
\ 

I 

I 
I 

PARALLEL BOUNDARY ELEMENTS USING 
OPENMP 

Cunha, M.T.F., Coutinho, A.L.G.A., Telles, J.C.F. 
Universidade Federal do Rio de Janeiro - COPPE I UFRJ 

Caixa Postal 68.506, CEP 21 .945-970, Rio de Janeiro, RJ , Brasi l. 
{ mcunha@pec.coppe.ufrj.br, alvaro@coc.ufrj.br, telles@coc.ufrj .br I 

Abstract-
This work presents our efforts towards single node 

optimization and parallelization of an existing Boundary 
Element Method (BEM) code using OpenMP. Basic 
techniques of High Performance Computing (HPC) are 
employed to enhance serial code performance and to identify 
code parts to be parallelized. Numerical experiments on a SGI 
Origin 2000 on large problems show the effectiveness of the 
proposed approach. 

Keywords-Boundary Elements, OpenMP 

I. INTRODUCTION 

The Boundary Element Method is a numerical method 
to solve scientific and engineering problems where only the 
boundary needs to be discretized. This feature reduces 
drastically the number of grid points necessary to model a 
given problem. However, in constrast with finite 
differences, finite volume and finite elements, the other 
common discretization methods, the resulting BEM systems 
of equations involve dense matrices. In this work an 
existing BEM Fortran implementation, described in detail 
by Brebbia and Dominguez [BRE 92], is reviewed and 
rewritten to achieve high performance on cc-NUMA 
architectures. This effort is the initial step to develop a new 
generation of efficient BEM codes to be used in many 
important applications, from acoustics to frature mechanics. 
The program paradigm to be used is OpenMP, a standard 
and portable Application Programming Interface (API) for 
writing shared memory parallel programs [OMP O I]. 
However, we first conform the code to the ANSI F90 
specification. The remainder of this work is as follows. In 
next section we briefly review the BEM theory. In the 
following Section we describe the selected application, 
giving guidelines for the optimization process. Section 3 
covers the single node optimization aspects, while in 
Section 4 we present the parallel code and a performance 
analysis on a SGI Origin 2000. Finally the paper ends with 
a summary o f our main conclusions. 

11. OUTLINE OF BEM THEORY 

The Boundary Element Method (BEM) is a technique 
for the numerical solution of partia! differential equations 
with proper boundary and initial conditions. By using a 

25 

weighted residual formulation, Green's third identity, Betti 's 
reciproca! theorem or some other procedure, an equivalent 
integral equation can be obtained and then converted to a 
form that involves only surface integrais, i.e., over the 
boundary. The boundary is then divided into elements and 
the integrais over the boundary are simply the sum of the 
integration over each element, resulting in adense and non­
symmetric system of linear equations. 

The discretization process involves selecting nodes 
along the boundary where the unknown values are 
considered. An interpolation function relates one or more 
nodes on the element to the potential and fluxes anywhere 
on the element. The simplest case places a node in the 
center of each element and defines an interpolation function 
that is a constant across the entire element. Once the 
boundary potentials have been obtained, the interior points 
can be computed directly from the basic integral equation 
describing the system. [BRE 84] [TEL 83] 

A. Differential Equation 

Potential problems are governed by Laplace's equation : 

V' 2 = ()2 u + ()2 u =O in Q ( I) 
dX~ dX~ 

and boundary conditions : 
u = li on r, and 

q = q = dU I dT) (2) 

where u is the potential function, li and q are 

prescribed values, r= r, + r 2 is the boundary o f domain Q 
and 11 is the unit outward normal to surface r. 
B. Integral Equation 

The integral equation for potential problems reads : 
u(~) + ~ u(x) q*(~.x) dr(x) = 
~ q(x) u*(~.x) dr(x) 0) 
The weighting function u * satisfies Laplace's equation 

and represents the field generated by a concentrated unit 
charge acting at the source point ~· 

The function q* is the outward normal derivative of u * 
a)ong the boundary r With respect tO the field point X, i.e.: 

q*(~.x) = ou*(~.x) / dT) (x) (4) 



In order to obtain an integral equation involving only 
the variables on the boundary, one can take the Iimit of the 
integral equation as the point ç tends to the boundary r. 
This limit must take into account the discontinuity of the 
second integral. 

