
VI Simpósio Brasileiro de Arquitetura de Computadores

Extending DLXsim for Parallel Architectures

Celso L. Mendes•

Department of Computer Science
University of Dlinois

Urbana, Dlinois 61801
E-mail: mendes@cs.uiuc.edu

ABSTRACT

243

This paper presents two extensions of a RISC processar called DLX. We extend DLX's functionality for

a vector and for a parallel architecture. The vector extension, DLXV, has pipelined vector functional units

and is able to perform chained vector operations. The parallel extension, DLXMP, is a message-passing

multicomputer with a basic DLX on each node. We present simulators for both extensions, describe their

major features, and show examples of their use.

Key words: RISC processor simulation, vector architectures, multicomputers, high-performance computing.

1 Introduction

This paper describes two extensions of DLXsim (2], the simulator of a typical RISC processor called DLX.

Those extensions aim at using DLX as a building block for high performance architectures. This work was

done as an intermediary step of our research on performance analysis on multicomputers, where the resulta

ofthis project will be used to simulate multicomputers having enhancements over currently existing systems.

Given the availability of DLXsim, and considering that most existing multicomputer systems are based

on some type of RISC processar, we decided to use DLXaim as a starting point in our implementation.

We made two independent extensions to the original DLXaim: the fust extension, DLXVsim, simulates

DLXV (the vector extension of DLX), as described in the book by Hennessy and Patterson [1]; DLXV

has fully pipelined vector functional units, and allows chaining of vector operations. The second extension,

DLXMPsim, simulates a message-passing multicomputer having the original DLX as the processing element

on each node.

•supported by the BruilianlnaUiu\e of Spacc Rcoc...ch (INPE).

244 XIV Congresso da Sociedade Brasileira de Computação

DLXVsim ia supposed to run on any Unix ba.sed mac:hine; in fad, it should run on any mac:hine that

can run DLXsim. On the other hand, for efficiency reasons, DLXMPsim was originally built on a real

muHicomputer, the Intel Paragon-XP /E, but it can also run on any cluster of worbtations where a Paragon

simulation envizonment ia available, like that provided by NXlib (5); this last option might even consiat of a

eonfiguration with a single Unix mac:hine.

Both DLXVsim and DLXMPsim execute code úom assembly programa, possibly written in the C lan

guage and eompiled by cUxcc, the original eompiler for DLX. Because dlxcc ia not a veetorising compiler,

vector instructions must be manually inserted by the u.er directly in the assembly source code.

The remainder of this paper ia organised as follows. In §2 we present the features of DLXVsim, and in §3

those of DLXMPsim, both úom a user's point of view. §4 shows some examples of use for both simulators.

These three sections should provide enough information for those interested only in uaing DLXVsim and

DLXMPsim; for more detailed commenh on the internai operation of these simulators, see [4). §5 gives

the current status of the simulators, with information on bow to obtain them. Finally, §6 eoncludes our

presentation.

2 DLXVsim Vector Extension

This section presente the main features of DLXV, the vector extension of the DLX processor, and tbe

user commands introduced to handle those features during the simulation with DLXVsim. The desired

configuration of the simulated DLXV can be set by the user witb corresponding command line switcbes to

DLXVsim, or by cbanging appropriate constants in the source code, as indicated below, and recompiling the

simulator.

2.1 Vector Registers and Functional Units

DLXV has ali the original scalar funtional units of DLX, plus a set of vector functional units where vector

instructiona are executed. Figure 1 shows these functional units. The sealar units are not pipelined, but

moat of them can be replicated. On the otber hand, the vector unib are fully pipelined, and allow chaining

between vector operations. The latencies for both types of functional units can be selected by the user with

the command line switcbes -al, -1111 and -dl, for the adders, multipliers, and dividers, respectively. Notice

VI Simpósio Brasileiro de Arquitetura de Computadores

1:-1
~

r--l
r--l 1

I I
I I

J -

r--l
r - - l 1

I I
I I
1-

Sca!ar
Funclional

Units

(Non-Pipelined)

I
I
I ______________ J

I
I
I
I

r:;l
~

Vw.or
Funclional

Units

(Pipelined)

: I W/~[I !~cal I
I I I ______________ J

Figure 1: DLXV functional units.

