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Abstract-
Alignment of long DNA sequences is a challenging task due to its 

high demands for computational power and memory. We have devel­
oped a multithreaded parallcl implementation of a sequence alignment 
algorithm that is able to align whole gcnomes with reliable output and 
reasonable cost. The implementation is bascd on a finc-grain multi­
threadcd execution model, thc EARTH model, which effectively toler­
ates Jatcncy through the overlapping of computation and communica­
tion. Human and mice mitochondrial genomes, human and Drosoplrila 
mitochondrial genomes are aligned respectively to demonstrate that the 
implemcntation can be used to align both closely related as wcll as less 
similar genomes. Results from Mycoplasma genitalium and Mycoplasma 
pneumoniae genomes, which are much larger than the tested mitochon­
drial genomes, are also presentcd. From the output, the homologous 
regions can bc easily detected. This tool should facilitate alignment of 
syntenic regions, strain to strain comparisons, identification of regula­
tory elements and evolutionary comparisons as well. 
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I. I NTRODUCTJON 

Over the past few years a number of genomes have been 
completely sequenced by various research groups. A basic 
operation that can be immediately applied to this massive se­
quence data is the alignment of whole genomes. This ap­
proach of comparative genomics has a great biological sig­
nificance. By aligning the DNA sequences of entire genomes 
(i.e. including coding and non-coding regions), scientists will 
be able to identify important matched and mismatched re­
gions. The "matches" may tum out to be functional ho­
molog pairs, conserved regulatory regions or long repeats. 
Various sizes of "mismatches" can be easily detected in the 
whole genome alignment. SNP (Single Nucleotide Poly­
morphism) is one base pair mismatch in the middle of two 
matching regions. Large sized "mismatches" may be for­
eign fragments inserted into the genome by transposition, 
sequence reversal or lateral transfer from another organism. 
This information will help to detect important functional dif-
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ferences between pathogenic and non-pathogenic strains of 
the same species, figure out evolutionary distance between 
organisms [LOOOO], find out the regulatory regions of genes 
that may be preserved during evolution, and discover point 
mutations, deletions, reversions, insertions and duplications 
that may lead to diseases or special phenotypes. 

Whole genome alignment can not be accomplished un­
less computer programs for pair-wise sequence comparison 
deal efficiently with both, execution time and memory re­
quirements for this large-scale comparison. Some tools, re­
quiring large amount of memory, have shown to achieve 
good execution times, but only at expense of accuracy. To 
find an alignment, they start by looking for perfect matches 
that can be further extended and joined together using a dy­
namic programming algorithm [SMI81 ]. For example, Kun­
Mao et ai. used a BLAST-Iike hashing scheme to identify 
exact k-mer matches and extend them to maximal-length 
matches [CHA95]. Delcher et ai. applied a data structure 
called suffix-tree to find out, in linear time, perfect matches 
of a given length, also called MUMs [DEL99]. Maximal­
length matches and MUMs are finally combined into local 
alignment chains by a dynamic programming step. However, 
neither of them apply the dynamic programming algorithm 
along the entire sequences since it is computational intensive 
- the algorithm's complexity is O(n2 ). Thus these tools are 
only applicable to closely related genomes. 

We developed a parallel implementation of the dynamic 
programming algorithm that, by using the collective memory 
of several nodes, meets the computer memory requirements 
of this kind of application and is able to align any related 
genomes with reliable output in a reasonable time. The im­
plementation runs on top of parallel machines based on off­
the-shelf microprocessors, such as Beowulf installations (a 
cluster of standard PCs running Linux), and takes advantage 
of fine-grain multithreading to efficiently overlap computa­
tion and communication [THE99], producing impressive ab­
solute speedups on Beowulf systems. 



The rest of the paper is organized as follows. In sec­
tion 11, we review a pairwise sequence comparison algo­
rithm using the dynamic programming technique. Our mul­
tithreaded parallel implementation is described in section III. 
We present results for real genomic sequences in section IV, 
and our conclusions in section V. 

li. PAIRWISE SEQUENCE COMPARISON USING 

D YNAM IC PROGRAMM ING 

To compare two sequences we need to quantify the simi­
larity between the pairs o f symbols, one from each sequence, 
and associate a score for each possible arrangement. The 
measure of similarity of the two sequences is then given by 
the highest score. For example, Iet X = ATAAGT and Y = 
ATGCAGT and assume a score of I to matches and - I to 
mismatches. By writing one sequence above the other we 
have the following possible alignment o f the sequences: 

sequence X 
sequence Y 
SCORE 

A T A A G T 
A T G C A G T 
1 1 -1 -1 -1 -1 -1 TOTAL = - 3 

To take the positions of the symbols into account we can 
consider sliding one sequence along the other so as to allow 
more symbols to match. In ou r example, shifting sequence X 
one position to the right results in a better alignment, i.e. one 
which produces a better score. 

