VI Simpésio Brasileiro de Arquitetura de Computadores 243

Extending DLXsim for Parallel Architectures
Celso L. Mendes*

Department of Computer Science
University of Illinois
Urbana, Illinois 61801
E-mail: mendes@cs.uiuc.edu

ABSTRACT

This paper presents two extensions of a RISC processor called DLX. We extend DLX's functionality for
a vector and for a parallel architecture. The vector extension, DLXV, has pipelined vector functional units
and is able to perform chained vector operations. The parallel extension, DLXMP, is a message-passing
multicomputer with a basic DLX on each node. We present simulators for both extensions, describe their
major features, and show examples of their use.

Key words: RISC processor simulation, vector architectures, multicomputers, high-performance computing.

1 Introduction

This paper describes two extensions of DLXsim [2], the simulator of a typical RISC processor called DLX.
Those extensions aim at using DLX as a building block for high performance architectures. This work was
done as an intermediary step of our research on performance analysis on multicomputers, where the results
of this project will be used to simulate multicomputers having enhancements over currently existing systems.

Given the availability of DLXsim, and considering that most existing multicomputer systems are based
on some type of RISC processor, we decided to use DLXsim as a starting point in our implementation.
We made two independent extensions to the original DLXsim: the first extension, DLXVsim, simulates
DLXV (the vector extension of DLX), as described in the book by Hennessy and Patterson [1); DLXV
has fully pipelined vector functional units, and allows chaining of vector operations. The second extension,
DLXMPsim, simulates a message-passing multicomputer having the original DLX as the processing element

on each node.
*Supported by the Brasilian Institute of Space Research (INPE).

244 XIV Congresso da Sociedade Brasileira de Computacao

DLXVsim is supposed to run on any Unix based machine; in fact, it should run on any machine that
can run DLXsim, On the other hand, for efficiency reasons, DLXMPsim was originally built on a real
multicomputer, the Intel Paragon-XP/E, but it can also run on any cluster of workstations where a Paragon
simulation environment is available, like that provided by NXlib [5]; this last option might even consist of a
configuration with a single Unix machine.

Both DLXVsim and DLXMPsim execute code from assembly programs, possibly written in the C lan-
guage and compiled by dlxcc, the original compiler for DLX. Because dlxcc is not a vectorizing compiler,
vector instructions must be manually inserted by the user directly in the assembly source code.

The remainder of this paper is organized as follows. In §2 we present the features of DLXVsim, and in §3
those of DLXMPsim, both from a user’s point of view. §4 shows some examples of use for both simulators.
These three sections should provide enough information for those interested only in using DLXVsim and
DLXMPsim; for more detailed comments on the internal operation of these simulators, see [4]. §5 gives
the current status of the simulators, with information on how to obtain them. Finally, §6 concludes our

presentation.

2 DLXVsim Vector Extension

This section presents the main features of DLXYV, the vector extension of the DLX processor, and the
user commands introduced to handle those features during the simulation with DLXVsim. The desired
configuration of the simulated DLXV can be set by the user with corresponding command line switches to
DLXVsim, or by changing appropriate constants in the source code, as indicated below, and recompiling the
simulator.

2.1 Vector Registers and Functional Units

DLXYV has all the original scalar funtional units of DLX, plus a set of vector functional units where vector
instructions are executed. Figure 1 shows these functional units. The scalar units are not pipelined, but
most of them can be replicated. On the other hand, the vector units are fully pipelined, and allow chaining
" derween vécror vpetatunsT 1 nk fareicieS ok douh types of functional units can be selected by the user with

the command line switches -al, -ml and -d1, for the adders, multipliers, and dividers, respectively. Notice

VI Simpésio Brasileiro de Arquitetura de Computadores 245

i i I i
: int Scalar } : - Vector I
add/sub Functional Functional
: 5 Units : : aidiad Units |
| ——- (on-Pipelined) | | (Pipclined) |
| == | | | |
I | | I mf,g " |
[o |11 | I M |
I [add/sub | |~ | | |
I 3 L |

. |
| - | || int/fp
I [—E_'I-i | | | multiply I
| 1 I I |
: int/fp| |_| I % |
[R ':
| 1 [| |
= - |
|| int/sp| 11 I | | mt/fp |
|| e | 17 ! l lopesl I

J

Figure 1: DLXYV functional units.

that the same latency is assumed for the scalar and vector units on the same operation. The vector integer
adder and the vector logical unit have a latency of one cycle, similarly to the scalar integer adder.

