can be seen as a
k-dimensional mesh of size s; x 53 X ... x sxp =2x 2 x...x 2, which corresponds to using a limited range of
the coordinates available in M(n —1). O

Algorithm 2 (Mapping Q(k) onto M(n — 1)):

cube_to.mesh (int ¢[], int &, int n, int m[])
{
int 7;
for (i = 1;i < k; i + +) mli] = q[i];
for(i=k+1;i<ni++)m[i]l=0;
}

VI Simpésio Brasileiro de Arquitetura de Computadores 11

A natural extension of Algorithm 2 consists of selecting proper values for the coordinates of the mesh
nodes, such that node-disjoint mappings of Q(k) onto M(n — 1) result. This is exactly the basis for the
packing technicues we will be presenting next. Two distinct cases are considered in the remainder of this
section: packing @(n —1) into M(n —1) and packing Q(n — 2) into M(n —1). Our results are then extended
via a subsequent embedding of M (n — 1) into S(n) using the mapping given by Algorithm 1.

3.1 Packing Q(n —1) into S(n)
Theorem 1 [t is possible to pack p.-1 node-disjoint copies of Q(n — 1) into S(n), with load 1, dilation 3,
and ezpansion X(1,3,pn—1), where

P““=l%]!'ln;lJ! and X(1.3.pn-|)=m

Proof: The size of M(n — 1) along the ith dimension is s; = i + 1 (i.e., the ith coordinate of the nodes of
M (n — 1) ranges from 0 to). It is possible to partition M(n — 1) along dimension i into |s;/2] (n — 1)-
dimensional submeshes whose size along that dimension is at least 2. If this process is repeated for all
dimensions of M (n — 1), the resulting number of (n — 1)-dimensional submeshes of size at least 2 along any

dimension is
=[2x|2 ooyl _ |3]. 181 |4 .l P . PO it 4
Py = l.zJ" lsz"'xl 2 J‘lzJ % lz_l % I_z_lx“"‘ l2J = lzl l 2 J
Due to the partitioning process, these submeshes are node-disjoint. In addition, by applying Lemma 2 we
note that it is possible to embed Q(n — 1) with load 1, dilation 1 into each of these p,_, submeshes. Hence, it
is possible to pack p,_; node-disjoint copies of Q(n—1) into M(n— 1), with load 1 and dilation 1. If we now
embed M(n —1) into S(n) using the mapping given by Algorithm 1, a load 1, dilation 3 packing results. The
fact that the load remains 1 follows from the observation that Algorithm 1 provides a one-to-one mapping
[13]. The dilation, however, increases from 1 to 3 as a direct consequence of Lemma 1.

To complete the proof, we note that the expansion of the packing can be obtained by direct application
of Equation 1, noting that |S(n)| = n! and |Q(n —1)| = 2"~'.0

We now present an algorithm that packs @Q(n — 1) into S(n):
Algorithm 3 (Packing Q(n — 1) into S(n)):

pack-cube_n_1 (int g[], int C, int n, int p[])

{
int i, offsel[], m[];
for (i=1;i < n; i+ +) m[i] = q[i];
for (i=3;i<n;i++){

et =1 | g s 5°))

m[i] = m[i]+ offseti];
}

mesh_to_star (m[], n, p[])

}

Initially, the algorithm copies the coordinates of the hypercube node (g[]) onto the coordinates of a mesh
node m[]. Let g[] be a node belonging to the Cth packed hypercube, 0 < C < p,-; — 1. Algorithm

12 XIV Congresso da Sociedade Brasileira de Computagio

3 computes an offset vector (offset[]) to correctly map any node belonging to the Cth hypercube onto a
node-disjoint submesh. This offset is added to m[], completing the mapping onto M(n — 1). The resulting
mesh coordinate is finally mapped onto S(n) via a call to Algorithm 1. Table 2 shows the offset vectors that
are required to pack Q(5) into S(6). Note that according to Theorem 1 it is possible to pack 12 copies of
Q(5) into S(6).

