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Abstract-
This work presents a parallel solution, implemented in a PC 

cluster, using MPI library, to the simulation of hydrodynamics 
and mass transport in the Rio Guaiba. The governing equations 
of hydrodynamics and scalar transport of substances are 
defined in space-staggered grids, where the finer grid is nested 
in the coarser grid and built through interpolation. The PDEs 
are discretized using finite differences using upwind and 
centered difference techniques to generate a semi-implicit 
numerical scheme. To build the local subproblems a version of 
bissection algorithm was used to partitionate the numerical 
grid, and Schwartz additive method was used to build the 
overlapping Local solutions are obtained using Krylov subspace 
iterative methods. 

Keywords--Semi-implicit scheme, local refinement, grid 
partitioning, Schwarz-Krylov method, PC Cluster. 

I. lNTRODUCfiON 

The motivation for this work comes from the fact that 
computational modelling of lakes, rivers, estuaries and seas 
has severa! practical applications such as the evaluation of 
the conditions for bath, navigation and water supplying. 

The development of a high-resolution computer model 
allows the detailed simulation of both the hydrodynamics 
and the mass transport. The data obtained with this 
simulation is essential in the definition of an environmental 
policy. 1t can be used, for instance, to evaluate the impact in 
the environment of sewerage emission at certain points. 

The contributions of this work are two. The first one is 
the construction, using h-method (interpolation), of a local 
refinement for the transport model, which is then solved, in a 
grid nested in the hydrodynamic grid using the Schwarz­
Krylov method. The second one is the implementation of 
algorithms to partition the domain in rectangular 
subdomains. 

li. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 
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The goveming primitive variable equations describing 
constant density and free surface flows in rivers, estuarine 
embayments and coastal seas can be derived from the 
Navier-Stokes equations after turbulent averaging and under 
the simplifying assumption that the pressure is hydrostatic. 

Furthermore, if the water body is well mixed, and the 
movement occurs mainly in the horizontal, and also the 
vertical scale is much smaller than the horizontal one, the 
goveming equations can be the 2D integrated in vertical. The 
equations obtained with these approximations are the 
shallow water equations (SWE), which form a system of 
non-linear hyperbolic PDEs (partia! differential equations) 
for an uncompressible tluid with a free surface. They 
aggregate the momentum equations (ME) and the continuity 
equation (CE) [WEI92], [RIZOO]. The goveming equation 
for the advection-diffusion of constituent concentration, in 
the case of well-mixed water bodies, is mass transport 
equation (MTE), which can be described as in [LEE71 ]. 

For the sake of simplicity, we considered that in t=O, the 
velocity tlow is zero in the entire domain and the initial 
distribution of concentration is zero everywhere 
C(x,y,O)=Co(x,y)=O. 

The lateral boundary conditions (BC) are specified as 
open or closed ones. The superior and inferior BCs are 
already aggregated to the goveming PDEs. In the closed BCs 
the velocities (and water leveis) in each face of the cells can 
be calculated considering that in solid boundaries the 
tangential velocities have the same velocity of the contour 
(no slip condition), and there is no penetration (no flux 
condition). In the hydrodynamics, in the open lateral BCs 
inflow and outflow, water leveis or flow were defined. For 
transport, a concentration was specified in intlow BC and a 
null gradient in outflow BC. 

III. DISCRETIZA TION AND NUMERICAL SCHEME 

The discretization of the PDEs must consider the 
domains of the spatial and temporal definitions. The spatial 



discretization consists of building a grid throughout which 
the continuous space is approximated by a finite number of 
points, where the numerical values of the variables are 
determined. The temporal discretization of the systems of 
equations defines three families of methods: the explicit 
ones, the implicit ones and the semi-implicit ones, which 
combine the characteristics o f the two methods. 

In the construction of semi-implicit schemes, we look for 
a balance in the restraints of stability with the obtention of 
large time steps. This semi-implicit approach is largely used 
[LEE89], [CAS94], [GR098], and such schemes appear 
when some terms that constitute the governing PDEs are 
approximated in an explicit form, and others in a implicit 
form. With this approach, we can construct systems of 
equations, which are linear, stable and computationally 
efficient. The degree of explicitness and implicitness of 
schemes can be controlled using the trapezoidal method 
[HIR92]. ~ 

Furtherm~(Ç, - lhe criticai terms can be conveniently 
approached - by schemes like upwind, semi-Lagrangian 
(Eulerian-Lagrangthn) [CHE84], TVD (total variation 
diminishing) • '•[IfAR83], MPDAT A (multidimensional 
positive-definite advecti ve transpor! algorithm) [SM084], 
MARF (monotone area preserving flux-form advection 
algorithm) [BOT92], among others. 

