VI Simpésio Brasileiro de Arquitetura de Computadores

229

The Monadic Processor

Felipe Afonso de Almeida
Instituto Tecnolégico de Aerondutica
Divisao de Ciéncia de Computagao
Departamento de Engenharia de Software
Sao José dos Campos - Sao Paulo

Abstract

In a straightforward pipelined implementation of the Explicit Token
Store dataflow model there is an imbalance concerning the execution of
dyadic instructions (instructions with two input operands) . This is due
to the fact that two tokens need to be processed for a dyadic instruction,
before valid operands are available to be processed by the Arithmetical-
logical Unit, which at each pipeline cycle can consume two tokens and
produce as a result also two tokens,

In this work we investigate an approach to increase the Arithmetical-
logical Unit utilization rate in datafiow processors based on the Explicit
Token Store model. We propose an abstract realization of this model
where there is two tokens quenes. One token queune keepe tokens headed
for monadic instructions (instructions with a single input operand). These
tokens are utilised whenever the main path of the processor pipeline
(feeded directly by the two token queues) is unable to produce valid
operands for the Arithmetical-logical Unit to process. Therefore, increas-
ing the-utilization rate of the Arithmetical-logical Unit. The other token
queue holds tokens headed for dyadic instructions (instructions with two
input operands).

1 Introduction

The execution of a dyadic instruction involves the processing of its two input
tokens. The Explicit Token Store (ETS) dyadic matching function (refer to
[gregd0) for a complete discussion of the ETS model) implies that each time
during the execution of an instruction the presence-bits (of an ETS store loca-
tion) is found in the empty state, further processing of the instruction is aborted.
In the Monsoon realization of the ETS model [Greg88), [Greg90], [Greg91] this
is realized by a “bubble” or no-operation that is submited to the ALU stage of
the processor element pipeline. Whenever this situation occurs the ALU and
subsequent stages of the pipeline are idle; thus no useful work is performed.
Therefore the actual rate of utilization is at best 50% if the program consists

230 XIV Congresso da Sociedade Brasileira de Computacao

mainly of dyadic instructions and on average two output tokens are produced.
However due to the presence of monadic instructions, and instructions with a
constant input in real programs the utilization rate reaches about 70% [Greg88].

This issue can be vievred simply as a pipeline imbalance. At each pipeline
cycle of the ETS processor the execution stages can consume two values and
produce two results, while the operand-matching stage takes two cycles to con-
sume the two input tokens for a dyadic instruction. From this point of view an
increase in the ALU utilisation may be accomplished by increasing the through-
put of the slower stages. A more detailed discussion of this issue is found in
[Brobst86] and [Greg88).

Our approach is to increase the ALU utilization by providing an alternative
source of input operands whenever the main pipeline is unable to generate valid
input data values. This implies the use of two token queues. The central idea is
to detect as early as possible that further processing of & dyadic instruction will
not take place and use any monadic tokens (i.e. tokens whose destination are
monadic instructions) that are available in the token queues to feed the ALU.

‘The Monadic processor is an implementation of an ETS pipelined processor.
It adopts the two token queues approach of the Monsoon realization of the ETS
model [Greg90] and has additional stages to provide the ALU with unprocessed
monadic tokens. These tokens are stored into a private token queue (one of the
two queues provided).

It should be pointed out that the Monadic processor is an abstraction of
a dataflow processor element. It is aimed at providing a platform to investi-
gate how effective the use of unprocessed monadic tokens can be in increasing
the ALU utilization. A specific software emulator was built to carry out the
investigation. Its implementation, is discussed in [Felipe82].

The article is organized as follows. In section 2 we briefly discuss the ETS
model by means of an example. In section 3 and 4 we discuss the arquitecture of
the monadic processor . In section 5 the results of the emulation are presented
and analized. Finally in section 6 we present the conclusions of the work.

2 'The ETS Model

Figure 1 shows an example of a pipelined implementation of an ETS processor.
Our discussion is drawn from [greg80]. In this case instruction fetch is done
before operand matching since the instruction encodes the offset r of the ren-
dezvous location in the activation frame pointed by the income token ¢ field
(the Token Store is augmented with presence-bits to indicate the presence of a
partner in the case of dyadic instructions).