In addition to the same register set of DLX (general-purpose registers R0-R31 and floating-point registers
F0-F31), DLXV has a vector register file composed of a group of vector registers; the default number of vector
registers is eight, but it can be changed with the use of an appropriate command line switch. Each vector
register has sixty-four 64-bit elements. There are also two special registers, VLR (Vector-Length Register)
and VMR (Vector-Mask Register). The contents of VLR may vary between 0 and 64, defining the length
of any vector operation; VMR is a 64-bit register, which can be used to disable operations on particular
elements of a vector (by storing the value 0 in the corresponding bit of VMR).

Figure 2 shows the connection between the vector register file and the other system components. There
can be one or more 64-bit pipelined buses between the vector register file and memory, in both directions.
Each vector register has one write port, and one or more read ports, as indicated by Figure 3, so that more
than one vector functional unit may receive data from the same vector register simultaneously. We assume

that the inputs of each vector functional unit can be connected to the output of any vector register, by means

246 XIV Congresso da Sociedade Brasileira de Computagio

— Scalar
Registers
1 I
I {1
I |1
I |
|| |l @
11 11
Crossbar
Vector Switches Vector
Register Functional
File Units

Figure 2: DLXV vector register file.

of crossbar switches, like mentioned in [3].

2.2 Vector Instructions

The instruction set of DLXV contains as a subset all the instructions originally present on DLX. Figure 4
shows the complete list of DLXV instructions, with their corresponding opcodes and binary representation.
On that list, instructions introduced for DLXV are represented in italics.

Vector instructions can operate on data consisting of integer or floating-point numbers. Integer numbers
are treated as signed integers, and floating-point numbers as being in double-precision format. This is not

as flexible as in DLXsim, in which integers can be signed or unsigned, and floating-point numbers can be in

write—port
Vector Register (64 x 64 bits)
read-ports

I I
1 |
[|

Figure 3: DLXV vector register

VI Simpésio Brasileiro de Arquitetura de Computadores

247

Main opcodes

$00 $01 $02 $03 $04 $05 $06 $07
“§00 | SPECIAL | FPARITH J JAL | BEQZ | —mfww
$08 | ADDI ADDUL SUBI | SUBUI | ANDI | ORI | XORI | LHI |
$10 RFE TRAP JR JALR | SLLI SRLI | SRAI
§18 SEQIL SNEL SLTI | SGTI | SLEI | SGEIL VD
“$20 LB LH IV LW LBU LHU LF LD
$28 SB SH 3V SW SF SD
§30 | SEQUI SNEUI | SLTUI | SGTUI | SLEUI | SGEUI SVD
§38

B.— 1 p A (M-In pcode = '00)

$00 $01 $02 $03 $04 $05 $06 $07
$00 | NOP POP SLL VWS SRL SRA
~%08 | ADDV | ADDSV | MULTV | MULTSV SVWS SUBV DIVV
%10 | SEQU SNEU | SLTU | SGTU | SLEU SGEU SUBSV DIVSV
$18 | SEQV SNEV SLTV SGTV SLEV SGEV SUBVS DIVVS
$20 | AD ADDU AND OR XOR_ CVM
¥28 SEQ SNE SLT SGT SLE SGE MOVIZL MOVL2I |
~$30 | MOVI2S | MOVS2l | MOVF MOVD | MOVIZFP | | "MOVM2FP |
“¥38 | SEQSV | SNESV | SLTSV | SGISV SLESV SGESV LVDWS SVDWS |