In this work, · the semi-implicit numerical schemes, 
defined over a type C space-staggered Arakawa grid 
[MES98], is built such that the gradient of surface elevation 
in the ME and the velocity in the CE will be discretized 
implicitly. The Coriolis and horizontal viscosity terms in the 
ME will be discretized explicitly using central difference. 
The advective term is discretized by the upwind technique to 
positive and negative velocities. For accuracy and to avoid 
the numerical instability that appears in very shallow waters 
the coefficient of friction in the momentum equations will be 
discretized implicitly. The CE will be considered in its 
original conservative form, where velocities will be 
d iscretized implicitly, while the total water depth will be 
taken explicitly. 

The resulting system is a linear system of equations 
symmetric and positive definite (SPD), which guarantees the 
existence and uniqueness of the solution [CAS90]. The 
unknowns of the systems of equations are the water leveis 
and they are written as: 

E n+1 C n+1 D n+1 F n+1 S n<l _çn ( I) 
I)(' -1 ') + IJ(- ') + J)( . 1 ') + J)( . '-1) + J)( . . 1) - J..('' ') l .} l,J l + ,) l,J l,J+ J,) 

where the coefficients in ( I) can be seen in [RIZO I]. 
For MTE the advection is approximated by upwind 

scheme and the horizontal d iffusion is approached by central 
difference, where concentration terms are discretized 
implicitly. The system of equations resulting from this 
discretization process is linear and has non-symmetrical 5-
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diagonal matrices. The unknowns of the systems are the 
concentrations and they are written as: 

Ecn+1 o nn+l ocn+l F cn+l s nn+1 Gn (2) 
( '-1 , + 1...("' , + ('+1 , + (' '-1) + 1...('••. 1) = ( '" 1 •h 1,J, 1 •h 1,} 1,}+ 1,J, 

where the coefficients in (2) can be seen in [RIZOI]. 
In this work the solution for semi-implicit numerical 

schemes is constructed over a type C space-staggered 
Arakawa grid. The subdomains generated by the partitioning 
algorithms are rectangular, but as in the simulation only the 
internai cells are considered, the subdomains can be 
considered irregular. Furthermore, when the boundaries are 
irregular, as it happens in the externai boundaries of the 
domain, or isthmuses, islands or forks exist, the generated 
matrices are sparse and non-band type, what should be 
considered in operational models used as research tools and 
for simulation of realistic events. The models resulting from 
these choices are called, in this work, HIDRA-20 . 

IV. L OCALREFINAMENT: h - METHOD 

In the solution of MTE, at least three issues must be 
considered. The first one is related to the fact that the 
contaminated subregion is, generally, much smaller than lhe 
definition domain, not being necessary a grid refined 
globally. The dimensions of this sub-region depend on 
factors such as meteorological conditions, climate, period of 
day, type of water (fresh or salted). The second issue is the 
importance of capturing details and indicating which 
subregions are most contaminated and suffer restrictions of 
water supplying. The third factor is numerical: in refined 
meshes, the Peclet number is such that the numerical 
oscillations of the solution are less important. For these 
reasons, the mesh of the MTE has dimensions f).x=f).y 
varying from 50m to 25m 

One alternative to compatibilize the construction of 
computationally efficient models with the necessity of high 
local resolution is the use of h-methods, defining locally 
refined meshes as in [ZEE93]. Local refinement is a strategy 
that àllows the mesh to be concentrated in subregions where 
more activity occurs. In these sub-regions the mesh can be 
adjusted and refined to obtain accurate solutions, without the 
computational cost of a globally refined mesh. Furthermore, 
as the plume of contaminants can assume severa! 
configurations and directions along the time, the refined 
mesh must be built so that the grid accompanies the event in 
the time. A strategy consists of: 
• defining a global IBVP (lnitial and Boundary Values 

Problem) where the SWEs are solved providing U, V and 

17 at each P<2i nt o f this mesh; 



• building an interpolation scheme to U, V and li in the 

refined mesh from the values obtained from the global 
mesh; 