Hypercube number (C) 0f(1(2]|3|4|5|6|7(8]9(10]11

offset[3]) = 2 (C mod 2) of2|o|2|o|2]|of2f{o|2]|0 |2

ofsei{4]=2(l%Jmod2) ofof2)2j0f0f2|2|0|0| 2] 2

fsetis =2 (| €] maaa), Lol alalalololololalalals
e Vo /2 o e I

Table 2: Mesh coordinate offsets used in the packing of Q(5) into S(6)

3.2 Packing Q(n —2) into S(n)

Theorem 2 It is possible to pack p._s node-disjoint copies of Q(n — 2) into S(n), with load I, dilation 3,
and ezpansion X(1,3,pn_2), where

Pn-2=3" l%J!'l_n;IJ! and X(1,3,pn-2) = 3~ BiE [:;LJ!"‘-’""

Proof: Partitioning M (n — 1) into |s;/2| submeshes along dimension ¢, as described in the proof of Theorem
1, results in unused nodes whenever s; is odd. Notably, the largest underutilization of M(n — 1) occurs for
i =2, when 1/3 of the nodes are discarded by the partitioning process. These nodes can actually be used
while packing Q(n — 2) into S(n), if we partition M(n — 1) into (n — 2)-dimensional submeshes instead.

We modify the partitioning of M(n — 1) as follows. Initially, M(n — 1) is partitioned into 3 (n — 2)-
dimensional meshes along dimension 2. For the remaining dimensions, the partitioning process occurs as
described in Theorem 1. Hence, the resulting number of (n — 2)-dimensional submeshes of size at least 2
along any dimension is

51 53 8n-1 2 4 n n n-—1
= |=— —_ = |- flesd -] =94 t=11s
o= 5] x| 3] [t = [§] <ax 3] <k (5] =2 3] |25
Due to the partitioning process, these submeshes are node-disjoint. In addition, by applying Lemma 2 we
note that it is possible to embed @Q(n — 2) with load 1, dilation 1 into each of these p,_; submeshes. Hence,
it is possible to pack p,_2 node-disjoint copies of @(n — 2) into M(n — 1), with load 1 and dilation 1. If we

now embed M(n—1) into S(n) using the mapping given by Algorithm 1, a load 1, dilation 3 packing results.
The derivation of the expansion ratio is done as in the proof of Theorem 1.0

A straightforward extension of Algorithm 3 that packs Q(n — 2) into S(n) follows:

VI Simpésio Brasileiro de Arquitetura de Computadores 13

Algorithm 4 (Packing Q(n — 2) into S(n)):

pack_cube_n_2 (int g[], int C, int n, int p[])

{
int i, offset[], m[];
m{1] = q[1];
m[2] = C mod 3;

for(i=3;i<n;i++){

offseifi] = 2 (ls_ljrg_[_Tj'J b H_ID

mli] = q[i — 1)+ offset[i];
}

mesh_tostar (m[], n, p[])

}

3.3 Results on packing @(n —1) and @Q(n — 2) into S(n)

Table 3 depicts the number of packed hypercubes and the expansion ratios resulting from the techniques
described in this section. Note that low expansion ratios are obtained, meaning that a large portion of the
nodes of S(n) are used in the packing. Smaller expansion ratios are obtained when packing Q(n — 2) into
S(n), since a more efficient partitioning strategy of M(n — 1) is possible in this case. In addition, note that a
slight increase in the expansion ratios occurs whenever n is incremented to an odd number, which can also be
explained by the partitioning strategy described in the proofs of Theorems 1 and 2. Finally, we observe that
the unused nodes resulting from the partitioning process could be used for packing additional hypercubes at
the expense of higher dilation.