245

that the same latency is assumed for the scalar and vector units on the same operation. The vector integer

adder and the vector logical unit have a latency of one cycle, similarly to the scalar integer adder.

In addition to the same register set of DLX (general-purpose registers RO-R31 and floating-point registers

FO-F31), DLXV has a vector register file composed ofa group ofvector registers; the default number ofvector

registers is eight, but it can be changed with the use of an appropriate command line switch. Each vedor

register has sixty-four 64-bit elements. There are also two special registers, VLR (Vector-Length Register)

and VMR (Vector-Maslt Register). The contents of VLR may vary between O and 64, defining the length

of any vedor ope.ration; VMR is a 64-bit register, which can be used to disable operations on particular

elements of a vector (by storing the value O in the corresponding bit of VMR).

Figure 2 shows the connedion between the vedor register file and the other system components. There

can be one or more 64-bit pipelined buses between the vector register file and memory, in both directions.

Each vector register has one write port, and one or more read ports, as indicated by Figure 3, so that more

than one vector functional unit may receive data from the same vector register simultaneously. We assume

that the inputs of each vector fundional unit can be connected to the output of any vector register, by means

246 XIV Congresso da Sociedade Brasileira de Computação

Memory
Scalar

Re&istas

i i i i
I I I I
I I I I I VLRI IVMRI l l ! !

Oossbar
Veda Vtt.:Wr - Switches ~

Registcr PunctiOD&l
File Unils

Figuze 2: DLXV vedor repter file.

of crossbar switches, like mentioned in [3].

2.2 Vector lnstructions

The instruction set of DLXV containa as a subset ali the inshuctions originally present on DLX. Fignre 4

ahowa the complete list of DLXV instructions, with theiz corresponding opcodes and binary representation.

On that list, instructions inhoduced for DLXV are represented in italic1.

Vector inshuctions can opera te on data conaiating of integer or floating-point numbetl. Integer numbet1

are heated as 1igned integeH, and floating-point numbet1 as being in double-prewion format. This ia not

as flexible as in DLXaim, in which integet1 ean be signed or unsigned, and floating-point numbet1 ean be in

Vector Registcr (64 x 64 bits)

rcad-pol1l

l l
I I
+ +

Figure 3: DLXV vector repter

VI Simpósio Brasileiro de Arquitetura de Computadores 247

Malnopcodeo

too 101 t02 103 104 t06 toe t07
100 SPECIAL FPARlTH J JAL BEQZ BNEZ BFPI:' BFPT
108 ADDI ADDUI SUBI SUB UI ANDI ORI XORI LHI
110 RFE TRAP JR JALR SLLI SRLI SRAI
118 SEQI SNEI SLTI SGTI SLEI SGEI LVD
120 LB LH LV LW LBU LHU LF LO
128 SB SH sv sw SF SD
130 SEQUI SNEUI SLTUI SGTUI SLEUI SGEUI SVD
138

Spcciol opcodeo (Maln opcodc = 100)

too t01 t02 103 t04 106 toe 107
100 NOP POP SLL LVWS SRL SRA
•oe ADJJV ADDSV MULTV MULTSV svws SUBV DIVV
110 SEQU SNEU SLTU SGTU SLEU SGEU SUBSV DIVSV
118 SJSQY SNJSY SLTY SfiTY SLJSY SfiJSY SUBYS DIYYS
120 ADt ADDIJ SUB SUBU AtOU UI\ A UI\ CYM
128 SEQ SNE SLT SGT SLE SGE MOV.tL MU 'Ltl
,30 MUVU:I MUV:S:U _MUVI:' _MU_JU ~UVl"P:U MUVUl'P MQYI'PIM MOYMII'P
f38 SBQSV SNBSY SLTSV SGTSV SLBSV SGBSV LVDWS SVDWS