• solving the MTE locally for these values. 
The refined mesh is built through bilinear Lagrange 

interpolation because the solution for SWEs provides the 
values of U, V and li, at each point o f the grid at each levei 

oftime. 
These data are the input data for MTE. Thus, for regular 

grids, the local refinement is nested in the coarser grid .and 
built through interpolation. It can also be observed, in figures 
1 and 2, that inside the refined mesh, the cells with higher 
concentration of contaminants, composing the shape of the 
plume of contaminants. This shape is formed, basically, by 
the direction o f the flow o f water. 
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Fig. I Mass transport in a refined grid considering 3 

subdomains after 541 cycles, corresponding to 1460 minutes 
o f simulation 
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Fig. 2 Mass transport in a refined grid considering 3 
subdomains after 734 cycles, corresponding to 1958 minutes 

o f simulation. 

It must be noted that the contaminant plume can vary 
during the simulation generating some load unbalancing. 
This problem is being treated through the development and 
implementation of dynamic load balancing algorithms. 

Furthermore, the local solutions also need interpolatio n 
in time and the discrete SWE and MTE have distinct time 
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steps, which depend on the stability conditio ns of the 
numerical schemes built. 

V. SCHWARZ-KRYLOV SOLUTION METHODS 

The matrices of the systems of equations, generated by 
the approaches to the governing equations, are sparse and 
Jarge. Because of this nature, the systems are solved by 
Krylov subspace iterative methods. To solve the linear 
system Ax = b, the algorithms o f this class seek an 
approximate solution x m from an affine subspace 

m- dimensional x
0 

.L K m, by imposing the Petrov-

Galerkinb- Ax .L r: condition, where Lm is 
m 

subspace of dimension m, and 

Km(A ,r0 )=span{r0 ,Ar0 , • • • ,Am·1r0 } is the 

subspace, with Iõ = b-Ax;,. 

another 

where 
Krylov 

For the solution of systems of equations SPD or non­
symmetrical, two important algorithms of this class are, 
respectively, the conjugate gradient (CG) and the 
generalized minimal residual (GMRES). The technical 
literature, and our own numerical experiments, have shown 
that these methods are efficient, robust and particularly 
attractive when combined with the domain decomposition 
methods, which are used to build the local subsolutions. 

Hence, it is possible to solve the subproblems in para llel 
and independently using message passing libraries to explore 
the internodes parallelism. But in order to explore the 
potentialities offered by the multiprocessed nodes, i.e., the 
intranode parallelism, it is necessary the use of threads. We 
are currently implementing versions of CG and GMRES 
algorithms using threads, however, results obtained with the 
use of threads are not presented in this work. 

A. The solutionfor the equations systems 

In the solution o f the SWEs the systems o f equations ( I) 
must be solved at each time step. As the matrix of 
coefficients is SPD, we can use the CG algorithm, an 
algorithm especially efficient to obtain the solution of SPD 
systems. The strategy of the CG algorithm is to advance, at 
each iteration, in the direction opposite to the gradient, so 
that the direction already explored is not repeated anymore. 
This process continues until the strict global minimum is 
found. The guarantee that the minimum is found is the 
solution o f 17 = A - l b it elapses that A is SPD in relation to 

the inner product. The Preconditioned CG algorithm can be 
seen in [DOROO]. 

The solution of non-symmetrical equations systems like 
(2) is obtained using the Generalized Minimal Residual 
Method (GMRES) algorithm. This algorithm constructs the 
solution generating a sequence (base of the subspace) of 
orthogonal vectors using the Arnoldi orthogonalization 



process. The vectors of this base are stored in the 
Hessenberg matrix, which is solved by a backward 
procedure after the elirnination o f the main diagonal through 
methods like Givens rotation, and a new residual is 
calculated with the new approximate solution found. If the 
convergence is not reached in a cycle, the most recent 
solution is used to start the next iteration. 

The GMRES is a robust algorithm and obtains the 
approximated solution with a mínima! residual norm. Its 
disadvantage is that the number of matrix-vector products 
grows linearly with the iterations and ali the vectors in the 
Krylov subspace base must be stored, which is a problem 
when the dimension m of the subspace increases. One 
solution is to reinitialize the algorithm keeping the same 
dimension m o f the subspace. 

