
VI Simpósio Brasileiro de Arquitetura de Computadores

Communication and Performance Trade-offs
in a Systolic Machine

Denis Archambaud Ivan Saraiva Silva Pascal Faudemay

MASI Laboratory- Université Paris 6
4, place Jussieu, 75252 Paris Cedex 05, France

email : (archambaud, dasilva, faudemay)@masi.ibp.fr

Abstract - This paper presents the trade-offs concerning lnput-Output
communications ar the interface of a SIMD systolic machine, and inside the
machine. These problems have been raised by the acce/erating board we are
currently designing . We discuss about the issues involved by VLSJ design:
cascadability, scalability, fault tolerance, and feasibility. We present the main
features of our architecture, and the performances measured with an actual
application which proves that despire of the host computer slowness, the 1/0
bottleneck is not a penalty for the calculation acceleration.

Introduction

317

When implementing an application into a given computer, one of the most important parameter
that must be considered is the execution time. A given system can be considered too slow eilher
because the application consists in a real-time processing and the computation cannot stand lhe
data throughput, or because the application requires such an amount of calculation that it would
need years, decades or even centuries to run. Automatic image recognition can be classified in
the first category, human genetic code alignment in the second.

Evolution in processor design (RISC machines), or technology (clock frequency multiplication
allowing up to 500 MHz internai clock) does not speed up machines sufficiently. A well known
solution is parallelism, based on the following rule : "That which can be done by one compu ter,
should be done twice faster by two computers".

A parallel architecture is usually made of a large number of processors, the whole being
connected to an host (i.e. it behaves as a co-processor). Actually, most of the massively parallel
machines built so far have been expensive, complicated and had to face some communication
problems. 1/0 bottleneck appears at the interface because each processor requires typically data,
instruction and provides another datum at each cycle.

To avoid the bandwidth to be linearly proportional to the number of processors, some parallel
architectures feature simplified interprocessor communications. Systolic design belong to that
category. In a systolic architecture, a mesh links each processor to its neighbours, malcing
possible parallel data transfer. Moreover the instruction is lhe same for all the processors (SIMD
organization). Processors are mounted on a pipe-line in which data are shifted in parallel from a
processor to another. The idea of data steadily flowing from a processing element (PE) to
another explains the biologically-inspired name "systolic".

Whatever the parallel structure may be, its architecture implies some specific 1/0 bandwidth
problem. For instance it appears that a one-dimensional systolic net needs a much lower data
throughput than bi-dimensional nets. The way the data are processed inside the systolic net also
determines the bandwidth requirements.

318 XIV Congresso da Sociedade Brasileira de Computação

The first chapter presents the different systolic architectures with their advantages and
disadvantages conceming 1/0 bandwidth and VLSI feasibility. We then detail in chapter 2 our
own architecture and justify our choices. Chapter 3 discuss of the perfonnances of our system
and more precisely the efficiency of the interface communication.

1 - Systolic features: problems and trade-offs

1.1 - Definition

In systolic arrays, each processor reads its data input stream from another processor through a
mesh (i.e. a local linking bus between two topologicaly neighbouring processors). Only the
processors on the edge need data stream from outside (i.e. an host computer). This
considerably reduces the I/0 requirements of the systolic array and offers a parallel system for
which the parallelism factor doesn't affect the I/0 bandwidth.

Systolic design basically goes with SIMD organization (single instruction stream, multiple data
stream) and mesh topologies. SIMD means only one instruction is broadcast to the processors
at each cycle. Therefore, instruction fetching complexity is not multiplied by the parallelism
factor. It has the complexity and the 1/0 requirements of a single processor.

Due to its particular connection features, systolic architecture can only execute (and accelerate)
particular algorithrns. Problems with a lot of computation on each datum fit well this design as
data will pass through ali the processors successively. Data dependency is also very important.
Communication between neighbouring processors favour the local dependency.

1.2 - Feasibility

Nowadays possibilities in VLSI implementation allows to instanciate multiple processors in a
single circuit. Thus, one can build a massively parallel systolic array on a board far less
expensive than parallel main-frames as CM5 or so.