The resulting equation for potential problems is : 
c(Ç) u(Ç) + ~ u(x) q*(Ç,x) dr(x) ~ 
~ q(x) u*(Ç,x) dr(x) ~) 
in which the second integral is computed in the Cauchy 

principal value sense. 
The coefficient c is a function of the internai angle the 

boundary r makes at point Ç. 

C. Discretization 

The integral statement for potential problems can be 
written as follows : 

c i u i + fr u q* dr ~ fr q u * d r (6) 
Notice that the source point Ç was taken as the boundary 

node i on which the unit charge is applied, i.e., u (Ç) ~ui. 

After the discretization o f the boundary in to N elements, 
the integral equation can be written : 

N N 
c; u; + Il uq*dr= Il qu*dr (7) 

j=l r, j=l ri 

This equation represents, in discrete form, the 
relationship between the node i at which the unit charge is 
applied and ali the j elements on the boundary, including 
i ~j. 

For the constant element case the boundary is always 
smooth as the node is at the center o f the element, hence the 
coefficient c i is equal to Y2 and the values of u and q are 
taken out o f the integrais : 

I N N 

- u; + I l q• druj = I l u· drqj (8) 
2 ~I ~ ~I ~ 

The equation can thus be written as follows: 
I N A N 

- U · + ~ H .. u . = ~ G-· q · 2 I ,L., IJ J ,L., IJ J 
j=l j=l 

(9) 

and can be further rewritten as : 
N N 

I H;j Uj = I Gijq j (10) 
j=l j=l 

where 

-1 H;j ~ i :~; j 
H;j- A I . . 

H;j+ 'i'~ t = J 
(li) 

The equation can be written in matrix formas: 
H U = G Q (12) 
By applyirig the prescribed conditions, the equation can 

be reordered with ali lhe unknowns on the left-hand side 

26 

and a vector of known values on the right-hand side. This 
gives: 

A Y = F ( 13) 
where Y is the vector of unknowns u's and q 's. 

D. lntemal Points 

Once the system is solved, ali 
boundary are known and the values 
interior point can be calculated using : 

u i ~ ~ q u* df - ~ u q* 
Internai tluxes can be derived 

equation, as follows : 

the values on the 
of u and q at any 

( 14) 
from the potential 

q; =~= f qau· dr - f uaq· dr 
a X Jr a X Jr a X 

(15) 

The same discretization process can be applied for the 
integrais above. 

E. Fundamental Solution 

For a two dimensional isolropic domain, the 
fundamental solution is : 

• I I 
u (Ç,x)=-ln-

21t r 

• I q (Ç,x)=-r
11 21tr 

( 16) 

where r is the distance from the source point Ç to the 
fie)d point X and r li ~ ar n;, X) / dTJ (X). 

F. Numericallmplementation 

For generality, the integrais are here calculated using 
Gauss quadrature for ali elements, except for i~j , as 
follows: 

A f 0 lj f 0 

H;j = Jr q df =2 ,L..,qk wk 
k=l 

f • lj f . 
Gij = Jr u df =2" ,L..,uk wk 

k=l 
( 17) 

where l j is the element length and wk is lhe weight 
associated wilh the inlegralion point k. The functions u * 
and q* are evaluated at the same point. 

For the particular case of constant elements, integrais 
corresponding to the singular elements can be computed 
analytically : 

A l . l a u· a r Hr = qdf = --df = O 
J r r ar a.., 

G ;· = f u • df = f In_!, df =_!_r[ In_!, + 1] ( 18) 
~ Jr Jr r 1t r 

The first integral is identically zero due to orthogonality 
between the normal and surface o f the element. 