This strategy generates the GMRES ( m) algorithm, 
which is not as robust as GMRES, since the convergence is 
not guaranteed anymore. However, if the matrix is real and 
positive, as it is the case in this work, the GMRES ( m) 
converges [SAA96]. As the algorithm can converge faster or 
slower to a given value of m, the problem is to know the 
appropriate value. Silva [SIL97] suggests 5~m~30 and, in 
our experiments, the value that better conciliates the needs of 
memory and convergence speed was m = 20. 

B. Algebraic preconditioner 

To speedup the convergence of Krylov subspace 
methods, it is necessary to preconditionate the matrices of 
systems equations. Thus in this work the approximations to 
the local inverses of the local subsystems A kt}k = fk , 

generated by the mesh partitioning algorithms, can be used 
to speed the solutions building the preconditioner 

M;1 
=:: A;1

, where A;1 is an approximation for the inverse 

of A k . 

In the systems generated by equation ( I), as the matrices 
are SPD and diagonally dominant, the polynornial 
approximation, described in [DOROO] with k= I, which 
maintains the sparseness of the original matrix, was used. 
With this preconditioning the number of iterations per cycle 
was reduced from li to 6, but this gain in the number of 
iterations was not enough to reduce the total execution time 
as the additional operations of the preconditioning have 
approximately the same cost. 

Hence, it is necessary to improve the preconditioning. 
However, more effective preconditioners as the block­
diagonal usually result in matrices which are not sparse. For 
this reason, up to now we have not used other preconditioner 
than the described above. 

In the case o f the systems generated by equation (2), the 
matrices are 5-diagonal, non-symmetrical , but well 
conditioned enough so the solution is obtained with in less 
than 3 iteration~. dispensing the use o f a preconditioner. 
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VI. MESH PARTITIONING ANO DOMAIN DECOMPOSITION 

Parallel programming can be explicit or implicit. In the 
implicit one, the compiler generates code according to the 
degree of parallelism determined by the programmer 
considering the characteristics of the compiler. The explicit 
one requires the complete control over the strategies of 
implementation and over the implementation. This is the 
approach used here, in the solution of the PDEs, which must 
consider the locality of data, the load balancing, the 
construction of local solutions and the efficiency of the 
methods of solution. 

The first issue is treated under the scope of mesh 
partitioning methods and load balancing algorithms, where it 
is considered the mesh partitioning such as to maximize 
computation and minimize communication. The second 
question is approached by domain decomposition methods 
(DOM) which couple the solutions of the subproblems 
generating a global solution. The third question is solved 
using the iterative methods of Krylov subspace, which are 
accelerated using a preconditioner. 

A. Mesh partitioning: a graph problem 

Parallelism is obtained by partitioning the problem 
among the many processors, but to ensure a good load 
balancing, it is necessary that the workload of each 
processor, proportional to the part of the domain processed 
by it, be proportional to its processing power. The efficiency 
of the paraJlel algorithm depends directly on how the 
numerical mesh is partitioned and on how the loads are 
mapped to the processors. In this work, the focus is only in 
the partitioning. 

It must be noted that the partitioning of the numerical 
mesh can be seen as a problem of graph partitioning, when 
we consider the graph G =(v, E, we, wv) composed by the 

set v={O, ... ,n - 1} with n nodes; the set Aç;vxv of 

edges; the edges weights w e ; and the vertices weights w v • 

Hence, processes or data can be associated, to each node; 
communication or data dependencies to the edges; the 
computational load to the w v weights; and the 

communication load to the w e weights. 

The problem of graph partitioning is to divide the graph 
in subgraphs so to minimize the number of edges between 
them. This problem is known as k-way partitioning, and the 
basic idea, in the simple case of the numerical mesh be 
generated by finite differences, is to pass by every effective 
cell of the domain (see figure 3), identifying them and 
associating to each one its computational load (vertices) and 
its data dependencies (edges). After that, a list containing the 
quantity of vertices and edges can be generated, and an 
enumeration of the relation between each pair of vertices. 
The problem is, then, obtaining a k-way partitioning for this 



list, but this question is a NP-hard [GAR79] one and 
heuristic approaches are the only viable ones. 

Fig. 3 Approximate configuration o f Lago Guaiba, 
considering cells with width=height= I OOOm 

The Lago Guaíba bathes the metropolitan region o f Porto 
Alegre City, at the southern of Brazil. With 470 km2 of 
surface, it receives the outflow of Jacuí delta, which is 
formed by the confluence of Jacuí, Caí, Sinos and Gravataí 
rivers, and flows into Lagoa dos Patos. ll is aboul 50 km 
long and 15 kffi wide in some sections, and is situated 
between the 50° and 55° West parallels and 28° and 
35° South latitudes [CAS 85] . The Lago Guaíba is quite 
important for water supplying, fluvial transport and soil 
irrigation for the cities on its region. However, it receives a 
lot of industrial and domestic contaminants. 