Then the operand matching stage queries the presence bits on location c+r
of the Token Store. If the slot is empty the token’s value is written into the
slot and a bubble or no-operation is submitted to the ALU (in this case further
processing of the instruction does not take place). On the next stage the bubble

VI Simpésio Brasileiro de Arquitetura de Computadores

231

It

ALU

Form-Token

Queue

Dyadic

Figure 2: The Monadic Processor

232 XIV Congresso da Sociedade Brasileira de Computacao

propagates to the form token stage wich in turn does not insert any token into
the token queue.

If the slot is full the operand from the slot is extracted, and this operand
along with the value on the token being processed are submitted to the ALU.
The destination tags are computed in the form tag stage in parallel with the
ALU operation. Finally new tokens are constructed in the form token stage
which concatenates the destinations from the form tag and the results from the
ALU. The new tokens are inserted into the token queue.

3 The Processor Element Architecture

The circular pipeline of the Monadic processor element is depicted in Figure
2. It comprises five stages: instruction-fetch (IF); synchronisation-check (SC);
operand-matching (OM) and the extra instruction-fetch (IF1) (operating in par-
allel); ALU and form-tag stage (FTA) (operating in parallel); and the form-
token stage (FT). The three memories are all local. The Token Store of the
ETS model is splited in two separated memory: one keeps the presence-bits and
the other an operand value (it is called frame memory).

It is a synchronous non-blocking (“systolic”) pipeline. At each pipeline cycle
one token is processed by the IF stage and zero, one or two tokens are produced
by the FT stage and stored in one of the token queues. The SC stage has
exclusive access to the local presence-bits memory, and the OM stage to the
local frame memory.

One of the token queues is defined as a high priority queue and the other as
a low priority one. Tokens heading for monadic instructions are always stored
in the low priority queue (the monadic queue, see Figure 2). Dyadic tokens
are always stored in the high priority queue (the dyadic queue, see Figure 2).
Tokens are processed from the lower priority queue by the IF stage only when
the higher priority queue is empty. However a token from the monadic queue
may be processed by the IF1 stage. Whenever the execution of a maching
function by the SC stage determine that further processing of the instruction
is not to take place an additional signal (sync-non-achieved) is transmitted to
the OM stage and to the monadic queue. At the very next pipeline cyle a token
dequeued from the monadic queue is processed by the IF1 stage, producing a
valid operand for the ALU. In parallel the OM stage stores the value part of the
token received from the SC stage into a frame memory location, but no ALU
operand are produced.

One field of the dataflow instruction is expanded to accomodate two new
subfields: S1 and S2. They are use by the FT stage to identify from the tokens
produced whether they are destined for a monadic instruction (Si=0) or for a
dyadic one (Si=1).

VI Simpésio Brasileiro de Arquitetura de Computadores 233

Token ¢ (c.5,, V)
Storage
[s] Instruction
Code Fetch
(op, r, dest) (€5, v)
Activation
| fetr]
Frames Operand
Matching
Token
Queue

Form Token

¢ (c.5,0,v)

[(c.t;‘.. ')

Figure 1: The ETS Pipelined Processor

234 XIV Congresso da Sociedade Brasileira de Computacio

4 The Pipeline Operation

At each pipeline cycle the IF stage receives one token from the high priority
queue - unless it is empty, in which case one token is dequeued from the low
priority queue. An instruction is fetched from the instruction memory and both
instruction and the income token are dispatched to the next stage.

‘The SC stage operates on the presence-bits of a location in the presence-bits
memory (see Figure 2) as dictated by the matching function specified in the
instruction (for more details refer to [Greg0]). if & monadic matching function
is specified no access is made to this memory (refer to [Gregd0]) and the in-
struction and the income token received from the previous stage are forwarded
to the OM stage. In the case of a dyadic instruction a matching-address is com-
puted and used to read a location in the presence-bits memory. The matching
function dictates a transition state to be performed on these bits and a result
is written back in to same location. If the execution of this function indicates
that further processing of the instruction is not to take place a signal (sync-
non-achicved) is sent to the monadic queue to dequeue a token and transmit it
to the IF1 stage. The matching-address, the instruction, the income token and
a signal (sync-non-achicved) are transmitted to the OM stage. If the execution
of the instruction dictates that it is to be proceed with its execution no signal is
transmitted to the OM stage and to the monadic queue. The OM stage receives
the matching-address, the instruction and the income token.