S(n) S5(3) | S(4) | S(5) | S(6) | S(7) | S(8) | S(9) | S(10)

No. of packed Qn—1)’s(pa—y) | 1 | 2 | 4 | 12 | 36 | 144 | 576 | 2,880

Expansion ratio (X(1,3,pa-1)) | 1.50 | 1.50 | 1.88 | 1.88 | 2.19 | 2.19 | 2.46 | 2.46

No. of packed Q(n — 2)'s (pn-2) 3 6 12 36 108 | 432 | 1,728 | 8,640

Expansion ratio (X(1,3,pn-1)) | 1.00 | 1.00 | 1.25 | 1.25 | 1.46 | 1.46 | 1.64 | 1.64

Table 3: Results on packing @(n — 1) and Q(n — 2) into S(n)

4 Variable-Dilation Embeddings of Q(n — 1 + ¢) into S(n)

In this section, we describe how an (n — 1+ £)-dimensional hypercube can be embedded with variable dilation
into S(n). 2¢ packed copies of @(n — 1) are required for such an embedding, where £ is limited by

£5 logapa-a) = [1oga (| 3]+ 2521)

14 XIV Congresso da Sociedade Brasileira de Computacio

1000

Figure 4: A variable-dilation embedding of Q(4) into M(3)

Figure 4 depicts an example of the technique we will be describing in this section. A 4-dimensional
hypercube is embedded into M(3) as the result of the connection of two packed @Q(3)'s. Note that the
dilation of such an embedding along the ith dimension of Q(4) is

_J 1 ,ifi<g3
aE { 2 ifi=4

As defined in section 1, Figure 4 corresponds to a variable dilation embedding whose dilation vector is
ds = [1,1,1,2]. If we now map M(3) into S(4) using Algorithm 1, the dilation vector of the corresponding
embedding of Q(4) into S(4) becomes 3 =[3,3,3,4].

The dilation along the first 3 dimensions of Q(4) increases from 1 to 3 as a direct consequence of Lemma

1. The fact that the dilation along the 4th dimension of Q(4) increases from 2 to 4 is justified by the following
Lemma:

Lemma 3 Let w = mymg...mi...Mpoy, Wiz = muma...(m; +2)...m,_; € V(M) be a pair of nodes
separated by 2 links along the ith dimension of M(n—1), 2<i<n—1. In the corresponding embedding of
M(n —1) into S(n), w and wi42 are connected by a path containing at most 4 links.

Proof: By inspection of Algorithm 1 and Table 1, we note that the mapping of w42 € V(M) onto mi43 € V(S)
uses a sequence of transpositions of the form:

gis2 = (a b)(c d)...(i j)(k)(m n)(e p)...(y 2)

Accordingly, w is mapped onto 7 via a sequence of transpositions of the form:

o =(ab)(cd)...(i j)op)... (v 2)

Although identical transpositions are used in o and 0,42, the mapping sequence of w; 2 has two transpo-
sitions more than the mapping sequence of w;. An inspection of Table 1 reveals that the extra transpositions
(k 1) and (m n) are actnally two consecutive transpositions along the ith dimension, whose generic format is
(zz+1)(z—1z)=(st)(rs),r=8—1=1t—2 According to Equation 6, these two transpositions can be
accomplished via a sequence of star operations as follows:

_Js=ot—of—f=5—1 T |
(St)(rs)={S—-t—of—v#-—-r—oszs—ot-—or—ts yifr#1 ()

Note that the execution of the two transpositions require either 2 or 4 star operations. We can actually
concatenate (s t)(r s) into a single permutation cycle [14] of the form (r s t). Let the digits occupying the rth,

VI Simpésio Brasileiro de Arquitetura de Computadores 15

the sth and the tth positions of the permutation resulting from applying transpositions (a b)(c d)...(i j) €
0,0i42 to the identity 123...n be respectively dy, d3 and d3. Therefore, cycle (r s t) moves d; into da’s
position, d; into ds’s position, and ds into d,’s position. Since ¢ and o4 have the same transpositions
except for the cycle (r s t), m and w42 will differ only in the final positions occupied by digits d;, d; and
d3. Let these positions be a, § and v. Therefore, if in v we have p, = dy, ps = d2, and p, = d3, in 742 we
have p, = d3, psp = d, and p, = d3. Therefore, routing from « to 7,4, requires a single cycle (e § v), which
corresponds to a path containing at most 4 links in S(n) as indicated by Equation 8. O