To adapt with on-going technologies, the architecture has to be scalable. The PE must be
designed in such a way that the number of PEs in a circuit does not matter conceming
feasibility. As connections between the PEsare usually negligible regarding space, the number
of PEs in a systolic circuit will grow linearly with the integration scale.

Scalability is not sufficient. To be able to build interesting systolic arrays, it is necessary to
design cascadable circuits, i.e. circuits that can be interconnected to make one bigger PE matrix.
Cascadability means the circuit interface can interconnect other circuits in the same way that
each PE is connected to other PEs. This globally implies that the interconnection net can be
exhaustively extended beyond the limits of the circuit.

1.3 - Two dimensional nets

In ideal world, the more communication between processors, the more powerful will be the
systolic net. Performing 2-D matrix calculation would require 2-D systolic array. However,
VLSI implementation and I/0 communication bandwidth imply some limitations.

Considering some multi-PEs circuits, the scalability propriety could not be applied to 2-D
matrix of PEs because the interface (or more generally the interconnection bandwidth) would be
too large and would grow with the circuit complexity. Therefore, designers had to build either
mono-circuit systems, or mono-PE circuits (the number of circuits on the board being then the
number of PEs). In both cases, high parallelism factor cannot be achieved. The only solution
would be to implement a lot of deliberately small PEs such as l -bit processors [4] but this Jead
to a particular topic that is outside the frarnework of this paper.

VI Simpósio Brasileiro de Arquitetura de Computadores 319

Some designers decided to implement pseudo-2-D arrays of PEs in a single circuit. For
instance, distance calculation between two texts (e.g. ascii strings) can be solved by a 2-D net.
Discarding PEs on the North-East and South-West comers does not change the result if we
assume limits in the distance (distance score between completely different texts is meaningless).
Thus, the array shape can be limited to a trapezoid, however this is still insufficient to achieve
high parallelism [9]. Besides, reducing the structure lead to a specific architecture that can only
implement a reduced set of algorithms.

When 2-D systolic arrays are applied to matrix computation, each value is coded in a processor,
the link between the processors correspond to the data dependency. Matrix multiplication is a
basic problem, it is also possible to implement more complex algorithms as the distance
calculation between two texts or biological sequences (cf figure 1), or the algebraic path
problem [17].

Figure 1 : architecture of a 5x5 2-D systolic net: three meshes are
designed (vertical, horizontal and diagonal). Such a structure could be
applied to the parallelization of sequence comparison described by
Edmiston and Wagner [5]. A host would have to provide 2.N.(N-1)+1
data word at each cycle and probably read-out as much (N is the
number of PEs on each side of the net).

1.4 - One dimensional nets

One-dimensional systolic array solves scalability and circuit interface problems. It offers a
reduced 1/0 bandwidth: the interface size of a circuit is equivalent to the one of a PE. Moreover,
2-D systolic algorithms can often be efficiently mapped into a 1-D architecture.

A 1-D design presents scalability and cascadability due to a more simple communication
scheme. In addition it supports fault-tolerance. As we deal with scalable design, layout usually
reach the technology limitations in size and consumption, therefore the risk of defaults in the
silicon circuits is greater than ever. Being able to use some circuits with one or more faulty PE
in it gives the possibility to reach an higher parallelism degree for a given price, it has been
often applied to massively parallel architecture such as CAM [11] and neural networks [22].
Fault tolerance can be applied to 2-D architectures [15], however it is far more simple to
implement in a 1-D organisation.

In a 1-D structure a faulty PE can be discarded from the active PEs by a mere initialisation test.
Detection of bad PEs is simply done by running the same test program to ali the PEs in parallel
(SIMD test). A PE with a wrong result is disabled by resetting a flag that condition its

320 XIV Congresso da Sociedade Brasileira de Computação

possibility to interact with the other PEs. While in 2-D topologies adequate routing must be
calculated, in a 1-D topology by-passing is sufficient.

This flag orders the mesh to by-pass the faulty PE so that it is completely ignored from the
computation: this does not affect the sequencement of the instructions. Most of the program can
be made to be independem from the number of active PEs in the array.