Floating Point opcodes (Main opcode = $01)

$00 $01 $02 $03 $04 $05 $06 $o7
%00 | ADDF SUBF MULTF DIVF ADDD “SUBD MULTD DIVD
$08 | OVIF2D | CVIF2l | CVID2F | CVID2I | CVILZF | GVTIZD MULT DIV
—$10 EQF | NEF ITF GIF LEF GEF MULTU DIVU
$18 D NED LTD GTD LED GED SUBVSD | DIVVSD
320 | %_-Ap VD | SUBVD | MULTVD | DIVVD | ADDSVD | SUBSVD | MULTSVD | DIVSVD
¥28 | SEQVD | SNEVD | SLTVD | SGIVD | SLEVD | SGEVD
$30 | SEQSVD | SNESVD | SLTSVD | SGTSVD | SLESVD | SGESVD
$38

Figure 4: DLXV opcodes

248 XIV Congresso da Sociedade Brasileira de Computacio

single or double-precision, but should be enough to handle most scientific programs, where signed integers
are the common case, and single-precision floating-point values can always be converted to double-precision
without loss of accuracy. Thus, vector registers are supposed to contain either signed integer values (in the
lower 32 bits) or 64-bit double precision values.

There are instructions for operations between two vectors (e.g. addv), producing a third vector as a
result, and for operations between a scalar and a vector (e.g. addsv), producing the result in another vector.

Vector instructions involving floating-point operands are appended by the letter “d” (e.g. addvd).

2.3 New Switches and Commands

In addition to all the command line switches available in DLXsim, the following switches were introduced
for DLXVsim:

o -vr: specify the number of vector registers;

e —wb: specify the number of buses from the vector register file to memory;
e -rb: specify the number of buses from memory to the vector register file;
e -rp: specify the number of read ports in each vector register.

The number of vector registers cannot be greater than 32 due to a limitation in the number of bits in the
opcode field where the vector register is specified. The maximum value for the other parameters can be
changed by modifying the appropriate constants in file d1x.h.

In order to support interactive manipulation of the vector registers, we added the following user commands
in DLXVsim:

e vget: return the contents of a vector register, treating them as integer values;
e vput: store an integer value in an element of a vector register;
e fvget: return the contents of a vector register, treating them as double-precision floating-point values;

s fvput: store a floating-point value in an element of a vector register.

The commands vget/vput and fvget/fvput work on vector registers in a similar fashion as the commands

got/put and fget/fput work on the general-purpose registers.

VI Simpésio Brasileiro de Arquitetura de Computadores 249

2.4 Memory Bank Conflicts

DLXVsim allows the user to assess the effects of memory bank conflicts on a given vector operation. This is
done on the basis of individual vector instructions; scalar memory accesses are not affected.

There are three parameters in file dlx.h that define the characteristics of DLXV’s interleaved memory
system: MEMORY READ_LATENCY gives the latency of each memory read operation; NUM_MEMORY _BANKS defines
the number of memory banks, and MEMORY_CYCLE_TIME indicates the minimum valid time interval between
successive accesses to the same memory bank.

When a vector load or store instruction is issued, the memory start address and stride define the access
pattern, and possible conflicts can be detected and handled, according to the parameters above. Like in
DLXsim, memory writes are assumed to have sero latency when initiated, but are still subject to the bank
conflicts previously described.

Notice that vector load operations can be chained to other instructions accessing the same vector register.
On the other hand, vector store operations cannot be chained to subsequent vector load operations involving
the same memory region. All the memory accesses from vector instructions are still recorded in the trace

file when the “trace” mode is on.

2.5 New Simulation Statistics

In DLXVsim, the summary of executed instructions contains also information regarding the vector opera-
tions. With the “stats opcount” option, in addition to the counts of Integer and Floating-Point operations,
the execution counts for all new “Vector-Related Instructions” are also shown.