Floating Polnt opcodeo (Maln opcodc = t01)

too 101 t02 t03 t04 t06 toe 107
100 ADDF :SUBI' MUJ.iH" J.Jlvr· AJJJ.)J.) SUBO MULT DIVD

_108 _(J_VTF2D C:VTF21_ _C ... TD2F vV"l"U2l vv·nn· uv·n2o MULT DIV
110 EQF NEF LTF GTF LEF G_EF MUlil"U OIVU
118 EQD NED LTD GTD LED GED SUBVSD DIVVSD
120 ADDVD SUBVD MULTVD DIVVD ADDSVD SUBSVD MULTSVD DJVSVD
128 SBQVD SNBYD SLTVD SGTVD SLBVD SGBVD
130 SBQSVD SNBSVD SLTSVD SGTSVD SLBSVD SGBSVD
138

Figure 4: DLXV opcodes

248 XIV Congresso da Sociedade Brasileira de Computação

single or double-prewion, but should be enough to handle most scientific programs, where signed integers

are the common case, and single-precision floating-point values can always be converted to double-prewion

without loss of accuracy. Thus, vector registers are supposed to contain either signed integer values (in the

lower 32 bits) or 64-bit double prewion values.

There are instructions for operations between two vectors (e.g. addv), producing a third vector as a

result, and for operations between a scalar anda vector (e.g. addn), producing the result in another vector.

Vector instructions involving floating-point operands are appended by the letter ~d" (e.g. addvd).

2.3 New Switches and Commands

In addition to all the command line switches available in DLX.im, the following switches were introduced

for DLXVsim:

• - vr: speeify the number of vector registers;

• -vb: speeify the number of buses úom the vector register file to memory;

• -rb: apeeify the number of buses úom memor:y to the vector register file;

• -rp: apecify the number of read porta in each vector register.

The number of vector registers cannot be greater than 32 due to a limitation in the number of bits in the

opcode field where the vector register is specified. The maximum value for the other parameters can be

changed by modifying the appropriate constants in file dlx .h.

In order to support interactive manipulation of the vector registera, we added the following naer commands

in DLXVsim:

• vget: return the contenta of a vector regilter, treating them as integer values;

• vput: atore an integer value in an element of a vector register;

• :fvget: return the contenta of a vector regilter, treating them as double-preciaion ftoating-point values;

• fvput: store a floating-point value in an element of a vector register.

The commanda vget/vput and fvget / fvput work on vector registers in a similar fashion as the commands

get/put and fget/fput work on the general-purpoae regilters.

VI Simpósio Brasileiro de Arquitetura de Computadores 249

2.4 Memory Bank Conflicts

DLXVsim allows the user to assess the eft'ects ofmemory bank conflicts on a given vector operation. This is

done on the basis o(individual vector instructions; scalar memory accesses are not aft'ected.

There are three parameters in file dlx .h that define the characteristica o(DLXV's interleaved memory

system: llEIIDRT .RB.tD.LATBICT gives the latency o(each memory read operation; JUM..MEMORT ..B.liKS defines

the number o(memory banb, and MEMORT _CTCLB..TIIIE indicates the minimum valid time interval between

auceeuive aceesses to the aame memory bank.

When a vector load or store instruction is issued, the memory start addreu and stride define the aeeess

paUern, and pouible conflicts ean be detected and handled, aeeording to the parameters above. Like in

DLXsim, memory writes are assu.med to have sero latency when initiated, but are still aubject to thc bank

eonflicts previously deseribed.

Notice that vector load operations ean be chained to other instructions accesaing the aame vector register.

On the other hand, vector store operations cannot be chained to subsequent vector load operations involving

the aame memory region. All the memory accesses úom vector instructions are still recorded in the trace

file when the "trace" mode is on.

2.5 New Simulation Statistics

In DLXVsim, the summary o(executed instructiona contains alao information regarding the vector opera

tions. With the "atata opcount" option, in addition to the counts oílnteger and Floating-Point operations,

the execution counts for ali new "Vector-Related lnstructions" are also shown.