It must be noted that the approximation (coarse) shown 
in figures 3 and 4 is used only to make easier the 
visualization. In our numerical experiments we used l!ix=l!iy 
=200m to SWE and 4x=6.y =25m to the MTE. With these 
dimensions the number of internai cells can vary from 
150.000 up to 600.000, justifying the use ofparallelism. 

Some heuristics for lhe partitioning of Cartesian meshes, 
as lhe one used in this work, partitionate the mesh in any 
coordinate direction. Some examp1es are STRJP (stripwise 
partitioning), RCB (recursive coordinate bisection), ORB 
(orthogonal recursive bisection), SORB (straighl orthogonal 
recursive bisection) [VOL97], [ROE97]. 

I f the graph is a mesh, i.e., i f it is inserted in an Euclidean 
space and geometrical coordinates are associated to its 
nodes, this extra information can be used to generate slightly 
better partitions. Some bissection methods by coordinates 
classify the nodes according to their coordinates x, y (20 
problems) and then, divide the graph in these directions. 

This is lhe approach used by the RCB method, which 
uses information about the coordinates o f lhe mesh to do the 

bissection of the graph. The bissection algorithm is applied 
recursively to cut the graph in more than two parts keeping 
straight boundaries. Two versions of this algorithm were 
implemented and applied to HlORA-20 to partition the 

domain graph, in a non-ba1anced way, in 2 k parts, with 
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k e N . Figures 4 show the division of the domain for 16 

processes using one version o f the RCB generating partitions 
with straight boundaries (SRCB). 

Fig. 4 Oomain partitioning o f the HIORA-20 to 16 
processes using the SRCB algorithm 

Mosl methods of domain partitioning result in non­
rectangular subdomains, ensuring a better balancing and less 
communication. However subdomains with irregular 
boundaries increase the complexity of managing the data 
exchange in the boundaries. For this reason rectangular 
subdomains were used in this work, generated by the SRCB 
algorithm. 

The domain partitioning is done using a recursive 
coordinate bisection algorithm with straight boundaries 
(SRCB). In this algorithm the domain is recursively divided 
in two subdomains until the desired number of subdomains 
is reached. In each bisection, the algorithm looks for lhe 
longest axis of the domain and the cut is done orthogona1 to 
this axis. The decision about the point where the cut will be 
done is based on the counting of internai cells in each 
subdomain generated 

It must be noted that in the heuristics based in the 
bissection orthogonal to the longer axis, the load is 
considered well distributed, and the cut orthogonal to the 
longer axis tries to minimize the communication between 
neighbour subdomains. Thus, when using rectangular 
subdomains, where a perfect load balancing can not be 
assured, we considered the load distribution a more 
important criterion than the minimization of the 
communication. 

When the SRCB algorithm is used, during the 
simulation, due to the data dependency between the 
subdomains, each process must use data from the cells o f the 
boundaries of the neighbour subdomains. This data is 
necessary to generate the matrices corresponding to its 
subdomain. To keep these details updated, at each time step, 
each process must effectuate a data exchange with the 
processes keeping the neighbor subdomains. To effectuate 
this exchange, a structure describing which subdomains are 
neighbors of each processor is generated and kept. This 
structure is produced during the partitioning and consists o f a 



list o f processes that maintain neighbour subdomains and the 
boundary cells of each one. 

In our implementation, the domain partitioning is 
centralized in process O, which reads from a file the 
description o f the domain and creates a structure in memory, 
which describes its configuration of rows and columns, as 
well as the boundary conditions. The partitioning is executed 
using this structure and generates, for each subdomain, 
structures that describe it, as well as the structure of the 
neighbour subdomains. It must be noted that this partitioning 
is done using the structures that describe the domain, not 
being necessary the allocation of the cells of the entire 
domain. 

After the partitioning is complete, these structures are 
sent to the neighbour processes. With these structures 
describing each subdomain, each process, including process 
O, allocates memory for its entire subdomain and initializes 
the variables of each cell in the domain. 