When stall information is requested by the user, the number of stall cycles due to vector stalls is presented,
after the numbers for load and floating-point stalls.

Finally, much more detailed information about the status of DLXV can be displayed on each simulation

step, by recompiling the simulator with the compiler switch ~DDEBUG enabled.
3 DLXMPsim Parallel Extension

DLXMPsim simulates a multicomputer composed of one ore more computing nodes that communicate by

exchanging messages. Each computing node is a regular DLX processor, and interprocessor communication

250 XIV Congresso da Sociedade Brasileira de Computagdo

is achieved by the execution of appropriate system calls. This section presents the major features of the
simulation scenario, with & description of the available system calls comprising the user program message-
passing interface.

8.1 Simulation Environment

For efficiency of the simulation, we decided to build DLXMPsim on a real multicomputer, the Intel Paragon,
so that the simulation of each DLX computing node is done in one processor of the Paragon. DLXMPsim
also works on a workstation cluster where a package like NXIib is installed, and in that case the user has
complete control to decide which machine will execute the simulation of each DLX computing node.

A question that may arise at this point is: “Why use DLXMPsim, instead of using the parallel environ-
ment (like provided by NXIib) directly?” To answer that question, we present all the arguments that are
valid for a simulation approach: with DLXMPsim, the user can change parameters in the processor, like
the number and latencies of functional units, or in the interconnection network, like the cost of message
transmission, and assess their corresponding effects on total execution time for a given program.

The user program is supposed to be in the SPMD style, with a common object code being executed by
every DLX computing node. Data sharing is accomplished by exchanging messages between processors. In
addition to the system calls already available in DLXsim, we added a new set of calls which allow message-
passing with a variety of blocking and nonblocking functions. DLXMPsim simulates these message-passing
calls by using native communication functions of the Paragon, and handling the virtual time of the simulated

machine to ensure that causality relationships are mantained across the simulation.

3.2 Message-Passing System Calls

DLXMPsim extends the system calls for a regular DLX processor with a set of functions related to message-
passing. These new functions can be called by the user program to send or receive messages, to get infor-
mation on system configuration, or to obtain the status of a transmission.

The message send function is nonblocking, meaning that the sender process can proceed independently
of the status of the receiver for the underlying message. Upon returning from the send function, the user

program can reuse the data buffer.

VI Simpésio Brasileiro de Arquitetura de Computadores 251

There are two types of message receive functions: a blocking version, where the receiver process cannot
proceed until the message arrives, and a nonblocking version, in which control returns immediately to the
receiver; in the latter case, the user program must make a subsequent call to a probe function to obtain the
status of message arrival.

The functions introduced in DLXMPsim are summarized below:

e Message-passing functions:

— send: send a message with a given tag to another processor;

— recv: receive a message with a given tag; control will return to the caller only after the message
arrives;

— nblk.recv: similar.to recv, but control returns immediately to the caller; the return value is a
unique message-identifier, which can be used in subsequent probe function calls to check if the
message has arrived.

e Probe functions:

— msgwait: block the caller until the message with the given identifier arrives;
. — msgdone: check if the message with the given identifier has arrived.

e Configuration inquiring functions:

— numnodes: return the number of nodes being simulated;

— mynode: return the node number of the current process.

3.3 DLXMPsim Configuration

Some command line options allow the user to configure the simulation environment of DLXMPsim. In

addition to all the options existing in DLXsim, the following switches are also available:

e -s8z: specify the number of computing nodes being simulated.

e -io: this option redirects the standard input and output of the simulator. When executing the
simulation in parallel, it becomes difficult (and confusing) to support interactive commands, because
it is not clear which processes should be affected by each command. Thus, we decided to provide
support for non-interactive user commands. The user builds a command-file where he places all the
commands to be executed during the simulation; all the processes read comands from this file, Across

the simulation, each process sends its output to a specific output file, and the user can verify the results

UFRGS
INSTITUTO DE INFORMATICA
RIRI INTFCA

of the simulation by inspecting these output files.