Typical applications that can be implemented into a PE row are cartesian products and
associated operations such as aggregation, filtering, data retrieval and panem matching [1].
Some bi-dimensional problems have also been adapted to 1-D systolic net because of their
particular data dépendency. Distance calculation between two texts as defined ~y Wagner and
Fischer (20] imply local dependency (each matrix element can be ca1culated according to the
values of 3 neighbouring elements). This problem has a lot of applications, from the dictionary
approximate-search function [12] to the DNA protein sequences alignment [4]. A way to adapt
this 2-D matrix computation in a 1-D systolic machine is explained in [2]. Implementing 2-D
matrix-matrix multiplication in a 1-D net has also been studied in [16].

According to the data-dependence of the algorithm, the mesh can be duplicated so that multiple
data transfer can be performed at each cycle. For instance Lopresti's machine [10] and
Edmiston's one [5] features two meshes to compute some protein similarity scores, because the
algorithm requires the calculation of the elements of a 2-D matrix, each value being deduced
from 3 neighbouring values (cf Needleman and Wunsch [13], and Smith and Waterman [18]
algorithms). Another example is [16] that uses up to 8 meshes with different time-behaviour to
perform matrix multiplication.

However, it can become disadvantageous to exaggeratedly duplicate the number of meshes and
consequently to increase the size of the PEs. Some of the data-dependency can be solved by
programming the PEs and using a unique mesh successively. This is the solution we adopted in
our architecture.

Figure 2: a 5 PEs systolic row. This row is able to perform in one-dimensional
fashion the computation that fit in figure 1 two-dimensional array. The row
replaces a diagonal in the 2-D array, it supports Smith and Waterman algorithm
as explained in [5]. The global interface does not depend on the number of PEs.

1.5 - Instruction flow and format

The way the instructions are sent to the PEs is also characteristic of a systolic system.

The most regular model which is the direct application of the SIMD definition is a unique
instrucrion sent to ali the PEs that execute it at the same time. From the program, a PE is
"anonymous", it has no address, no particular position, it only processes a data and sends it to
its neighbour.

The main disadvantage of the instruction broadcast is that it is a slow way to provide
instructions to the PEs because the instruction bus is topologically very long (hence very
capacitive) and has to drive a lot of PEs. Bufferization is necessary and requires time. This
problem can be solved by sending the instructions to the PEs via a mesh. The global sequencer
only feeds the first PE, and then the instruction is successively shifted from a PE to the
following one until the end of the row. This still is a SIMD model of execution even though it
has a very different behavior considering the connection between data-flow and instruction-flow

VI Simpósio Brasileiro de Arquitetura de Computadores 321

[7]. In Rapid-2 we chose to broadcast micro-instructions as it leads to a simple and more
powerful programming model.

The insttuction format definition also defines a systolic machine. Most of the architectures
minimise the instruction bus size, and each PE has to decode the instruction to command its
resources. Ali in ali, this is not so advantageous as the decoder is duplicated in each PE,
requiring space that could be used to instanciate extra PEs and so increasing the parallelism. It
could be of some interest to directly rnap the PE resources command in the instruction format.

2 - Systolic and associative capabilities

We are currently developing a board made of VLSI circuits and that would be used as an
accelerating co-processor for application requiring a massive processing over a somewhat
reduced amount of data.

Our architecture (Rapid-2) mixes severa! ideas and can be defined by the following points :

2.1 - A systolic organization

The PEs are organised into a 1-D systolic row. A mesh links each PE to its neighbours,
allowing systolic data shifting in both directions. Three morphologies of the mesh can be
defined: a loop (mono-dimensional projection of a torus), a 1 entering line (the end of the line
being ignored or readable by the host), ora O entering line.

Each PE is basically made of a memory, some auxiliary registers and an ALU (Arithmetic and
Logical Unit). The size of the word is 32 bits (plus 6 extra bits used for internai marking

· facilities). The 32-bit ALU can be devided into 4 parallel 8-bit ALUs, so that the parallelism
factor in 32-bit inode is multiplied by 4 when dealing with bytes.