sequence X 
sequence Y 
SCORE 

A T A 
A T G C 

-1 -1 -1 -1 

A G T 
A G T 
1 1 1 TOTAL = - 1 

However, these simple methods do not provide good mea­
sures of sirnilarity when the sequences represent biological 
data (proteins or nucleotides). This is because biological se­
quences are a result o f an evolutionary process in which mu­
tations, i.e. substitutions, insertions or deletions, are bound to 
occur. Such mutations can be modeled by the introduction of 
gaps in the sequences. Assuming gaps score -2, ou r example 
can be modified to: 

sequence X A T A - A G T 
sequence Y A T G C A G T 
SCORE 1 1 -1 -2 1 1 1 TOTAL = 2 

The introduction o f a gap (-) indicates a possible evolution 
from sequence X to sequence Y by the insertion of C. Al­
tematively, sequence Y might have evolved into sequence X 
by the deletion of C. Note that the third aligned pair, from 
left to right, can be understood as a mutation of A into G or, 
altematively, o f G in to A. 

When gaps are considered, the problem of sequence 
comparison becomes complex. Waterman showed that, 
given two sequences of length n, there are approximately 
(1 + J2)2n + I n - 1/ 2 possible alignments between these 
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two [WAT89]. Now, if we consider real world genomic se­
quences whose size range from hundred thousands to hun­
dred billions of base pairs, it is hopeless to enumerate ali 
possible alignments. Thus, other methods must be used to 
find a solution to the alignment problem in less time. 

In 1970 Needleman and Wunsch [NEE70] introduced the 
first algorithm for finding global alignments without enumer­
ating ali possible solutions. Global alignment attempts to 
match ali o fone sequence against ali o f the other. This algo­
rithm was later adapted, by Smith and Waterman [SMI81 ], 
to the problem of local alignment, which finds alignments of 
subsequences o f the two sequences. These algori thms consist 
of two parts: the calculation of scores indicating the similar­
ity between the two given sequences, and the identification 
o f the alignment(s) thatlead to sue h score(s). 

In order to avoid enumerating ali possible alignments, 
these algorithms use a technique called dynamic program­
ming [HOR78]. The idea is to build up the solution by using 
previous solutions for smaller subsequences. Thus, instead 
of recalculating the same value severa) times, the algorithm 
stores values, corresponding to partia) results, in a data struc­
ture and reuses them as the new values are calculated. The 
data structure used is a two dimensional array which is called 
similarity matrix. This matrix is used to represent ali possi­
ble alignments that can be constructed from the two inputed 
sequences. 
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Fig. I. A few steps of lhe calculation of the similarity matrix 
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The comparison of two sequences, X and Y, using the dy­
namic programming technique is illustrated in Figure I. The 
sequences are placed along the Ieft margin (X) and along 
the top (Y). The matrix is initialized with zeros along the 
fi rst row and first column so that alignments between subse­
quences are not penalized by gaps on its Ieft and right ends. 

The other elements of the matrix are calculated by find­
ing the maximum value among the following four values: 
left element plus gap penalization, upper-left element plus 



the score of substituting the horizontal symbol for the ver­
tical symbol, upper element plus the gap penalization, and 
zero (this condilion forces the beginning of a new alignment 
if the score was to drop to a negative value). For example, 
lhe score 2 (3rd row and 4th column) is obtained by find­
ing max{O + ( -2), 1 + (1), O+ ( -2), O} = 2. Notice that 
there are three possible alignments to be chosen from when 
calculating one element: alignment o f the symbol in the row 
considered with a gap, alignment of the symbol in the row 
considered with the symbol in the column considered (ei­
ther a match or a mismatch), and alignment of the symbol 
in the column considered with a gap. This corresponds to a 
horizontal move, diagonal move and vertical move between 
elements of the sirnilarity matrix. 

For lhe general case where X = x, , ... , X i and Y = 
y 1 , ••• , yj, for i = 1, ... ,n and j = 1, ... ,m, the simi-
larity matrix SM(n, m) is built by applying the following 
recurrence equation, where gp is lhe gap penalization and ss 
is the substitution score (match of mismatch). 