The OM stage behaves similarly to the ETS pipeline except that it does
not access the presence-bits memory. The syncronization role of the matching
function is played by the SC stage. The sync-non-achieved signal sent by that
stage (or its absence) and the operation (determined by the matching function
specified in the instruction) to be performed in a location of the frame memory
completely determines the action to be executed by this stage.

The IF1 stage on receiving a token from the low priority queue fetches the
corresponding instruction and transmit the relevant information to the ALU
and the FTA stages.

When the IF1 stage is idle the OM stage is either processing a monadic token
or a dyadic one whose partner is already stored in the frame memory. On the
other hand whenever the IF1 stage receives a token (from the monadic token
queue), the OM stage just operates on a frame memory location. It does not -
transmit any data to the following stages.

The operation of the FTA, the ALU and the FT stages are as defined for
the ETS pipeline implementation as discussed in section 2. However tokens

produced by the FT stage are stored into the two tokens queues as discussed
early.

VI Simpésio Brasileiro de Arquitetura de Computadores 235

5 Results

In this section we analyse the ALU utilization of the Monadic processor A soft-
ware emulator, designed and built to exercise the monadic and ETS architecture
with benchmark programs, were used. The emulator is implemented in OCCAM
2, and runs on an array of transputers on a Meiko Computing Surface [Feliped2].
Eeach stage that comprises the processor pipeline runs on a separate transputer.
However the instruction memory is emulated on a dedicated transputer and it is
shared by the two instruction-fetch stages. The monadic and the dyadic token
queues are both LIFO queues. A single emulated I-memory module®is used to
hold the I-structures for the MM, and wave programs.

The benchmark programs are a factorial , a Matrix Multiplication (MM) and
a Wave Computation [Nikhil89]. The two first programs are straightforward.
We then discuss the third algorithm.

5.1 The Wave Computation

The overall OCCAM 2([Inmoe88])code for the wave computation algorithm is
depicted below:

PROC wave (0 O INT ¢)
VAL INT mn IS SIZE c:
~ assume: (n = SIZE ¢ [0], i.e. a square matrix)
SEQ i =0 FOR n
SEQ j = O FOR n
IF
(1=0)OR (j =0)
cli, 31 : 1

TRUE
cli, 31 : = cli-1, j] + c[i, j-1]
;== end-of-wave-proc

In this program both loops can be unravelled, exposing the maximum par-
allelism available in the algorithm. However there is data dependency of data
structure elements among iterations. The dependencies are illustrated in Figure
3 where the computation of the couple-shaded elements depend on the availabil-
ity of the same element, respectively X, Y, Z. The storage elements which store
the result matrix (implemented as an I-structure [Arvind87a]) will receive read
requests for elements not yet calculated. These requests are automatically de-
ferred by the I-storage elements [Arvind87b], until the corresponding operation
is performed. The program execution involves the use of the synchronization
operation between writes and reads performed on I-structure elements. The

*1 jes are data Ses (refer to [Arvind 87b]) that holds Fstructures. These

structures have non-strict access and were defined for the ID language. For further details see

236 XIV Congresso da Sociedade Brasileira de Computacio

Figure 3: Data Dependence in The Wave Program

deferred read operations will be satisfied later on, at non-deterministic time,
generating (possibly) some burst of tokens from the memory element involved.

The parallel behaviour of the program is illustrated in Figure 4. The shared
squares represent the elements that can be calculated in parallel at that par-
ticular time. It can be seen that the computation advances in parallel along
a diagonal wavefront. The parallelism peaks at the main matrix diagonal, de-
creasing afterwards (compare this with the sequential order of execution effected
by the above OCCAM 2 code, that advances one element at a time row-by-row).

5.2 Ru_ults and Instructions Profiles
The ALU utilization rate is defined as: ALU Utilization rate: U

<
Il
Wl w»

where S is the number of instructions executed b $*cué 1% o "prutt oz mohnref?h)
of bubbles generated. In this section all the utilization rate values are presented
in percentage.

Figure 5 shows the results obtained for the factorial program running on the
ETS processor element and on the Monadic processor. For the first architecture
the utilization rate is kept around 70% . This is as expected, since about 60%
of the total amount of instructions executed are monadic instructions (see the
instruction profile displayed in Figure 6).