The ALU offers common basic operations (+, -, l-bit shift, Boolean operations, comparisons)
in both 8-bit and 32-bit mode. Multiplication and division are also possible in multiple cycles.

2.2 - A global data-bus

A global data bus makes Rapid-2 pseudo-systolic according to Kung classification [8]. This bus
offers imponant possibilities such as providing a datum to ali the PEs in parallel directly form
the host. Another possi.bility is broadcasting [19]: one PE can send its result to some other PEs.
This is not in accordance with the SIMD functioning as one PE behaves differently from the
others, this will be explained in PQint 3.

2.3 - A paginated· associative organization

The architecture is both systolic and associative. Associativity means that a set of PEs can be
accessed based on some assertion (logical condition). This set of PEs can be marked for funher
processing. One of the marked PEs can also be chosen by an arbitration device to allow the host
to read-out a PE content through the data bus. Associativity is an address-less data access
method which is different from the systolic method. This combination gives a great flexibility to
the architecture. Such combination was also proposed by Herman and Sodini [6].

Associative memories can be full-associative, paginated or set-associative. In paginated and set
associative memories, each PE is connected to a particular register fJ.le. A same number register
is accessed at any time in ali the PEs. In set-associative architectures, the current register
number is a hashing value of the evaluated data. Hashing is done by hardware.

Rapid-2 is a paginated and set-associative memory. Each PE is designed to be pan of a memory
that supports sets and data storage with wired hashing. More than half of the space in the PE is
dedicated to memory. The global control yields an address to ali the PEs' memory so that a

322 XIV Congresso da Sociedade Brasileira de Computação

particular word in each PE can be accessed and processed simultaneously. The basic ideais the
CAM (Content Addressable Memory) since a word in a PE can be selected and then processed
and/or read-out by the host computer - this is the address-less data retrieval method [20].
However CAM only do comparisons, while an associative architecture as Rapid-2 also executes
other calculations. Set-associativity is due to three devices, the token unit, a global data bus,
and the PE memory addressing:

The token unit :
Actually a standard systolic machine is somewhat limited by the fact that each datum passing
through the systolic row has inevitably to be processed in each PE successively. To give more
flexibility in programming a systolic treatment, it is interesting to implement some marking flags
(that we call tokens), with the possibility to inhibit the execution of an instruction in the PEs
according to the values of the flags. This property is a characteristic of assoei ative architectures.

There are 8 tokens in each Rapid-2 PE :

1 for storing the result of a comparison in 32-bit mode
4 for storing the result of a comparison in 8-bit mode (1 bit per byte)
1 to provide the PE from executing the instructions
1 to indicate which PE is allowed to emit onto the data-bus
1 to indicate whether a PE is valid or not (fault tolerance mechanism)

Memory addressing :
The PE memory can be addressed by a global address unit. It is a single address for multiple
data (SAMD). A given instruction addresses the same word in each PE. The memory
addressing combined with the token manipulation give a way to read any word in any PE. This
is a way to access in non-parallel fashion beyond the possibilities of the systolic functioning.
Moreover, the address can be calculated by the PE, using its internai ALU. This is a way to
perforrn indirect addressing and to manage structured data.

2.4 • A VLSI design

We aim ata 256 PEs system. The board would be made of about 12 VLSI CMOS circuits of
which one is the controller and the others are execution circuits.

This controller provides the data and the instruction to ali the PEs, it is connected to the host
(PC or compatible machine) via an EISA bus.

The execution circuits only contain PEs. The fact that the PE layout is symbolic and that the
number of PEs in the circuit does not affect its behavior or its interface make the execution
circuit scalable. Technologies to come will offer higher integration scale and thus higher
performances for future implementation of our architecture. The execution circuit is also
cascadable, its interface is composed of the data bus, the instruction bus and the mesh (about
160 pads). Assembling the execution circuit is thus as easy as assembling the PEs.

2.5 - Board programming facilities

Even though the systolic row only need an instruction and a datum per cycle, this is still a
constraint that would reduce its performances if the information had to come from the host. The
EISA bus is slow compared with the mesh bandwidth, therefore the row would have to wait a
part of the time for data from the host, and thus would never reach its maximum calculation
power.