252 XIV Congresso da Sociedade Brasileira de Computagéo

DLXMPsim represents the time for message transmission by a cost model where the total time to send
a given message is composed of a constant value added to a linear function of the message length, Thus, if
the message is sent at time T, it cannot be received by another node before time T's + f(n), where n is the
message length and f is the transmission cost. In the current version, DLXMPsim does not model any type
of contention in the interconnection network between nodes; the network is simply supposed to be always
available for message transmission.

During & simulation session in which stall information is requested by the user, DLXMPsim also prints
the number of cycles spent on functions that block waiting for the arrival of a message. This is termed as
“Msg-Passing Idle Cycles”.

Finally, we should notice that it is relatively easy to insert new system calls to the simulator. The

functions mentioned above can be used as a model.
4 Examples of Use

We now illustrate the use of our simulators, DLX Vsim and DLXMPsim, with two examples. These examples
are not intented to cover all the features of the simulators; they should just provide an overview of the

corresponding simulation scenarios. The first example refers to DLXVsim, and the last one to DLXMPsim.

4.1 Example of DLXVsim with Chaining

In this example, we present chained vector operations, where two vectors loaded from memory are multiplied,
and the resulting vector is added to a given scalar value. We assume that DLXV is configured with the default
parameters, and no memory conflicts arise. Figure 5 presents the assembly program for this example.

Figure 6 shows steps of an interactive simulation session with DLXVsim; notice that, at the end of the
simulation, the final vector has, indeed, the expected contents. Figure 7 reproduces the execution on a
cycle-by-cycle basis; in this figure, terms of the form Xi mark the production of a new value into vector
register V; by instruction X. As one can see, the multiply instruction (MULTVD) is stalled by one cycle,
due to a data dependence on vector register V3; the vector addition is also stalled, and cannot issue before
the multiplication results start being produced.

For both the multiplication and the addition, after an initial latency (five cycle for the multiplication and

VI Simpésio Brasileiro de Arquitetura de Computadores 253

.data 0
i scalar constant:
do: .double 2.0
F two original vectors:
di: .double 1.0, 2.0, 3.0, 4.0, 6.0, 6.0, 7.0, 8.0
d2: .double 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0
text
’ set vector length register:
Begin: addi r8,r0,8
movi2l rx8
H load scalar constant:
1d £0,d0
H set mem start addresses:

addi ri,r0,d1
addi xr2,r0,d2

3 load vectors:
1vd vl,rl
1vd v2,r2
i multiply the two vectors:

multvd v0,vl,v2
i add scalar value:
Vadd: addsvd v4,£0,v0

nop

nop

nop

nop

nop

nop

nop

nop

Figure 5: Example of a DLXV program with chained vector operations.

two cycles for the addition), one new result per cycle is produced. Although there are no more meaningful
instructions in the program after the addition, we must simulate a few more steps (with NOP instructions)

so that all the addition results are produced.

4.2 Example of DLXMPsim

This example shows the simulation of a very simple program to compute the dot product between two arrays,
under DLXMPsim. The array values are initialized by node 0 and then distributed to all the computing
nodes. Each node computes a partial dot product, and sends its result to node 0, which computes the final
answer. Note that this is not the best algorithm for this problem; it merely serves as an example of our
simulator.

Figure 8 shows the high-level language program for this example. We simulated the execution of this

254 XIV Congresso da Sociedade Brasileira de Computacdo

(dlxveim) [0] load example_i.s
(dlxveim) [0] stop at Vadd
(dlxvsim) [0] go Begin

stop 1, pc = Vadd: addsvd v4,£0,v0
(dlxvsim) [9] fvget vi

vi: (0-->1--3>2—>...)