When atall iníormation is requeated by the uaer, the number o(stall cycles dueto vector stalls is presented,

after the nu.mbers for load and floating-point stalls.

Finally, much more detailed information about the status o(DLXV can be displayed on each simulation

atep, by recompiling the simulator with the compiler switch - DDBBUG enabled.

3 DLXMPsim Parallel Extension

DLXMPsim simulates a multieomputer composed o(one ore more computing nodes that communicate by

exchanging meaaagea. Each computing node is a regular DLX processor, and interproceuor communication

250 XIV Congresso da Sociedade Brasileira de Computação

i.s achieved by ~be exeeu~ion of appropria~e sys~em calls. Tbi.s seetion presents ~he major features o(tbe

simulation aeenario, with a deaeription of tbe available system calls compri.sing the user program message

passing interface.

3.1 Simulation Environment

For efficiency ofthe simulation, we decided to build DLXMPsim on a real multicomputer, the Intel Paragon,

so that the simulation o(each DLX computing node is done in one processor o(the Paragon. DLXMPsim

also works on a worksta~ion cluster where a pacbge like NXlib i.s installed, and in that ease the user has

complete control to decide which machine will execute the simulation o(each DLX computing node.

A question that may ari.se at tbi.s point i.s: "Why use DLXMPsim, instead o(using the parallel environ

ment (likc provided by NXlib) direcUy?" To answer tbat question, we present all tbe argumenta tbat are

valid for a simula~ion approach: with DLXMPsim, ~he user can change parameters in the processor, like

the number and la~encies o(functional units, or in tbe interconneetion network, like tbe cost of message

transmi.ssion, and assess tbeir corresponding effeets on total execution time for a given program.

The user program i.s supposed to be in the SPMD style, with a common objeet code being executed by

every DLX computing node. Data sbaring is accompli.sbed by exchanging messages between processors. In

addition to the system calls already available in DLXsim, we added a new set o(calls whicb allow message

passing witb a variety of blocking and nonblocking functions. DLXMPsim simulates these message-passing

calls by using na tive communication functions o(the Paragon, and handling the virtual time o(the simulated

machine to ensure that causality relationships are mantained across the simulation.

3.2 Message-Passing System Calls

DLXMPsim extends the system calls for a regular DLX processor witb a set offunctions related to message

passing. These new functions can be called by the user program to send or reccive messages, to get infor

mation on system configuration, or to obtain tbe status o(a transmi.ssion.

The message send function i.s nonbloding, meaning tbat tbe sender process can proceed independently

o(the status o(the receiver for the underlying message. Upon returning from tbe send function, tbe user

program can reuse tbe data buffer.

VI Simpósio Brasileiro de Arquitetura de Computadores 251

There ue hro types of mesaage receive functioDJ: a blocking version, where the receiver process cannot

proeeed until the mesaage urives, and a nonblocking version, in whieh eontrol returDJ immediately to the

receiver; in the latter case, the user program inuat malte a subsequent eall to a probe funetion to obtain the

1tatua of meuage urival.

The funetioDJ introdueed in DLXMPiim ue summuiled below:

• Mesaage-palling funetioDJ:

- eend: send a mesaage with a given tag to another proeessor;

- reev: receive a mesaage with a given tag; eontrol will return to the ealler only after the mesaage
arrives;

- nbU:_recv: limilu·to recv, but eontrol returns immediately to the ealler; the return value is a
unique mesaage-identifi.er, whieh ean be uaed in subsequent probe funetion ealls to eheck if the
mesaage hu urived.

• Probe funetioDJ:

- aegvait: bloclt the ealler until the mesaage with the given identifi.er arrives;

- aegdone: eheck if the mesaage with the given identifi.er hu arrived.

• Configuration inquiring funetions:

- nllllllod .. : return the number of nodes being limulated;

- aynode: return the node number of the eurrent process.