{ 

SM[i,j- 1) + gp 

SM[ 
. . 

1
_ SM[i -1,j -1) + ss 

~.J - max SM[i -1,j) + gp 

o 

Following this recurrence equation, the matrix is filled 
from top lefl to bottom right with entry (i, j) requiring the 
entries (i,j- 1), (i- 1, j- 1), and (i- l,j). By choosing 
the maximum value we make sure the best score is found and 
stored, so that the next entries are build up based on that. 

Once the similarity matrix is computed, the second part of 
the algorithm identifies the local alignments. Since the num­
ber of alignments grows exponentially, only alignments with 
score value above a given threshold are reported. Thus, for 
each such matrix element a trace-back procedure is applied 
to find out the actual base pairs that constitute the alignment. 
Starting at the end of the alignment and moving backwards 
to the beginning, this procedure follows a path like the ones 
described by arrows in Figure 2. Such path is determined at 
each cell considering its score and how it was produced. In 
other words, the maximum term of the recurrence equation 
determines which symbol (nucleotide) or gap are added to 
the alignment. 

Although able to report ali possible alignments between 
two sequences, sequence alignment algorithms based on 
the dynamic programming technique present a serious chal­
lenge. They impose important requirements both on com­
puter memory and execution time. When dealing with Jong 
input sequences such as whole genomes, meeting these re­
quirements is not a simple task. In the next section, we ex­
plain how our implementation meets the computer memory 
requirements and complete the task in reasonable time by 
means o f parallelization. 
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Fig. 2. Local alignments with score greater than 2 

III . P ARALLEL COMPUTATION OF SEQUENCE 

ALIGNMENT 

A parallel version of the sequence comparison algorithm 
using dynamic programming must handle the data depen­
dences presented by this method, yet it should perform 
as many operations as possible independently. Martins et 
ai. [MAROI] showed that an efficient parallel implementa­
tion of the similarity matrix calculation can be done using 
multithreading. The implementation described in this pa­
per builds on that and further applies parallelism to report 
the most significant local alignments o f the input sequences. 
Before presenting our implementation we briefty describe, 
EARTH, the parallel execution model used. 

A. The EARTH execution model 

EARTH [HUM96, THE99) supports a multithreaded pro­
gram execution model in which a program is viewed as a col­
lection o f threads whose execution ordering is deterrnined by 
data and control dependences explicitly identified in the pro­
gram. Threads, in tum, are further divided in to fibers which 
are non-preemptive and scheduled according to dataftow-like 
firing rules, i.e., ali needed data must be available before it 
becomes ready for execution. Programs structured using this 
two-level hierarchy can take advantage ofboth local synchro­
nization and communication between fibers within the same 
thread, exploiting data locality. In addition, an effective over­
lapping o f communication and computation is made possible 
by providing a pool of ready-to-run fibers from which the 
processar can fetch new work as soon as the current fiber 
ends and the necessary communication is initiated. 
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Fig. 3. EARTH architecture 

The EARTH model defines a common set of primitive op­
eralions required for the management, synchronization and 
data communication of threads. Each node in an EARTH 
system consists o f an execution unit (EU), a synchronization 
unit (SU), queues linking the EU and SU, local memory, and 
an interface to interconnection network, see Figure 3. While 
the EU merely executes fibers, i.e. , does the computation, the 
SU is responsible for scheduling and synchronizing threads, 
handling remate accesses and performing dynamic load bal­
ancing. 

Although designed to deal with multi pie threads per node, 
the EARTH model does not require any support for rapid 
context switching (since fibers are non-preemptive) and is 
well-suited to running on off-the-shelf processors. EARTH 
systems have been implemented on a number of platforms: 
MANNA and PowerMANNA, IBM SP2, Sun SMP cluster 
and Beowulf. EARTH programs are written using the pro­
gramming language Threaded-C [HUM96, THE99]. This is 
an extension of the ANSI-C programming language which, 
by incorporating EARTH operations, allows the user to indi­
cate parallelism explicitly. 

B. A multithreaded paralle/ implementarion 

Our multithreaded implementation divides the scoring ma­
trix into strips and each of these, in turn, into rectangular 
blocks. Generally speaking, it assigns the computation of 
each strip to a thread, having 2 independent threads per node. 
However, in arder to better overlap computalion and com­
munication, blocks on a strip are actually calculated by two 
fibers within a thread. These fibers are repeatedly instanti-
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Fig. 4. Computation of the similarity matrix on EARTH 

ated to compute one block ata time, and only one o f the two 
fibers of each thread can be active at a particular time. 