III. THE APPLICATION 

The program reviewed here is a simple code for solvi~g 

potential problems using constant elements. The matn 
program defines some general variables, integer and real 
arrays, as shown : 

prograrn POCONBE 
integer .. N, L 
integer,pararneter .. NMAX=lOOO 
integer,dimension(NMAX) .. KODE 
real .. d 
real,dimension(NMAX+ll .. X,Y 
real,dimension(NMAX) . . FI,DFI 
real,dimension(NMAX,NMAX) .. G,H 
real,dimension(20) .. CX,CY,POT,FLUXl,FLUX2 
call INPUT 
call GHMAT 
call SLNPD(G,DFI,d,N,NMAX) 
call INTER 
call OUTPUT 
end prograrn POCONBE 

In order to compute the coefficients o f G and H matrices 
the GHMAT subroutine calls two additional subroutines, 
EXTIN and LOCIN. While EXTIN computes the off­
diagonal coefficients of H and G, LOCfN calculates only 
the diagonal elements of G matrix. EXTIN subroutine is 
also called by INTER subroutine to compute potential and 
fluxes at internai points. 

Profiler output shows execution times, cycles and 
instructions of the whole program, as well as of each 
function, separately : 

2016306973 : Total number of instructions executed 
1353289838 : Total computed cycles 

function 
SLNPD 
EXTIN 
_ logf 
GHMAT 

5.413: Total computed execution time (secs.) 
0.672 : Average cycles I instruction 

secs excl.% cycles instructions 
2.854 52.7% 713411657 1461982206 
1.631 30.1% 407840000 296960000 
0.851 15.7% 212808208 215814816 
0.065 1.2% 16263827 37971543 

calls 
1 

1004000 
4017000 

1 

The results produced by program profiling shows that 
SLNPD routine takes the greatest portion of execution time 
and should be the first part of the code to be optimized. 
SLNPD is a standard routine, which solves a linear system 
of equation using pivoting. Results are stored in the same 
right hand size vector. In larger systems, the solver has a 
major importance and a good change in this part of the code 
brings the best results in the overall performance. 

IV. SINGLE NODE OPTIMfZATION 

A. Exploiting Tuned Codes 

The quickest and easiest way to improve performance of 
the program is to link it with tuned libraries. LAPACK, 
Linear Algebra Package, is a public domain library of 

27 

subroutines for solving linear system of equations, linear 
least square problems, eigenvalue problems and singular 
value problems. It has been designed to be efficient on a 
wide range of modern high-performance computers. 
LAP ACK routines are written so that as much as possible 
o f the computation is performed by calls to the Basic Linear 
Algebra Subprograms, BLAS. Highly efficient _machine­
specific implementations of the BLAS are avmlable for 
many high-performance computers. The BLAS enable 
LAPACK routines to achieve high performance with 
portable code. [AND 99] . 

Boundary Elements problems produce non-symmetnc 
dense matrices and LAPACK's SGESV subroutine can be 
used to solve such systems of linear equations. Thus, the 
first modification in the code can be the substitution of 
SLNPD by SGESV. 

B. Hand Tuning Techniques 

The first part o f the code to be hand-tuned is EXTIN, 
the subroutine that computes the off-diagonal coefficients 
of G and H ma.trices, using a 4-point Gauss integration 
formula. It also computes, using the same numerical 
integration formula, integrais and its derivatives required 
for the computation of potential and fluxes at internai 
points. The routine also performs a change to a 
dimensionless system o f coordinates. 

The main hand tuning techniques applied to the code in 
order to obtain better performance follows. [DOW 98] 
[FOS 94] [W AD 00] [SGI 98] 

8.1 Arithmetic Optimizations 

Strength Reduction : 

Operations or expressions have time costs associated 
with them. Sometimes it is possible to replace a more 
expensive calculation with a cheaper one. Strength 
reduction reduces the computation costs of an operation 
while providing mathematically identical results. There are 
many opportunities for strength reductions. However, most 
compilers automatically perform these optimizations. 

Data Type Conversions : 

The type and precision of a data value determine the 
amount of storage required to contain the value and the way 
in which the value can be operated on. The selection of a 
type and precision to represent data can have significant 
effect on performance. Statements that contain runtime type 
conversions suffer a performance penalty each time the 
statement is executed. If the statement is located in a 
portion of the program where there is a lot of activity, the 
total penalty can be significant. 