VI Simpésio Brasileiro de Arquitetura de Computadores 237

1|1
2] »

gy ajagaajafa
3{s {7
1321

o) 5[5 15) 5 g P

Figure 4: The Wavefront Computation

100 T T T — T T
(19 3 / g
"0 1
€
s [L3 Factorial FMA —~—
- 1 Factorial Momadic ==~
H :
=
= "0 -
"]
]
g
u LN B
-
10 P~ —.
(0 d
0 2 " " n i i
° 20 a0 " 100 120

0
Problem Size = N

Figure 5: Percentage of ALU Utilization against Problem Size(N) for The Fac-
torial Program

238 XIV Congresso da Sociedade Brasileira de Computacio

Factorial sizc | % Dyadic Instruclions | % Monadic Instruclions
N Ezeculed Ezeculed
2 38.18 60.82
8 39.84 60.16
32 39.96 60.03
128 | 39.99 60.00
Matriz size nyadic Instructions | % AMonadic Instructions
Multiply NzN | Execuled Ezecuted
2 3129 68.70
§ 31.71 68.21
8 31.62 68.37
16 | 31.49 68.5
23 31.43 68.56
[~ Wave Size | % Dyadic Instructions | % Monadic Instructions
NzN | Ezeculed Ezecuted
2 33.45 66.54
4 34,38 65.61
8 34.58 65.41
16 34.54 §_5.45
20 | 34.54 65.45

Figure 6: Instruction Profiles for The Benchmark Programs

The curve for the Monadic processor shows that the ALU utilization can
be effectively increased if monadic tokens (held on a separate token queue) are
used as operands, when a matching does not take place in the pipeline operand-
matching stage (OM). For problem size N = 8 the utilization rate achieved
is over 90% and even higher rates are obtained (over 95%) for larger problem
sizes. We should note that after an initial rise the curve levels off when the
problem size is larger than N = 8. This behaviour is better understood if we
look at the values presented in Figure 7. We note that for a four fold increase in
the problem size there is a corresponding increase (approximately of the same
proportion) in the number of operations executed (including the processing of
bubbles, which constitutes a null operation), by the ALU. However the number
of bubbles generated does not increase at the same proportion and decreases
(a8 much as 33% from N = 8 to N = 128) for problem size larger than N = 8,
Therefore the ALU utilization rate increases from about 82% to over 98% for
problem sizes in the range of N = 2 to N = 32 and as expected very slowly for
larger data sizes.

The results for the MM and wave programs are presented in Figure 8. For
the ETS architecture the utilization rate achieved is higher than 71% . In this
case, the percentage of monadic instructions is about 68% for the MM and 66%
for the wave program, as shown in Figure 6. This explain the slightly better
results compared to the rates obtained by the factorial program.

VI Simpésio Brasileiro de Arquitetura de Computadores 239

Size | Operations Ezeculed | Bubbles Generated
N

2 89 _1_6_

8 401 28

32 1597 24

128 | 6394 21

Figure 7: Factorial Profile: Operations Executed and Bubbles Generated

100 T ™ T T

5 -

L1 N -
€
2 Lt g W4 - Monadic —— e
o Mave = FHA ——
H M= FHA -8~
- Have Monadic =h—
= LN -
g
2
U LN o . 0 e
- resnessansesan- B

—1

w0t 4

&5 r -

0 L L X P

[] 5 20 25

10 15
Matrix Size = NxN

Figure 8: Percentage of ALU Utilization against Matrix Size for The MM and
Wave Programs

240 XIV Congresso da Sociedade Brasileira de Computagao

T T T T
Wave = Operations Executed -o—
Wave = bubbles generated =+--—
100000 ¥ MM - Operations Executed -B--
MM - bubbles generated -w—

P .
20000 | E

3 3
40000 |

40000

Amount of Instructions of Bubbles
T

20000

°)] 10 15 20 25
HMatrix Slze - NN

Figure 9: Instruction and Bubles Generated against Problem Size - MM and
Wave Programs

The results obtained for the Monadic processor demonstrate that the ar-
chitecture is also effective in improving the ALU utilization rate for iterative
programs (with and without I-structure data dependency among iteractions).
Rates higher than 90% are achieved for both benchmark programs, when the
problem size is larger than N = 16. We note that the MM program performs
better than the wave program throughout the sampled range. The rising shape
observed for the curves are due to the fact that the amount of bubbles gener-
ated growns at very low rates compared with the rates at which the number of
operations (including the processing of bubbles - a null operation) executed by
the ALU grows (see Figure 9). From the results above we can conclude that
the monadic token queue occupancy is sufficiently large to keep the ALU busy
for almost all the occasions when the conventional pipeline data path does not
provide an operand. This can be attributed to:

A) The higher proportion of monadic instructions executed. What means
that just a small amount from the total of tokens produced needs a partner.