The decision of having two alternating fibers within each 
thread was based on the following reasoning. It would be 
a waste of resources if we had one separate fiber for each 
block, in each strip, since only one block can be calculated at 
a time. Havingjust one fiber for ali blocks is also nota good 
idea because this fiber would get delayed due to the syn­
chronization signal coming from the fiber immediately be­
low. This signal acknowledges the receipt of data- without 
it the fiber, re-instantiated, would be allowed to overwrite the 
previous data. Thus, with just one fiber, computation would 
not be aHowed to proceed until this acknowledgment signal 
is received. With the addition of an extra fiber we can further 
overlap computation and communication since one of the 
fibers can wait for the acknowledgment while the other starts 
working on the following block. (This double-buffering and 
acknowledgment scheme is used with other parallel applica­
tions on EARTH [THEOO, THE99].) 

A snapshot o f the computation o f the similarity matrix us­
ing our multithreaded implementation is illustrated in Fig­
ure 4. A thread is assigned to each horizontal strip and the ac­
tual computation is done by fibers labeled E(ven) and O(dd). 
The figure shows the computation of the main anti-diagonal 
of the matrix. The arrows indicate data and synchronization 
signals. For example, processar 2 sends data (downward ar-



rows) to processor 3 and receives data from processor I -
i.e., fibers E of strips 2 and 6 send data to fibers E of strips 3 
and 7, and fibers O of strips I and 5 send data to fibers O of 
strips 2 and 6. Fibers within a same thread, that is, associated 
with the same strip, send only a synchronization signal (hor­
izontal arrows) since they share data local to the thread to 
which they belong. Finally, dotted upward arrows acknowl­
edge the receipt of data so that the fiber receiving this signal 
can be re-instantiated to calculate another block of the same 
strip. 

During the initialization phase, each thread grabs a piece 
of the input sequence X. This piece is ali a thread needs 
from that sequence so the whole sequence need not be stored. 
Moreover, after computing a block, each fiber sends to the 
fiber beneath a piece of the sequence Y being compared. By 
doing so, we minimize the initialization delay that occurs 
when the nodes are reading the sequences from the server. 
Besides that piece of the sequence, a fiber also sends to the 
fiber beneath the scores and other information for each cell 
on the last row, data arrows in Figure 4. In this way, align­
ments that cross processors' boundaries can be detected. 

As seen in section 11, the number of possible alignments 
grows exponentially with the length of the sequences com­
pared. Therefore, we cannot simple report ali the alignments, 
instead we are interested in selecting only alignments with 
high scores. On each node, as each strip of the scoring ma­
trix is calculated, when a score above the given threshold is 
found, it is compared with the previous highest scores stored 
in an table. The number of entries in the table corresponds to 
the maximum number of alignments that a node can report. 
Among other information, the table stores the cells' position 
where an alignment starts and ends. This feature allows us to 
produce a ploto f the alignments found. A point worth notic­
ing is that high score alignments are selected as the similarity 
matrix is calculated, row by row, thus the whole matrix needs 
not be stored. 

C. The computational platform used 

The experiments described in this paper were carried out 
using the Beowulf implementation of EARTH and a Be­
owulf machine consisting of 64 nodes, each containing two 
200MHz Pentium Pro processors- total of 128 processors 
- and 128MB of memory. The interconnection network for 
the nodes is switched I OOMbps ethernet. 

Initially, experiments using sequences ranging from 30K 
to 900K nucleotides long were carried out to test the scala­
bi lity ofthe implementation part that calculates the similarity 
matrix. The absolute speedups are reported in Figure 5. The 
Jack of speedup for the 30kx30k run is simply because there 
is not enough work to keep ali 64 nodes (128 processors) 
busy. However as the sequence sizes increase, the speedup 
approaches the optimal linear speedup. A sequential com-

s 

120 - -1<- 30kx30k 
' ~ 50kx50k / 

100kx100k 
~ 300kx300k 
- -+- 900kx900k 

96 Unear 

-· 
o. 
~ 

'O 

8_64 

"' 

32 -- ·---------~ --------· 

32 64 96 120 
t of p<oceSSO<S 

Fig. 5. Absolute speedup 

TABLE I 
EXECUTION TIME FOR THE M. PNEUMON JAE (8 16,394 NUCLEOTJDES) 

AND M. GENITAL!UM (580 074 NUCLEOT!DES) GENOME COMPARISON 

lmplementation Time 
Seq. Smith-Waterman 53 hours 
ATGC on 16 nodes 3.3 hours 
ATGC on 32 nodes 2.1 hours 
ATGC on 64 nodes 1.3 hours 

putation of the 900kx900k run takes days to complete but 
the same result can be obtained in a few hours in the Be­
owulf cluster. Memory usage is also a limiting factor for a 
sequential computation. In contrast, a parallel implementa­
tion evenly distributes the data across the nodes. 