3.3 DLXMPsim Configuration

Some eommand line optioDJ allow the user to configure the limulation environment of DLXMPsim. In

addition to ali the options existing in DLX.im, the following switehes are also available:

• -ez: speci.fy the number of computing nodes being simnlated.

• - io: this option redirects the standard input and output of the simnlator. When exeeuting the

simulation in parallel, it becomes diffienlt (and confuaing) to support interaetive commands, beca use

it is not elear whieh processes shonld be affected by eaeb command. Thus, we decided to provide

support for non-interaetive uaer commands. The user builda a command-file where he plaees ali the

commanda to be executed during the simulation; ali the processes read comanda from this file. Across

the simulation, eaeb process senda its output to a specifi.c output file, and the user ean verify the resnlts

of the limulation by inspectiug these output files.

UFRGS
INSTITUTO DE INFORMÁTi~A

RIRI IOTFr/\

252 XIV Congresso da Sociedade Brasileira de Computação

DLXMPsim representa tbe time íor message tranamission by a cost modd wbere tbe total time to send

a given message ia composed of a conatant value added to a linear fundion o{ the message lengtb. Tbus, if

tbe message ia sent at time Ts, it c:annot be received by anotber node before time Ts + /(n), wbere n ia tbe

message lengtb and f ia tbe tranamission cost. In the current version, DLXMPsim does not model any type

o{ contention in tbe interconnection network between nodes; tbe network ia simply aupposed to be alwaya

available for message tranamission.

During a simulation sesaion in wbicb atall information ia requested by tbe user, DLXMPsim alao prints

tbe number o{ cycles apent on functions tbat block waiting for the arrival oí a message. Tbia is termed as

"Mag-Pasaing ldle Cycles".

Finally, we sbould notice that it ia rdatively easy to insert new syatem calls to tbe simulator. Tbe

íunctiona mentioned above c:an be used as a model.

4 Examples of Use

We now illuahate the uae o{ our simulators, DLXVsim and DLXMPsim, witb two examples. Tbese examples

are not intented to cover ali the features o{ the simulators; tbey sbould juat provide an overview o{ the

corresponding simulation acenarios. The first ~ple re{ers to DLXVsim, and the last one to DLXMPaim.

4 .1 Example of DLXVsim with Chaining

In tbia example, we present cbained vector operationa, where two vectors loaded úom memory are multiplied,

and tbe resulting vector ia added to a given acalar value. We assume that DLXV ia configured witb tbe default

parameters, and no memory conftich ariae. Figure 5 presents the assembly program for tbia example.

Figure 6 sbowa ateps of an interactive simulation sesaion witb DLXVsim; notice tbat, at the end o{ tbe

simulation, tbe final vector has, indeed, the expected contenta. Figure 7 reproduces tbe execution on a

cycle-by-cycle basis; in tbia figure, terms o{ tbe {orm X i mark the production o{ a new value into vector

regiater "í by instruction X . ~ one can aee, the multiply iuatruction (MULTVD) ia atalled by one cycle,

due to a data dependence on vector regiater V2 ; tbe vector addition ia alao atalled, and cannot iasue before

the multiplication resulta atart being produced.

For botb tbe multiplication and tbe addition, aí\er an initiallatency (five cycle for tbe multiplication and

VI Simpósio Brasileiro de Arquitetura de Computadores

.data o
acalar c:onatant:

dO: .double 2.0
1 two original vectora:
d1: .double 1.0, 2.0, 3.0, 4.0, 6.0, 6.0, 7.0, 8.0
d2: .double 11.0, 12.0, 13.0, 14.0, 16.0, 16.0, 17.0, 18.0

.text
.. t nctor length resiater:

BegiD: addi r8,r0,8
moYi2l r8
load a calar couatant:
ld tO,dO
aet mem atart addr••••• J

addi r1,r0 ,d1
addi r2 ,ro ,d2
load ••ctora:
lYd v1,r1
lYd v2,r2
multiply the two vectora:
multvd v O, v1, v2
add a calar •alue:

Yadd: addavd v4,tO,vO
llOp

nop
llOp

llOp

nop
llOp

llOp

llOp

lllld:

Figure 6: Example of a DLXV program with chained >'ector operation..