In relation to mass transport, in the beginning of the 
simulation, process O sends to each process the information 
about the contaminant emitters present in each subdomain, 
and the processes which contain an emitter allocate a refined 
mesh in the region next to the emitter. As the contaminant 
plume keeps growing, the refined mesh keeps also growing. 
Reaching Lhe subdomain boundary, the process responsible 
by the neighbour subdomain receives this information and 
allocates a refined mesh so the contaminants transpor! can 
occur also in the neighbour subdomain and so on. 

8. Domain decomposition: Schwarz additive method 

The Domain Decomposition Methods (DOM) are 
attractive from the point of view of parallel computing, 
because they divide the computation in parts such that, 
generally, the communications are restricted to the 
boundaries. Some of the major motivations for the use of 
DOM are: 
• the major use of local data. Global communication is then 

generally restricted to the synchronization o f the solution; 
• present flexibility to work with PDEs defined in regions 

with a complex geometry ancl/or which show different 
behaviors in different parts o f the subdomain; 

• allow the construction of preconditioners to speed up 
Krylov subspace solution methods. 

The DOM used here is the Schwarz method with 
overlapping, which is characterized by the decomposition of 
the bounded Open domain Q C ~nSJ 1 Q Ç u:=l Q k in 

N subdomains Q k overlapped, where the internai boundary 

conditions are denoted by r .. = an. (1 Q . (figure 5), 
>} , } 

such that the equations system A((J = f finds its global 

solution ({J through Lhe partia) solutions ({Jk of the k 

subproblems Ak({Jk = f k . 
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Thus, in the additive version, implemented here, ali the 
subdomains use the solution of the Jast iteration as BC so 
that each subdomain can be solved independently, keeping 
the communication restricted to the boundaries [SMI96] , 
[CHA94]. 

The Schwarz additive method (SAM) algorithm consists 
in: 

Initialization: Choice of a initial solution ({J~ in each 

subdomain Q i ; 

Iteration: For n ~ 1, with ({J;-1 known, calculate ({J; such 

that: 

I. A ((J; = f in Q i ; 

2. ({J~ = g in ani n an ; 
3. (/); = m~-1 in f .. to l$;j$;N such that Q . n Q . :f. 0 ; 

'I" ] >} , } 

until sup (ljq>; - q>;-l ll)llfl>rt ) ~ e, where E is the 

desired precision. 
Supposing that Q i n Q i n Q k :f. 0 , V i :t. j :t. k, 

it can be shown that the algorithm converges. Moreover, the 
presence of overlapping regions ensures the continuity of the 
solution and its derivatives between the different subdomains 
[DEB98]. 

nj r ij 

Q i 

r ji 

Fig. 5 Subdomams Q i and Q i generated by SAM, where 

r ij and r ji are the internai boundaries of the i- and j­

adjacent subdomains 

As the data dependency is restricted to the boundaries o f 
the adjacent subdomains, the need for data exchange 
between the processors in each time step is restricted to these 
lines. Hence, due to the computational stencil used to build 
the semi-implicit numerical scheme, which is a 5-points one 
with natural ordering generating matrices, the minimal 
overlapping is of two rows and/or two columns and, 
therefore, the SAM applied to the computational mesh 
considered these overlapping in the subdomains obtained in 
the SRCB partitioning. 

It should be noted that, due to the approximation 
considered here, where the subproblems are built 
considering that the meshes are regular and the subproblems 
are rectangular domains, for each choice of k e ~ done in 

the SRCB algorithm, the set of subdomains generated 
provides, when executed in parallel, solutions slightly 



different o f the solution obtained when executed in a single 
processor. The difference depends only on the desired 
accuracy, which can be controlled varying e . 

VII. PLATFORM ANO RESULTS OBTAINED 

The platform used in this work is the cluster available in 
the Instituto de Informática in UFRGS, which is 
multiprocessed. It is constituted by nodes interconnected by 
a Fast Ethernet communication network. 

The model here described was developed over the Linux 
operating system, using C programming language and, for 
interprocessor communication, the MPICH 1.2.1, an 
implementation of MPI standard for message passing. In this 
library, at the beginning of the execution, it is defined the 
number of processes that will be created, as well as the node 
where each process will run. ln this work we have defined 
the number of processes equal to the number of processors, 
running each process in one processor, and being assigned to 
each processor one subdomain. 

A. lnput Data 

In the solution o f the SWE the original computational 
domain was approximated by cells with the dimensions 
~x=~y=IOOOm and this grid was refined with different 
refinements R. 