We now state without proof the following lemma (proof is actually analogous to that of Lemma 3):

Lemma 4 Lelw = mymg...m;...Mmp_1, Witz = mymaz...(m; +4)...mp_y € V(M) be a pair of nodes
separated by 4 links along the ith dimension of M(n—1), 4 <i<n— 1. In the corresponding embedding of
M(n —1) into S(n), w and wiy4 are connected by a path containing at most 6 links.

Theorem 3 Forn > 4, there is a load 1, variable-dilation embedding of Q(n—1+¢) into S(n), 0 < £ < n-3,
whose dilation vector and expansion ratio are respectively

n! n!

_[3 ,ifi<n-1 L
1=t 2 gt

d‘“{‘l yifngisn—1+¢ sed X(1,0n-14¢) =

Proof: Due to the partitioning process described in the proof of Theorem 1, at least 2 equal-sized sets of
packed Q(n — 1)’s can be found if M(n — 1) is traversed along dimension i, i > 3. If we connect the packed
hypercubes along £ of these dimensions as shown in Figure 4, a variable-dilation embedding of Q(n — 1 + £)
into M(n — 1) results. The dilation vector of such an embedding is:
d-—{ 1 ,ifi<n-1
'T12 ,ifn<i<n-1+¢

Note that an extra hypercube dimension can be created with dilation 2 along each dimension i > 3 via
the technique depicted in Figure 4. Since in M(n— 1) there are (n— 3) such dimensions, the embedding must
observe the constraint 0 < £<n - 3.

If we now map M(n — 1) onto S(n) via Algorithm 1, the dilation vector claimed in the theorem results
as a direct consequence of Lemmas 1 and 3. Finally, the expansion of the embedding can be obtained by a
simple application of Equation 5. O

Theorem 4 For n > 8, there is a load I, variable-dilation embedding of Q(n — 1+ £€) into S(n), 0 < £ <
2n — 10, whose dilation veclor and ezpansion ralio are respectively

{3 ,ifi<n—1

n! n!

#= 'Zn—;—-l 2 ZEn-Tl

4 ,ifn<i<2n—-4andi<t and X(l,dp-142) =
6 ,ifan-3<i<!t
Proof: As described in the proof of Theorem 3, for n > 4 up to 2"~ packed @Q(n — 1)’s can be con-
nected in M(n — 1), resulting in an (2r — 4)-dimensional hypercube whose dilation vector is dzn_4 =
21,29, .59

For n > 8, there are (n — 7) dimensions along which M(n — 1)’s size is s; > 8. In addition, at most one
half of the packed Q(n — 1)’s along these dimensions is used by the technique depicted in Figure 4 when
forming Q(2n — 4). It is therefore possible to form additional @(2n — 4)’s with the unused Q(n — 1)’s. Once
these @(2n — 4) hypercubes are properly connected, higher dimensional hypercubes result. In fact, a new
hypercube dimension can be created with dilation 4 by connecting Q(2n — 4)’s along each dimension i > 7 in
M(n—1), as shown in Figure 5. Hence, at most (n—7) extra dimensions can be obtained with this technique,
which results in the following dilation vector for the embedding of @(n — 1 + £) into M(n —1):

16 XIV Congresso da Sociedade Brasileira de Computacio

1 ,ifi<n-1
di=¢ 2 ,ifn<i<2n-4andi<¢
4 ,if2n-3<i<!t

If we now map M(n — 1) onto S(n) via Algorithm 1, the dilation vector claimed in the theorem results
as a direct consequence of Lemmas 1, 3 and 4. Finally, the expansion of the embedding can be obtained by
a simple application of Equation 5. O