We precisely studied the 1/0 bottleneck between the host and the board (cf chapter 3), and the
kind of program that uses such a row. Actually, programs are often based on recursive
treatment over data (aggregate, filtering, similarity calculation), therefore there relatively shon

VI Simpósio Brasileiro de Arquitetura de Computadores 323

and contain very repetitive loops. This propriety lead us to build a storage device into the
controller.

However, after further study, it was decided to implement the architecture as a micro
programmed one. lnstruction store and micro-instruction store were merged into a single micro
instruction RAM. Therefore the device is programmable at a very low levei (registers,
multiplexer commands), which offers a high utilisation flexibility. A counterpart is the need for
software tools to help developers implement and debug programs.

It is a 128 Kbit ram which is loaded before the beginning of the systolic program, it generates
the centro! flow towards the PEs while the host bus only deal with the data. Synchronisation
between data and program execution is ensured by a semaphore system (handshake flags at the
interface with the host).

As in classical micro-programmed architecture, the micro-instruction contains a branch code that
allows conditional branches and loops with a counter. Finally the control is completely internai
and the host only sees a system that reads its data and yields the results. Some words of the ram
can even be used to store constant necessary to the program, so that the host has not to send
them during computation.

host

Figure 3 : The Rapid-2 architecture with its communication buses.

3 - Host-computer interface : 1/0 performances

The communication between the host machine and the board is managed by a data transfer
program in the machine and a micro-program in the board. This simultaneous processes require
some control mechanisms. This mechanism has to prevent data transfer which speed would be
too fast for the board or host possibilities. These problems are part of the UO performance
considerations since a correct speed adaptation between the board and the host ensures an
optimised data transfer. We will first present the hardware architecture of the interface
implemented in the board, then we will describe how the data transfer program is written in the
host. The performances will be also presented.

3.1 • Controller protocol

The communication protocol between the board and the host is based upon some registers and
associated semaphores. A semaphore is a l-bit flag that indicates whether the corresponding
register is valid or not. These semaphores can be read by the host in a status register which
always valid. The semaphore management rules are as follows:

- If the semaphore is set, the register is valid, it can be read but not over-written .
. If the semaphore is not set, the register is empty, writing-in is allowed, but reading is not.

324 XIV Congresso da Sociedade Brasileira de Computação

The semaphores synchronise data transfer between the host and the board by conditioning the
execution of transfer programs in the host and the execution of the micro-program in the board.
Basically, the semaphores are automatically set by a host transfer, they are reset by the micro
program when it doesn't need the data anymore. The interface registers are:

- Instruction: The host writes in this register the instructions which must be executed
in the board. It contains a branch address in the micro-program. This register is under
the control of a semaphore.

- Data In: The host writes in this register the data that have to be sent to the PEs. This
regisier is under the control of a semaphore.

- Data Out: The host reads this register to retrieve some data stored in the PEs. This
regisier is under the control of a semaphore.

- Status In: The host reads this register to know the current state of the board. This
registeris always valid, therefore it can be unconditionally read. No semaphore are ·
associated to Status In.

- Status_ Out: The hÕSt writes in this register to change the board state. Since the board
state can be changed at any time, this register can be unconditionally written.
Consequently there is no semaphore associated to Status_ Out.

When the host has written a new datum in Data In or Jnstruction, it frrst has to check the
relevant semaphore to get sure it will not overwrite a valid datum. In the same way, when the
host reads a datum in Data_ Out, it frrst h as to check the Data_ Out semaphore to get sure o f the
value validity. Checking the semaphores is performed by reading register Status_Out. These
operations mean extra data transfer that may be considered as time .penalty. However this
ensures asynchronous transfers. When the host data transfer program and the micro-program
can run in a synchronous fashion, the semaphore checking procedure can be by-passed.

From the board point of view, the micro-program execution is conditioned by the semaphores.
More precisely, it exists conditional branches that can be used to micro-program loops that wait
for the data from the host.