In order to measure the performance and accuracy of our 
multithreaded implementation, further tests using genome 
sequences were conducted. Table I shows the execution 
times for both a sequential implementation of the Smith­
Waterman algorithm and our parallel implementation run­
ning on the mentioned Beowulf system for the Mycoplasma 
genome comparison described in the following section. 

IV. R ESULTS 

Our multithreaded parallel implementation, named 
ATGC - Another Tool for Genome Comparison, suc­
cessfully aligned human and mice mitochondrial genomes 
and human and Drosophila mitochondrial genomes. 
It was also able to align Mycoplasma genitalium and 
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Fig. 6. Alignment of human and mice mitochondrial genomes generated by 
ATGC 

Mycoplasma pneumoniae genomes, which are much 
larger than the tested mitochondrial genomes, in a 
reasonable amount of time. Ali alignments were con­
firmed by MUMmer - a whole genome alignment tool 
(www.tigr.org/tigr-scripts/CMR2/webmurn/mumplot), 
and Blast2 - a tool for pairwise sequence comparison 
(www.ncbi .nlm.nih.gov/blastlbl2seq/bl2.html). 

We used human, mice and Drosophila mitochondrial 
genomes to test the reliability of our Smith-Waterman par­
aliei implementation, because first and second are somewhat 
related, and second and third are far related organisms. The 
alignments of these relative ly small genomes can be eas­
ily verified by other tools. Further experiments were con­
ducted by comparing larger genomes such as Mycoplasma 
genitalium (580,074 nucleotides) and Mycoplasma pneumo­
niae (8 16,394 nucleotides) genomes. 

Alignment of human and mice mitochondrial genomes 

The alignment o f human and mice mitochondrial genomes 
generated by ATGC is showed in Figure 6. The straight line 1 

confirms the similarity between these two genomes. This is 
also confirmed by MUMmer's alignment showed in Figure 7. 
However, MUMmer's alignment contains a gap between nu­
cleotides 8,000 and 12,000 o f human and mice mitochondrial 
genomes, whereas ATGC generates a single aligned segment. 
To investigate this discrepancy, we used Blast2 to align the 
aforesaid region. The alignment generated by Blast2, see 
Figure 8, showed that an important homolog pai r, human and 
mice ATP synthase Fo subunit was ignored by MUMmer but 

1 A dot plot basically shows the similarity matrix cornputed during the 
first stage of the algorithrn. The narnes of the sequences are placed along 
the X and Y axis. Each lineldot in the plot represents an actual alignrnent 
reported by the second phasc of thc algorithm 
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detected by ATGC. MUMmer missed that because there is 
no exact match equal or longer than 20 (MUM's- Maximal 
Unique Match, default size) in this region. 

Alignment o f human and Drosophila mitochondrial genomes 

The mitochondrial genomes o f Human and Drosophila are 
not as closely related as those of human and mouse. How­
ever, ATGC revealed some interesting similarity between 
these genomes (Fig. 9). Unfortunately, MUMmer could not 
confirm the alignment since only one exact match (MUM's 
size ~ 20) is present, see Figure I O. 

To confirm the a lignment generated by ATGC is meaning­
ful and reliable, Blast2 was used to search for similarity in 
human and Drosophila mitochondrial genomes. Between nu­
cleotides 14,000 and 16,000of human mitochondrial genome 
and li ,000 to 13,000 o f Drosophila mitochondrial genome, 
which were aligned by ATGC, Blast2 found the Cytochrome 
B homolog pai r in human and Drosophila (Fig. li). In the 
region between base pairs li ,000 to 14,000 o f human mi­
tochondrial genome and 7,000 to 10,000 o f Drosophila mi­
tochondrial genome, where a gap was reported by ATGC, 
Blast2 did not find any significant similarity either (data not 
shown). 