Dimension i
of M(n-1)

%011 X111
Dilation 4 connection

x000 x100 x010 x110 x001 x101—
—= Dilation 1 connection === Dilation 2 connection

Figure 5: Embedding 3 dimensions of Q(n — 1 + £) along the ith dimension of M(n—1),i> 7

Communication slowdown resulting from variable-dilation embeddings

As explained in Section 1, variable-dilation embeddings can achieve a considerably smaller communication
slowdown for certain classes of algorithms. Figure 6 gives an estimate for the communication slowdown
n(Q(k) — S(n)), which was computed from Equation 3 assuming an algorithm where each dimension of Q(k)
is used during an equal number of steps. In other words, the communication slowdown is estimated by the
average dilation of the embedding.

4'5 T T T
5(9) S(10)
s(7) s(8)
a0 | -
kS
2
o
D 6 =
:’.,‘35 (5) S(6)
5 S(4)
I
30 | 4
2‘5 L i 1 1
0.0 5.0 10.0 15.0 20.0

Number of dimensions of the embedded hypercube (k)

Figure 6: Average dilation of embeddings of Q(n — 1 + £) into S(n)

VI Simpésio Brasileiro de Arquitetura de Computadores 17

In the case of S(10), for example, Figure 6 shows that Q(k) can be embedded with fixed dilation 3 for
k < 9, which is a consequence of Lemma 2. For 10 < k < 16, a variable- dilation embedding resulting from
the connection of packed Q(9)’s causes the average dilation to increase slowly up to 3.44. The dilation vectors
used in the case 10 < k < 16 are as defined in Theorem 3. For 17 < k < 19, a variable-dilation embedding
resulting from the connection of Q(16)’s causes the average dilation to increase at a slightly faster ratio up
to 3.84. The dilation vectors used in the case 17 < k < 19 are as defined in Theorem 4.

Finally, if Equation 7 is compared with the highest dimension k obtainable with the technique of Theorem 4
(k = 3n — 11), we note that it is possible to embed @(20) into S(10) with variable dilation by connecting
packed Q(9)’s properly. A special connection technique allows such an embedding, whose dilation vector is
given by:

3 ,ifi<n-1
4 ,ifn<i<2n—1

%=1¢ .ifn-3<i<3n~12 @)
8 ,if3n—11<i<3n—10

Although a dilation of 8 results for the two highest dimensions of Q(20), the average dilation is nearly one
half of that value (4.25). For conciseness, we will not present the connection arrangement required to embed
@(20) into S(10) with variable dilation here. In fact, such an arrangement is also required for variable-dilation
embeddings of Q(11) into S(7), Q(14) into S(8), and Q(17) into S(9).

5 Multiple-Sized Packings

Table 4 depicts packings of hypercubes of various sizes into S(n). These packings result from connecting
Q(n — 1)’s, such that a variable-dilation embedding is actually required for each packed Q(k), k >n —1, as
defined in Equation 9 and Theorems 3 and 4.

Note that Table 4 simply lists how many Q(k)’s can be packed into S(n), without truly reflecting the
flexibility existing in a multiple-sized packing. It is possible, for instance, to simultaneously pack 1 Q(16), 1
Q(15), 2 Q(13)’s and 8 Q(12)’s into S(9) via simple partitioning mechanisms. Notably, processor allocation
strategies can use the concept of multiple-sized packings to efficiently map hypercube-compatible algorithms
with different computational requirements into S(n).

6 Conclusion

This paper addressed the issue of packing hypercubes into the star graph. Efficient packing techniques
achieving low dilation and low expansion ratios were presented. Variable-dilation embeddings resulting from
connecting packed @Q(n — 1)’s into S(n) demonstrated the possibility of embedding large hypercubes into
the star graph, with corresponding small expansion while still maintaining a low dilation on the average.
Such an embedding technique is advantageous for different classes of algorithms that have been devised for
the hypercube, providing a significantly smaller communication slowdown when the star graph is used for
hypercube simulation purposes. Finally, we also introduced the concept of multiple-sized packings, which
can provide the required support for processor allocation and task migration strategies in applications where
S(n) must handle a workload of parallel programs originally written for a hypercube-configured MPP.