1.000000 2. 3. 00. 0. 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.,000000 0.000000 0.000000 0.000000
0.000000 0.000000 0. 0. 0. 0. 0.000000 0.000000
0.000000 0.000000 0. 0. 0.) 0.000000 0.000000 0.000000
0.000000 0.000000 0. 0. 0. 0. 0.000000 0.000000
0.000000 0.000000 0. 0. 0. 0. 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
(dlxvsim) [9] step

stopped after single step, pc = Vadd+0x4: nop

(dlxveim) [14] fvget vO

v0: (0-->1-->2-->...)
11.000000 24.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0. 0. 0. 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0. 0. 0. 0.000000 0.000000 0,000000
0. 000 0.000000 0. 0.000000 0.000000 0.000000 0.000000 0.000000
0. 0. 0. 0. 0. 0. 0.000000 0.000000

(dlxveim) [14] stop at Eand
(dlxvsim) [14] go

stop 2, pc = End: nop
(dlxveim) [22] fvget v4
va: (0-->1-->2—>...)

13.000000 26.000000 41.000000 E8. 7. 98. 121.000000 146.000000
0.000000 0.000000 0. 0. 0.000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0. 0. 0.

0.000000 0.000000 0. 0. 0.000000 0.) 0.(0.000000

0.000000 0.000000 0.000000 0. 0. 0. 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0. 0. 0. 0. 0.000000 0.000000 0.000000

0.000000 0. 0. 0. 0.000000 0.000000 0.000000 0.000000

(dlxveim) [22] quit

Figure 6: Simulation of program with chained vector operations under DLXVsim.

VI Simpésio Brasileiro de Arquitetura de Computadores 255

f
o«

cycle--> 0 1 2 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

i A ML 1A 14101 Li L1 L1 L1LiLiLiL1

n D 0ODDODY

L] DV b pDDL L2 L2 L2 L2 L2 L2 L2 L2

t I X T I v

F 2 D Mu=m MO MO MO MO MO MO MO MO

u L Umm=

c e & A4 A4 A4 A4 14 A4 04 M4
t Te== [=s=s=sa==m==

i Voum Dussssesss=== § § N N N N N N N
° De== Sem=ms======= (0 0 0 0 0 0 0 O
n Vesszszsss=== P P P P P P P P P

Figure 7: Cycle-by-cycle execution of program with chained vector operations.
program with four computing nodes, using an input command file with the following contents:

load example_dp.s newtraps.s
go _main

stats opcount stalls

quit

The simulation results obtained from node 0 are in Figure 9, and those from node 1 in Figure 10 (the results
for nodes 2 and 3 are similar to those of node 1). As one can see, the idle time in node 0 is relatively low,
corresponding to the wait for the arrival of the first partial result from other nodes. On the other hand, all

nodes keep waiting for their first message while node 0 performs the initialisation of the whole array.

5 Status and Availability

DLXVsim and DLXMPsim have been tested with several example programs. We are nearly finished with
the tests of their preliminary versions. DLXMPsim was tested only on a cluster of Sparcstations, under
NXlib-1.0. Our next step is to test it under NXlib-1.1, so that other plataforms can be used.

In the future, we intend to add features to extract more information during execution, regarding the
dynamic behavior of the program. This would take the form of execution traces, like DLXsim does with
memory accesses.

The simulators are available to anybody who wants to use them and is willing to report problems,

enhancements or experiences, They may be obtained by contacting the author by e-mail.

256 XIV Congresso da Sociedade Brasileira de Computacdo

#define DATAVECTOR 0 /# data vector message type s/
#define RESULT 1 /* result message type s/
#define VECLEN 266 /* problem size ¢/

main()