253

two cycles for the addition), one new result per cycle i.s produced. Although there are no more meaningful

iMtructions in. the program aner the addition, we must simulate a few more atepa (with NOP iMtruetion.)

ao that ali the addition resulta are produced.

4.2 Example of DLXMPsim

This example ahowa the simulation of a very simple program to compute the dot produet between two arraya,

under DLXMPsim. The array values are initialiaed by node O and then diatributed to ali the eomputing

nodes. Eaeh node computes a partial dot product, and oends its reault to node O, which computes the final

anawer. Note that this i.s not the best a!gorithm fo! this problem; it merely oerves as an example o{ our

simulator.

Figure 8 ahows the high-level language program for this example. We simulated the execution of thia

254

(dlnda) [O) load example_t.a
(dl:naia) [0) atop a\ '•dd
(dl:naia)[O) go Begin
atop 1, pc • '•dd: addaYd Yt,fO ,YO
(dl:naia) [9) hget y1
Y1: (0-->1-->2--> •••)

XIV Congresso da Sociedade Brasileira de Computação

1.000000 2.000000 3.000000 0.000000 0.000000 0.000000 0.000000 0 . 000000
0.000000 0.000000 0.000000 0.000000 0,000000 0.000000 0.000000 0.000000
o. 000000 o. 000000 o. 000000 o. 000000 o . 000000 o. 000000 o. 000000 o. 000000
0.000000 0.000000 0.000000 0 , 000000 0.000000 0.000000 0.000000 0.000000
0 . 000000 0 . 000000 0.000000 0 .000000 0.000000 0 . 000000 0 . 000000 0 . 000000
0.000000 0,000000 0 . 000000 0.000000 0.000000 0.000000 0 . 000000 0.000000
0 . 000000 0.000000 0.000000 0.000000 0 , 000000 0.000000 0 . 000000 0 . 000000
0 . 000000 0 , 000000 0.000000 0.000000 0.000000 0 . 000000 0.000000 0 . 000000

(dl:naia) [11) ahp
ahpped &1\er aiJlsl• ahp, pc • '•dd+O:~:t : 10op
(dl:naia) [H) hget YO
YO : (0-->1-->2--> •••)

11.000000 2t.OOOOOO 0.000000 0.000000 0.000000 0 , 000000 0 . 000000 0.000000
o . 000000 o. 000000 o . 000000 o . 000000 o . 000000 o. 000000 o. 000000 o . 000000
0 . 000000 0.000000 0.000000 0.000000 0 ,000000 0.000000 0.000000 0 . 000000
0 . 000000 0.000000 0 . 000000 0.000000 0.000000 0.000000 0.000000 0 . 000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0 . 000000 0,000000 0.000000 0.000000 0 . 000000 0 . 000000 0 . 000000 0 .000000
o . 000000 o. 000000 o. 000000 o. 000000 o. 000000 o. 000000 o. 000000 o. 000000
0.000000 0.000000 o.oooooo 0 . 000000 0 . 000000 0 . 000000 0,000000 0.000000

(dl:naia) [1t) atop a\ IIDd
(dl:naia) [1t) go
atop 2, p<: • bd: nop
(dl:naia) [22) hget Yt
.... (0-->1-->2-> •• ,)

u . oooooo 2e.oooooo u.oooooo &e.oooooo n . oooooo te.oooooo 121.oooooo 1te.oooooo
o . 000000 o. 000000 o. 000000 o . 000000 o . 000000 o. 000000 o. 000000 o. 000000
0.000000 0.000000 0.000000 0 . 000000 0.000000 0.000000 0.000000 0.000000
o. 000000 o. 000000 o. 000000 o. 000000 o. 000000 o . 000000 o. 000000 o. 000000
o. 000000 o . 000000 o . 000000 o . 000000 o . 000000 o. 000000 o. 000000 o. 000000
0.000000 0.000000 0.000000 0.000000 0,000000 0.000000 0.000000 0.000000
o. 000000 o. 000000 o. 000000 o. 000000 o. 000000 o. 000000 o . 000000 o. 000000
0.000000 0.000000 0.000000 0·.000000 0.000000 0.000000 0.000000 0 . 000000

(dl:naia) [22) q1lU

Figure 6: Simulation o(program with ehained vec:tor operatiou UDder DLXVIim.