3.2 - Communication functions

The host accesses board interface registers by calling some functions of a "driver" program.
These functions respect the protocol rules as explained before. They read the Status Out
register to evaluate the semaphores and behave depending on their values. -

There are nine functions that perform I/0 access to the interface with or without semaphore
checking. A descriptive list of these functions is given below:

- Read: This function reads registers Data_ Out or Status_ Out . When reading Data_ Out,
the relevant semaphore is checked. If it is set, then the function reads Data Out and
stores it into host ram. A TRUE code is then returned. If it is not ·set, it means the
datum is not yet available, so it is not read and a FALSE code is returned. When
reading Status_Out , for which there is no associated semaphore, the word is
unconditionally read and the returned code is always TRUE.

- Read _ wait: This function performs a task equivalem to the previous one. Moreover,
it attempts to read Data_ Out until its semaphore is OK (whereas function Read gives up
after the first semaphore check). Thus, the retumed code is always TRUE since the
function loops until the operation is successful.

- Write: This function allows to write in register Data _In, lnstruction, or Status In ..
The semaphore is checked when writing in registers Instruction and Data In. Ir the
semaphore is not set (i.e. the register is free), the word indicated by the userls written
anda TRUE code is returned. If the semaphore is set (i.e. the register still contains a
useful datum), the word is not written anda FALSE code is retumed. No semaphore
check is necessary when writing in Status _In: the word is unconditionally sent anda
TRUE code is returned.

VI Simpósio Brasileiro de Arquitetura de Computadores 325

- Write_ wait: This function is equivalent to the Write function but loops until the
semaphore has tumed to a correct value (i.e. the register is free). Therefore the
function is always successfully executed, and always retums a TRUE code.

- Write_over: This function writes a word in Instruction or Data _In without checking
the relevant sernaphore. It is used to force some values when the micro-program is not
able to manage the semaphores (when loading the micro-ram for instance). In any case
and always retum a TRUE code.

- Read_block_async: This function reads the successive values in register Data Out
or Status_ Out according to the stream throughput. The number o f words to be read
before ending the function and the address where to store the words are parameters of
the function. When reading Data Out, the relevant semaphore is checked before
reading each word. -

- Read_block_sync: This function allows to read a data stream as Read_block async
without checking the semaphores. When using this function, the board has to be faster
than the driver function, so that it can provide each word before the driver reads it.

- Write_block_async: This function writes the content of an array, word after word,
towards lnstruction, Data In , or Status In. Parameters indicate the number of words
to be sent and the array poínter. In relevãnt cases, the semaphore is checked. When the
sernaphore has not the correct value, a loop continuously reads it until it turns right.

- Write_block_sync: This function writes the content of an array to the interface
registers I nstruction, Data _In, o r Status _In. Semaphore are not checked, hence the
board must use the data at Jeast as fast as they are sent by the host.

The data transfer program has to use the fastest driver function in order to achieve the maximum
I/0 throughput. This means semaphore checking must be ordered only when necessary. A
transfer function that checks the semaphore Jasts 26' cycles (we assume a 33MHz clock): 8
cycles are spent to read Status_Out, lO cycles are spent to evaluate the needed semaphore and
perform the corresponding branch, and the 8 lasts cycles are spent to perform the transfer. For
block transfers, 16 extra cycles are necessary to manage the arrays. In addition, each function
needs approxirnately 40 cycles for initialisation and to return to the data transfer program.

We can notice that calling a block transfer function is more convenient that calling successive
word transfer functions. Transferring N words (N>l) with Write_wait() will costs N.(26+40),
while transferring a N words block only costs N.(26+16)+40.

The following section we will apply these consideration to a real-size application (genetic
sequence comparisons). We will verify that Rapid-2 communication devices do not Jimit the
parallel processing capabilities of the board.

3.3 - Performances for a real size problem

Genetic sequences can be seen as character strings. Geneticists compare the sequences to find
some possible similarities between them and thus classify them. Sequence comparison is
basically obtained by calculating a 2-D array [12, 16], nevertheless some implementations fit in
a systolic 1-D net [9]. Calculating the similarities between two sequences A and Bis performed
in Rapid-2 within three phases: phase Pl during which the micro-program is loaded in the
board micro-ram, phase P2 during which sequence A is loaded in the PEs, and phase P3 which
is the similarity calculation obtained by successive systolic shiftings. The characters of B are
provided to the PEs row in a systolic fashion, i. e. one character for a shift.