Alignment of Mycoplasma pneumoniae and Mycoplasma 
genitalium genomes 

ATGC was applied to compare Mycoplasma pneumoniae 
and Mycoplasma genitalium genomes which are far more 
larger than mitochondrial genomes. This task is over I ,200 
times more computational intensive than comparing the mi­
tochondrial genomes we used above. 



Query: human mitochondrial genome 
Subject: mouse mitochondrial genome 

8716 aaaggacgaacctgatctcttatactagta 8745 
64 K G R T w s L M L v 

11111111111 111 I li 111 I li 
8116 aaaggacgaacatgaaccctaataattgtt 8145 
64 K G R T w T L M I v 

8746 tccttaatcatttttattgccacaactaac 8775 
74 s L I I F I A T T N 

111 1111111 1111111 1111 li 
8146 tccctaatcatatttattggatcaacaaat 8175 
74 s L I M F I G s T N 

8776 ctcctcggactcctgcctcactcatttaca 8805 
84 L L G L L p H s F T 

11111 li li I li li 11111111 
8176 ctcctaggccttttaccacatacatttaca 8205 
84 L L G L L p H T F T 

8806 ccaaccacccaactatctataaacctagcc 8835 
94 p T T Q L s M N L A 

li li 11111111111 11111 111 
8206 cctactacccaactatccataaatctaagt 8235 
94 p T T Q L s M N L s 

Fig. 8. Part of lhe alignment of human and mice ATP synthase Fo subunit 
found by Blast2 
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Query: human mitochondrial genome 
Subject: drosophi1a mitochondria1 genome 

15116 atagcaacagccttcataggctatgtcctc 15145 
124 M A T A F M G y v L 

1111 111111 l i 11111 li l i I 
10870 ataggaacagcttttataggatacgtatta 10899 
125 M G T A F M G y v L 

15146 ccgtgaggccaaatatcattctgaggggcc 15175 
134 p w G Q M s F w G A 

li 11111 11 11111 1111 11 11 li 
10900 ccttgaggacaaatatcattttgagtagct 10929 
135 p w G Q M s F w v A 

15176 acagtaattacaaacttactatccgccatc 15205 
144 T v I T N L L s A I 

li li 1111 1 li 111 111 11 1 11 1 
10930 actgttattactaatttattatacgctatc 10959 
145 T v I T N L L y A I 

15206 ccatacattgggacagacctagttcaatga 15235 
154 p y I G T D L v Q w 

li 111 I li I 111 1111 111 1111 
10960 ccttacttaggtatagatttagttcaatga 10989 
155 p y L G M D L v Q w 

Fig. 11 . Part of the alignment of human and Drosophila Cytochrome B 
found by Blast2 



E 
-~ 
~3 c 
" "' :i 

·I= 

I 
1 · / 

M. pneumoniae and M. genitalium Genomes 

ATGC I 
MUMmer 

;' 
I 

I 
/ 

,/ 
; 

I 
-~ 

I 
/ 

OL----L----L----L----L----L----LL---L----L 
o 

M. pneumoniae x to' 

Fig. 12. Alignments of M. gcnitalium and M. pneumoniae genomes 
generated by MUMmer and ATGC 

M. pneumoniae and M. genitalium, which belong to the 
same genus, are very closed related. Both ATGC and 
MUMmer generated similar results, see Figure 12. They 
aligned the two genomes successfully and clearly showed 
tive translocations of M. pneumoniae with respect toM. gen­
ital i um, which is consistent with the results of Himmelreich 
et a i. [HIM97]. 

V. CONCLUSIONS 

Comparison of whole genome sequences can be done us­
ing traditional pair-wise sequence comparison algorithms 
based o n dynamic programming, but doing so requires high 
computational and memory demands. We have developed a 
multithreaded parallel implementation of such algorithm that 
runs on cluster o f PCs (Beowulf systems) and meet these re­
quirements. The implementation produces accurate results in 
a reasonable amount o f time, and uses the collective memory 
o f the cluster to evenly distribute data, obviating the need for 
a machine with non-standard amount of memory. 

The experimental results showed that our implementation 
aligns closely related and less similar genomes as well. Other 
genome comparison tools, based on different kinds o f heuris­
tics, complete the task fairly quickly, but at the expense of 
accuracy, as we have seen for the human and Drosophila 
mitochondrial genome comparison. So we believe our im­
plementation can be an important complementary tool when 
higher accuracy is required on whole genome comparisons. 
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