{

f£leat X[VECLEN], Y[VECLEN], PartialProduct, InnerProduct;
int i,N,0ffset ,UpperBound,VectorLength,myNode ,nodeCount;

myNode = mynode();
nodeCount = numnodes();
N = VECLEN;

if (myNode) {
recv(DATAVECTOR, X, sizeof(float) = N);
recv(DATAVECTOR, Y, sizeof(float) » N);

else { /* Node 0 initializes and distributes array values #/
printf("Vector length: %d\n", N);
for (1 = 0; 1 < N; 4++) {
I[4) = i; Y[i] = 1.0;
}
send (DATAVECTOR, I, sizeof(float) * N, -1);
send (DATAVECTOR, Y, sizeof(float) * N, -1);
}

VectorLength = N / nodeCount;
0ffset = VectorLength * myNode;
PartialProduct = 0.0;

if (myNode == nodeCount - 1) UpperBound = N;
else UpperBound = (myNode + 1) # VectorLength;

/* Local computation of partial results /
for (i=0ffset; i<UpperBound; i++) PartialProduct += X[i] * Y[i];

if (myNode != 0) send(RESULT, &PartialProduct, sizeof(float), 0);
else { /+ Node 0 computes final result =/
InnerProduct = PartialProduct;
for (i = 0; i < nodeCount = 1; i++) {
recv(RESULT, kPartialProduct, sizeof(float));
InnerProduct += PartialProduct;
}
printf("Inner product is: %8.4f\n", InnerProduct);
}

Figure 8: Example of a message-passing program to compute dot product.

VI Simpésio Brasileiro de Arquitetura de Computadores

257

(dlxmpsim) load example_dp.s newtraps.s
(dlxmpsim) go _main

Vector length: 266

Inner product is: 32640.0000

TRAP 20 received

(dlxmpsim) stats opcount stalls

Load Stalls = 1306

Floating Point Stalls = 221
Msg-Passing Idle Cycles = 1111

Total integer operations = 8758
FLOATING POINT OPERATIONS
ADDD 0 ADDF 67 CVID2F 0 CVID2I L]

MULTF 64 MULTU 0 NED 0 NEF o

Total floating point operations = 391
Total operations = 9149
Total cycles = 11787

(dlxmpsim) quit

Figure 9: Output from simulation of dot product program produced by node 0.

(dlxmpsim) load example_dp.s newtraps.s
(dlxmpsim) go _main
TRAP 20 received
(dlxmpsim) stats opcount stalls
Load Stalls = 264
Floating Point Stalls = 218
Msg-Passing Idle Cycles = 9290
Total integer operations = 1737
FLOATING POINT OPERATIONS
ADDD L] ADDF 64 CVTD2F 0 CVID2I L]

MULTF 64 MULTU 0 NED 0 NEF 0
Total floating point operations = 131
Total operations = 1868
Total cycles = 11640
(dlxmpsim) quit

Figure 10: Output from simulation of dot product program produced by node 1.

258 XIV Congresso da Sociedade Brasileira de Computagao

6 Conclusion

We presented two extensions of the RISC DLX processor, targeting high performance architectures. DLXVsim
allows the user to simulate a vector machine similar to traditional supercomputers. DLXMPsim can simulate
massively parallel systems, where communication between processors is performed by message-passing.

Besides their more obvious use as educational resources, one can use such simulators as a tool in the
simulation of more sophisticated systems. We are currently investigating their integration to simulate a
multicomputer where each node has a vector architecture.

With these simulators, the user can not only obtain quantitative performance information from the
execution of a given program, but also change the machine configuration, and assess the effects of such

changes on overall performance.

References

[1] Hennessy, J. L., AND PATTERSON, D. A. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers Inc., 1990.

[2) HosTeTLER, L. B., AND MIRTICH, B. DLXsim — A Simulator for DLX. University of California, 1990.

(3] Lee, C. G., AnD SmiTH, J. E. A study of partitioned vector register files. In Supercomputing’92
(Minneapolis, November 1992), pp. 94-103.

[4] Menpes, C. L. Guidelines for Using DLX Vsim and DLXMPsim. University of Illinois at Urbana-
Champaign, 1994,

[5) STELLNER, G., BT AL. NXLIB User’s Guide. Technische Universitat Miinchen, 1993.