In our implementation, the systolic shift lasts severa! cycles (it is called a step). One of these
cycles is used to transfer the B character to the PEs row. As soon as the character has been sent
to the PEs, it is of no more use in the interface, the semaphore is immediately reset so that the
host will be able to senta new datum to the interface. More precisely, the new character is
needed at the beginning of the step, if it is not yet received the micro-program loops until the
host send the datum (this is controlled by the semaphore). The character is then sent to the PEs,
and the semaphore is reset so that the host has the rest of the step time to send the following

326 XIV Congresso da Sociedade Brasileira de Computação

datum. While waiting for the next data word, the loop let the PEs inactive (since they are
waiting for this word). If waiting cycles are spent in each step, this means the board parallelism
is used under his possibilities - therefore such a situation must be avoided.

We have calculated the duration of each phase for a 256 PEs configuration (256 32-bit PEs
equivalent to 1024 8-bit PEs). This allows to compare in a single pass a 1024 character
sequence with an arbitrary length sequence. Results below are given for two 1000 characters
sequences.

The phase P1 needs a data transfer to load the micro-program rarn. This transfer is performed in
the host by a Write_block_sync function. The execution time is 0.15 ms. During this phase,
the PEs are inactive, this can be considered as an unavoidable initialisation phase.

Phase P2 uses a Write_block_sync function to load sequence A. We do not need to check the
semaphore since the number of cycles necessary to 1oad (with no computation) the sequence is
less than the cycles required by the data transfer. The board being always ready to read a new
data word, it is not necessary to check the semaphore before sending the words. Execution time
for this phase is 0.24 ms, 13.13% of this time being used to calcu1ation in the PEs. This low
utilisation rate is due to the fact that the board has to wait for data most of the time.

Phase P3 uses a Write_block_async function to yield the 8 characters ata rhythm of I per step.
We use an asynchronous transfer (i.e. we systematically check the semaphore before writing)
because a step lasts 1onger than a one-word transfer. If the semaphores were not checked, the
host could over-write some data words in the interface that have not been yet used by the PEs
row. Execution time for this phase is 2.2 ms. 99.51% of this time is spent in calculation in the
PEs. This indicates a satisfactory use of the hardware during this phase. Since phase P3 lasts
much longer than the others phases (it takes 85% of the overall execution time), it is important
that this is the most optimised one.

Actually, geneticists usually compare one sequence with, say, 1000 other sequences from a
database. Comparing a sequence A with successively 1000 sequences 8 only requires one
phase P1, one phase P2 and 1000 phase P3. The execution time is then 0.15+0.24+2200 =
2200.39 ms in which phase P3 (using 99.51% of the board power) represent 99.98% of the
overall time. In such a situation, phases P1 and P2 can be ignored as regards to the
performances.

Thus, using a slow EISA bus does not slow down our architecture. First tests with real genetic
sequences show that Rapid-2 can speed up today's software implementation on work stations
of a factor 50 to 200 depending on the algorithm complexity (similarity accuracy needed,
mutation matrices ...).

Conclusion

We presented the different systolic structures, their advantages and disadvantages. We do think
that a 1-D associative systolic array is the architectures that fits the best with a VLSI
implementation to build an accelerating board. Moreover, we believe that adding to a classic
systolic structure some set-associative features (global data bus, tokens ...) increases the
possibilities and flexibility of the architecture. Rapid-2, the accelerating board we are currently
developing, is based upon those features. Implementing some existing applications that require
too much execution time in software showed that the interface between the board and the host
does not raise some redhibitory 1/0 bottleneck.

VI Simpósio Brasileiro de Arquitetura de Computadores 327

Ack nowled gemen ts

The authors wish to thank Alain Greiner (director of the MASI laboratory), François Dromard,
Laurent Winckel, and Jean Penné for their fruitful connibution. The project is partially funded
by GdR ANM (Novel Machine Architecture), GdR "Informatique et Génome", and GIP GREG
(Groupement de Recherches et d'Etudes sur les Génomes).