VI Simpósio Brasileiro de Arquitetura de Computadores

cycle--> O 2 3 4 6 ti 7 8 • 10 11 12 13 14 16 16 17 18 1t 20 21 22

i ' K L ' ' L L1 L1 L1 L1 L1 L1 L1 L1
Jl D o D D D ' • D T D D D L L2 L2 L2 L2 L2 L2 L2 L2
t I I I I ' r 2 D K- KO KO KO KO KO KO KO KO

" L u--
c L- .l .l4 .l4 .l4 .l4 .l4 .l4 .l4 .l4

t T-
i

,_
I I I I I I I I I

o o-- s o o o o o o o o o
D T p p p p p p p p p

o-

Figure 7: Cycle-by-eycle exeeution of program with ehained veetor operations.

program with four eomputing nodes, using an input command file with the following contenta:

load erample_dp.a newtrapa .a
so .)ll&iJl
atata opeoUDt atalla
quit

255

The simulation resulta obtained úom node O are in Figure 9, and those úom node 1 in Figure 10 (the resulta

for nodes 2 and 3 are similar to those of node 1). As one can see, the idle time in node O ia relatively low,

corresponding to the wait for the arrival o(the first partia! result úom other nodes. On the other hand, ali

nodes keep waiting for their fint message while node O performa the initialiaation o(the whole array.

5 Status and A vailability

DLXVsim and DLXMPsim have been tested with severa! example programa. We are nearly fini.shed with

the testa o(their preliminary veraions. DLXMPsim was tested only on a cluster o(Sparcatations, under

NXlib-1.0. Our next step ia to test it under NXlib-1.1, ao that other plataforma can be uaed.

1n the (uture, we intend to add featurea to extraet more information during exeeution, regarding the

dynarnie behavior of the program. Thia would take the form o(exeeution traces, like DLXsim does with

memory aeeesaes.

The simulators are available to anybody who wanta to use them and ia willing to report problema,

enhancementa or experieneea. They may be obtained by eontaeting the author by e-mail.

256 XIV Congresso da Sociedade Brasileira de Computação

tdetiAe DATAfiCTOl
lcldiAe USULT
tdetiA• fiCLDJ

o

268

I• data ••ctor ••••as• type
I• renlt as• typ•
I• probl- •ia• •I

•I
•I

ada()
{

}

tleat l [fiCLDJ] , T [fiCLDJ] , Partial.Procluct, lDJl&rProcluct;
iAt i,l,ott .. t,Vpperloi1Dcl,TectorLqth,ll)'locla,nocleCo1llltl

aylocl• • apode O 1
a•••Co1111t • •-ocl .. O ;
I • fiCLDJ;

it (ll)'locle) {

}

recT(DA'UfiCTOl, l, •iaeot(tloat) • I);
recT(DATAfiCTOl, T, •iaeot(tloat) • I);

elae { I• locle O iAitialia .. aJlcl clietribut .. array Yaluea • /
priAU("Tector leasth: %4\D", I);

}

tor (i • O; i < I; i++) {
l[i] • i; T(i] • 1.0;

}

.. llcl(DATAfiCTDl, l, •iaeot(tloat) • I, -1);

.. acl(DATAfiCTOl, T, •iaeot (tloat) • I, -1);

TechrLeasth • I I nocleCo1lllt;
Ott••t • TectorL•asth • aylocle ;
Partial.Procluct • 0.0;

it {ll)'locle - aocleCo1111t - 1) lJpperlo1lll4 • I;
e1 .. Vpperlo1lllcl • (aylocl• + 1) • Tec\orLeasth;