The hydrodynamics grid is refined in some parts, 
generating a finer grid for the MTE. The time step ~t o f both 
numerical schemes is automatically calculated based on 
Courant number. 

The BC used for the SWE are velocities U=(u,v) where 
I U I =0.3 rn/s was used in outtlow frontiers and I U I =0.9 
rnls was used in intlow frontiers, generating the velocity 
field shown in figure I. Other physical parameters as the 
initial levei, the Coriolis force, the stress coefficients in the 
bottom of the water body, the wind velocity and the 
turbulent viscosity coeffic ient, among others, can be seen in 
[RIZOO]. The initial data and the physical parameters to the 
MTE are described in [DOROO]. 

B. Resultsfor the partitioning ofthe hydrodynamics mesh 

Table shows some results obtained with the 
partitioning using the SRCB algorithm. The execution times 
in seconds TT (processing time + communication time+ idle 
time) and communication times CT were measured for a 
number of processors #P from I to 8, with refinements R 
from I to 16. The original domain, without refinement, is 
composed by approximately 1500 cells. The most refined 
grid used (refinement of 16) results in a domain of about 
400.000 cells. The cluster used in the test is composed of 4 
nodes dual Pentium Pro 200 with 128 Mb o f memory in each 
one. In the tests up to 4 processors, o ne processor per node 
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was used. In the test with 8 processors, two processes per 
node were used, and the O.S. schedules one process to each 
processor of the node. The tests were made running 50 time 
steps for the hydrodynamics. 

As can be seen in table I, the processing time, for the 
same number of processors, is quadratically proportional to 
the refinement and the communication time is nearly linear 
with the refinement. An exceptional behavior occurred when 
running with a refinement of R=8, when the communication 
time grew more than expected. 

Table I - Refinement x number o f processors 

#P= I #P=2 #P=4 #P=8 
TT TT cr TT cr TT cr 

R-I 1.5 1.1 0.4 0.8 0.4 0.9 0.7 
R-2 6.2 3.3 0.6 2.1 1.3 1.7 0.9 
R=4 28.7 12.6 0.9 7. 1 5.4 4.9 2.0 
R-8 159.1 77.3 13.7 48.3 24.8 29.5 17.7 
R=l6 582.2 289.2 3.3 147.5 8.7 81. 1 25.4 

lt must be noted that, when more than one processor is 
used in the same node, the processors share resources as 
memory and cache. Although the communication between 
processes in the same node is expected to be faster, the 
contention in the resources can reduce the obtained speedup. 
We have made some tests to evaluate the contention. For 
instance, the product of two matrices 700 x 700, when 
executed in a single processor uses 98,4% o f CPU, I 0,6% o f 
memory and results in an executio n time of 32 s. When we 
run the same code in two processors, 98,8% of each CPU, 
I 0,5% o f memory and the execution time grows to 41,45 s. 

The speedups obtained for the refinement of 16 were 
nearly linear with the number of processors, showing a good 
efficiency and scalability. Figure 6 shows the speedups 
obtained for a refinement of 8 and 16. The speedup obtained 
for 2 processors was 2.0 I. This superlinear speedup occurs 
because, when the rectangular domain is divided, each of the 
resulting subdomains is smaller than half the original doma in 
and so is the processing time. The gain obtained in the 
processing time is greater than the communication overhead 
resulting in this superlinear speedup. 

• ref lnemenl R=8 

• re flnemenl R= 16 

2 4 8 
num ber oi proces s o rs 

Fig. 6 Speedup x number o f processors for refinements 8 and 
16 using Fast Ethernet network 



Vill. CONCLUSION AND FUTURE WORKS 

In this work we presented a solution for the 
hydrodynamics and mass transport in 2D water bodies, 
where the mass transport mesh is built nested in the 
hydrodynamics mesh by an interpolation procedure. The 
local subproblems are built by mesh partitioning using 
bissection algorithms such to obtain problems with straight 
frontiers. 

The numerical results show that the local solutions are 
efficiently obtained using Krylov subspace methods. 
However, since the hydrodynamics and mass transport 
simulations occur alternately, ançi the mass transport occurs 
only over a part of the domain, that is frequently changed 
during the simulation, a strong load unbalance occurs. 
Hence, the next step is to develop and implement strategies 
and algorithms for dynamic load balancing like diffusion or 
scracht -remap algorithms [DORO I]. 
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