References

1. D. Archambaud, P. Faudemay, "Rapid-2, A Paginated Set-Associative Circuit That
Performs Sning Processing", Proceedings of the 1st south american workshop on sning
processing, pp 1-13, September 1993

2. D. Archambaud, P. Faudemay, A. Greiner, "Rapid-2, An Object Oriented Associative
Memory Applicable to Genome Data Processing", Proceedings of the 27th annual Hawaii
international conference on system sciences, vol 5, pp 100-110, January 1994

3. R. Barman et ai., "Silt: The Bit-Parallel Approach", pp 332-336, 1EEE 1990

4. A. F. W. Coulson et ai., "Protein and nucleic acid sequence database searching : a
suitable case for parallel processing", Computer Joumal, vol 30, n°5, pp 420-424, June
1987

5. E. Edmiston and R. A. Wagner, "Parallelization of the Dynamic Programming Algorithm
for Comparison of Sequences", Proceeding of the International Conference on Parallel
Processing, pp 78-80, 1987

6. F. Herman and C. Sodini, "A Dynamic Associative Processor for Machine Applications",
IEEE Micro, June 1992

7. R. Hughey and D.P. Lopresti, "Architecture of a Programmable Systolic Array",
Proceedings of the international conference on systolic arrays, may 1988, pp 41-49

8 . H. T. Kung, "Why Systolic Architectures", Computer, voll5, pp 37-46, January 1982

9. D. Lavenier, "An Integrated 2-D Systolic Array for Sning Comparison", Proceedings of
the I st south american workshop on sning processing, pp 117-121, September 1993

10. D. P. Lopresti, "P-NAC: A Systolic Array for Comparing Nucleic Acid Sequences",
Computer, vol20, pp98-99, July 1987

11. A. J. McAuley & C.J. Cotton, "A Self-Testing Reconfigurable CAM", IEEE journal of
Solid-State Circuits, vol. 26, W 3, March 1991

12. M. Motomura et ai., "A 1.2-Million Transistor, 33-MHz, 20-b Dictionary Search
Processor (DISP) ULSI with a 160-Kb CAM", IEEE joumal of Solid-State Circuits, vol.
25, W 5, October 1990

13. S.B. Needleman & C.D. Wunsch, "A General Method Applicable to the Search for
Similarities in the Amíno-Acid Sequence of Two Proteíns", Journal of Molecular
Biology, vol48, pp 443-453, 1970

14. T. Ogura et ai., "A 20-Kbit Assocíative Memory LSI for Artificial Intelligence Machínes",
IEEE joumal of Solid-State Circuits, vol. 24, N° 4, August 1989

328 XIV Congresso da Sociedade Brasileira de Computação

15. S. P. Popli and M. A. Bayoumi, "A Reconfigurable VLSI Array for Reliability and Yield
Enhancement", Proceedings of the intemational conference on systolic arrays, may 1988,
pp 631-642

16. V. K. Prasanna Kumar and Yu-Chen Tsai, "Architecture of a Programmable Systolic
Array", Proceedings of the intemational conference on systolic arrays, may 1988, pp 51-
60

17. T. Risset, "Applying Semi-Systolic Techniques to SIMD Programming", Proceedigs of
the IFIP 1994, Appl. in Paralle1 and Distributed Computing, pp 103-112, C. Girault
editor

18. T. F. Smith & M.S. Watennan, "Identification of Common Molecular Subsequences",
Joumal ofMolecular Biology, n° 147, pp 195-197, 1980

19. Q. F. Stout, "Mesh-Connected Computers with Broadcasting", IEEE trans. on
computers, vol C-32, n°9, September 1983

20. R. A. Wagner & M. J. Fischer, "The String-to-String Correction Problem", Joumal of
the Association for Computing Machinery, vol. 21, N° 1, pp 168-173, January 1974

21. P. Wayner, "Smart Memories", Byte, pp 147-152, March 1991

22. M. Yasunaga et ai. , "A Self-Leaming Digital Neural Network Using Wafer-Scale LSI",
IEEEjoumal of Solid-State Circuits, vol. 28, N° 2, February 1993