18 XIV Congresso da Sociedade Brasileira de Computagio

S(n) S(3) | S(4) | S(5) | S(6) | S(7) | S(8) | S(9)

No. of Q(n—1)’s 1 2 4 12 36 | 144 | 576

No. of Q(n)’s - 1 2 6 18 72 | 288

No. of Q(n+1)s | - - 1 3 9 36 | 144
No. of Q(n+2)s | - - - 1 4 18 72
No. of Q(n+3)’s - - - - 2 9 36
No. of Q(n+4)’s | - - - - 1 4 18
No. of Q(n+5)s | - - - - - 2 9
No. of Q(n+6)’s | - - - - - 1 4
No. of Q(n+T7)’s - - = - = = 2
No. of Q(n+8)'s | - - - = « = 1

Table 4: Some possible packings of Q(k) into S(n), k> n—1

References

(1] S. B. Akers, D. Horel and B. Krishnamurthy, “The Star graph: An Attractive Alternative to the n-cube,”
Proc. Int'l Conf. on Parallel Processing, 1987, pp. 393-400.

[2] S. B. Akers and B. Krishnamurthy, “A Group-Theoretic Model for Symmetric Interconnection Net-
works,” Proc. Int'l Conf. on Parallel Processing, 1986, pp. 216-223.

[3] Y. Saad and M. H. Schultz, “Topological Properties of Hypercubes,” IEEE Transactions on Computers,
Vol. 37, No. 7, July 1988, pp. 867-872.

[4] K. Day and A. Tripathi, “A Comparative Study of Topological Properties of Hypercubes and Star
Graphs,” IEEE Transactions on Parallel and Distributed Systems, Vol. 5, No. 1, January 1994, pp.
31-38.

[5] C. L. Seitz, “The Cosmic Cube,” Communications of the ACM, Vol. 28, No. 1, January 1985, pp. 22-33.
[6] W. D. Hillis, The Connection Machine, Cambridge, MA: MIT Press, 1985.

[7] J. P. Hayes and T. Mudge, “Hypercube Supercomputers,” Proceedings of the IEEE, Vol. 77, No. 12,
December 1989, pp. 1829-1841.

[8] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays - Trees - Hypercubes,
Morgan Kauffmann Publishers, San Mateo, California, 1992, pp. 466-469.

[9] M. Nigam, S. Sahni and B. Krishnamurthy, “Embedding Hamiltonians and Hypercubes in Star Inter-
connection Networks,” Proc. Int’l. Conf. Parallel Processing, 1990, pp. 340-343.

VI Simpésio Brasileiro de Arquitetura de Computadores 19

[10] Z. Miller, D. Pritikin and 1. H. Sudborough, “Near Embeddings of Hypercubes into Cayley Graphs on
the Symmetric Group,” IEEE Transactions on Computers, Vol. 43, No. 1, January 1994, pp. 13-22.

[11] M.-S. Chen and K. G. Shin, “Subcube Allocation and Task Migration in Hypercube Multiprocessors,”
IEEE Transaciions on Computers, Vol. 39, No. 9, September 1990, pp. 1146-1155.

[12] O. Kang, B. M. Kim, H. Yoon, S. R. Maeng and others, “A Graph-Based Subcube Allocation and Task
Migration in Hypercube Systems,” Proceedings of the Fourth Symposium on the Frontiers of Massively
Parallel Computation, October 1992, IEEE Computer Society Press, pp. 535-538.

[13] S. Ranka, J.-C. Wang and N. Yeh, “Embedding meshes on the Star Graph,” Journal of Parallel and
Distributed Computing 19, 1993, pp. 131-135.

[14] D. E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley, 1968, pp. 73, pp. 176-177.