I • Local c-utatioD ot pertial r .. ulta •I
tor (i•Dthet 1 i<VpperlouD4; i++) Partial.Procluct +- l[i] • T[i];

it (ll)'locle !• O) .. Dcl(USULT, tl'artial.Procluct, •iaeot(tloat), O);
•la• { I • locla O COIÇ1lt .. tiA&l r .. ult •I

}

lDDerProclllct • Partial.Procluct;
tor (i • O; i < aocleCo1111t - 1; i++) {

recy(JUISlJLT, tl'artial.Procluct, eiaeot (tloat));
lDDerProcluct +- PartialProc!Dct 1

}

priAU ("lDDar procluct ia: X8 .U\a", lDDerProduct) 1

Figure 8: Example of a message-pa.saing program to compute dot product.

VI Simpósio Brasileiro de Arquitetura de Computadores

(<lblopaia) load exa~~ple_dp.a nenxapa . a
(<lblopaia) 10 _lll&in
Yector lensth: 266
Inner product ia: 32640.0000
TUP 10 receind
(dlxmpaia) atata opcoUDt atalla
Load Stalla • 1306
Floatins Poillt Stalla • 221
llag-Puains Idle Cyclea • 1111

Total illteger operationa • 8768
nD.lTDC PODT OPBUTIOIS

ADDD o ADDP

lltiLTP 64 lltiLTIJ o

Total floatins poillt operationa • 311
Total opaxationa • t14t
Total cyclea • 11787
(dlmpai.a) qui t

CYTD2P o

o

CYTD2I o

DF o

Figure 9: Output úom simulation of dot produet program produced by node O.

(<lblopaia) load exa~~ple_dp.a newtrapa.a
(<lblopaia) 10 ..-in
TUP 10 rac•i••d
(<lblopaia) atata opcoUDt atalla
Load Stalla • 264
Floatins Poillt Stalla • 218
11a1-Paa•ins Idl• Cycl .. • t2t0

Total illt•1•r opexationa • 1737
nDltDG PODT OP:BUTIOIS

ADDD O ADDP 64 CYTD2P

lltiLTP IIULTIJ o

Total floatins poillt operationa • 131
Total oparationa • 1868
Total cyclea • 11640
(<lblopaia) qui t

no

o CYTD2I o

o DF o

Figure 10: Output úom simulation of dot product program produced by node 1.

257

258 XIV Congresso da Sociedade Brasileira de Computação

6 Conclusion

We presented hro extensiona ofthe RISC DLX processor, targeting high performance arehiteetures. DLXVsim

allows the uaer to simulate a veetor maehine eimilar to baditionalsupercomputen. DLXMPsim ean simulate

massively parallel systems, where communication between processors is performed by message-puaing.

Besides their more obvious uae as educational resources, one ean uae such simulators as a tool in the

simulation of more aophisticated ayaterna. We are eurrently investigating their integration to simulate a

multicomputer where each node has a veetor arehitedure.

With these simulaton, the uaer ean not only obtain quantitative performance information úom the

exeeution of a given program, but alao change the maehine configuration, and assesa the effeeb of auch

changea on overall performance.

References

(1) HBNNIISSY, J . L., J.ND PJ.TTilllSON, D. A. Computer Architeeture: A QuGntitGtive ApproGch. Morgan
Kauúnann Publishers Inc., 1990.

(2) HosTBTLIIB., L. B., J.ND MlllTICB, B. DLX1im- A SimulGtor for DLX. University ofCalifornia, 1990.

(3) Lzz, C . G., J.ND SMITB, J. E. A atudy of partitioned vedor register files. In Supercomputing '9l
(Minneapolis, November 1992), pp. 94-103.

(4) MliNDiis, C. L. Guicleline1 for U1ing DLXV1im Gncl DLXMP1im. University of Dlinois at Urbana
Champaign, 1994.

(5) STIILLNIIB., G., BT J.L. NXLJB U1er'1 Guicle. Techniache Universitãt München, 1993.