B) That the number and length of sequences of partially executed instruc-
tions (i.e. the processing of the instruction stops in the operand-matching stage
of the processor pipeline) produced are not too large. This means that fewer
monadic tokens must be present in the monadic token queue to keep the ALU
busy. We should note that three factors contribute to the reduction in the

VI Simpésio Brasileiro de Arquitetura de Computadores 241

number and size of these sequences:

- Both token queues are implemented as LIFO queues. This policy favours
a depth-first order of execution of a code block graph and of the process execu-
tion tree of the programs because priority is given to the last produced token.
For recursive programs these tokens are the most important, which reinforces
locality, thus decreasing the number of partially executed instruction produced.
For iterative programs this phenomenon is not always observed . However a
separate dyadic token queue reduces the chances of an important token staying
at the bottom of the queue for long time.

- The processing of unmatched tokens does not preclude the concurrent exe-
cution of monadic instructions. Therefore any important dyadic token produced
by such instructions are readily available to be processed.

- In the programs a large amount of instructions, that produce two results
tokens consists of monadic identity instructions (instructions that just copy
as its output token its input token). However the execution of a sequence of
these instructions (i.e. there is a sequence of tokens stored in the token queue
whose destination is an identity instruction) is interrupted as soon as a dyadic
instruction is ready to be further processed. This provides some control on the
exposition of parallelism during the execution of a program; thus decreasing
the amount of unmatched tokens produced, and consequently the amount of
partially executed instructions produced.

6 Conclusion

In a straightforward implementation of the ETS model, the ALU is bubbled
each time the first-arriving operand of a dyadic instruction is written into an
activation frame slot and further processsing of the instruction does not take
place. Therefore for a program consisting only of dyadic operators, with two
output arcs, the ALU is at best 50% utilized. We have found that due to
monadic operators, and operators with a constant input, the rate achieved is
around 70% for the factorial program, and slightly higher for the other two
benchmark programs The results obtained for the Monadic processor shows that
it is possible to increase the ALU utilization rate to over 90% (for larger problem
sizes) by using a monadic token queue, which holds only monadic tokens, as an
alternative source of operands to the ALU when it would otherwise be bubbled.

BIBIOGRAFPHY

[Arvind87a] Arvind and R.S. Nikhil. Executing a Program on The MIT
Tagged-Token Dataflow Architecture. In Proceedings of the PARLE Conference,

242

XIV Congresso da Sociedade Brasileira de Computacio

Eindhoven, The Netherlands,(Lecture Notes In Computer Science,volume £59),
pages 1-29. Spring_Verlag, June 1987.

[Arvind87b] Arvind, R.S.Nikhil, and K.K. Pingale. I-structures: Data Struc-
tures for Parallel Computing. Technical Report - CSG Memo 269, Laboratory
For Computer Science, Computer Structure Group, MIT, February 1987.

[Brobst86] S.A.Brobst. Instruction Schedulling and Token Storage Require-
ments in a Dataflow Supercomputer. Master’s Thesis, Department of Electrical
Engineering and Computer Science, MIT 1986.

[Felipe92] F.A.Almeida. Parullel Software Emulation of Multi-processor Dataflow
Machines on Transputer Networks. PhD Thesis. Computing Laboratory. Uni-
versity of Kent at Canterbury, 1992,

[Greg88] G.M.Papadopoulos. Implementation of a General Purpose Dataflow
Multiprocessor. PhD thesis, Dept of Electrical Engineering and Computer Sci-
ence, MIT 1088.

[Gregd0] G.M. Papadopoulos and D.E.Culler. The Explicit Token Store.
Journal of Parallel and Distributed Computing, pages 189-308, December 1990.

[Gregd1] G.M.Papadopoulos. Implementation of a General-Purpose Dataflow
Multiprocessor. Research Monographs in Parallel and Distributed Computing.
The MIT Press, Cambridge, Massachusetts 1991.

[Inmos88) Inmos Limited. OCCAM 2 Reference Manwal. Inmos Limited,
1988.

[Nikhil89] R.S.Nikhil and Arvind. A Dataflow Approach to General Pur-
pose Parallel Computing. Technical Report - CSG Memo 302, Laboratory for
Computer Science, Computer Structure Group, MIT, June 1989.