Common Subexpression Elimination : 

Subexpressions are pieces of expressions. Some 
compiler may recognize repeated patterns in the code and 
replace ali but one with a temporary variable. However, the 
ability of the compilers to recognize common 
subexpressions is limited, especially when there are 
multiple components, or their order is permuted. 

8.2 Inlining 

Inlining involves replacing a procedure reference with a 
copy o f the code o f the procedure. 

Some of the benefits of inlining are : 
• There is no procedure reference, so lhe overhead of 

referencing the procedure, such as saving and restoring 
registers are eliminated. 

• When a procedure is referenced from a loop, certain 
optimizations are inhibited. When the reference is 
inlined, such optimizations are enabled. 

• An inlined procedure may enable other optimization 
because relationships between the reference point and 
the referenced procedure are easier to determine. 

One can inline procedures in the source code by hand or 
requesting that automatic inlining to be done by lhe 
compiler. The advantage of manual inlining is that the code 
is inlined regardless of the platform the program is 
compiled on. 

There are two disadvantages of manual inlining : 
• It can be very time-consuming and prone to error. The 

C++ language allows defining functions as inline 
wi thin the source code, so this disadvantage does not 
apply to C++ 

• Inlining of a particular procedure reference may 
improve performance on some architectures while 
degrading performance on others. 

Performance improvements resulting from inlining vary 
depending on the following : 
• The size and number of the inlined procedure. 
• The frequency with which inlined routines are called 

from a given location in source code. 
• The number of different locations where each 

procedure is referenced. 

8.3 Loop Optimizations 

In nearly ali high performance applications, loops are 
where the majority of the execution time is spent. 
Sometimes the compiler is clever enough to generate the 
faster versions of the loops and other times one has to do 
some rewriting of the loops to help the compi ler. Some of 
the most productive loop optimizations are those that 
minimize cache misses. Other loop transformations include 
those that reduce the loop overhead, remove loads and 
stores from innermost loops and eliminate delays caused by 
data dependencies. 

28 

On some architetures, there is no overhead in the 
counter update or the conditional branch within an 
innermost loop. However, outer loops usually involve a 
delay in the counter update of a branch. Depending on the 
construction o f the Loop nest, one may have some flexibility 
in the ordering of the loops. At times, one can swap the 
outer and inner loops with great benefit. 

Many optimizations performed on nested loops are 
meant to improve the memory access patterns. Often nested 
loops deal with multidimensional arrays. Computing in 
multidimensional arrays can lead to non-unit-stride memory 
access. 

Stride minimization is important where the stride can be 
brought down to a value smaller than the number of 
elements of an array that can be stored in a single cache 
line. Stride minimization is also applicable to very large 
strides, where it fits in successive elements are in different 
pages of memory. Even if the stride cannot be brought 
down to a levei where successive cache !ines, one can 
improve performance by reducing the stride to the point 
where successive elements may be in the same page. This 
can reduce TL8 misses and page faults. 

Loop Interchange : 

Loop interchange involves changing the nesting order in 
nested loops. This technique can improve performance in 
two ways: 
• It can minimize the stride in which array elements are 

accessed on successive iterations of a loop. 
• It can reduce loop overhead. 

8ranches Within Loops : 

Numerical codes usually spend most of their time in 
loops and branches have great impact on its performance. 
8ranches can force a strict order of a loop and prevent the 
compiler from optimizing the code effecti vely. Eliminating 
branches eliminates control dependency and allows the 
compiler to pipeline more arithmetic operations. 

Sometimes, programmers place branches in loops to 
process events that could be handled outside or even 
ignored. One example is loop invariant conditionals, where 
results are the same regardless of what happens in each 
iteration, usually they can be processed outside o f the loop. 

For loop index dependent conditionals, the test is true 
for certain ranges of the loop index variables and changes 
with a predictable pattern. Thus, the if statement partitions 
the iterations into d istinct sets : those for which it is true 
and those for which it is fal se. One can take advantage of 
the predictability of the test to restructure the loop into 
severalloops, one for each different partition. 



I 
I 

I 
I 

Loop Unrolling : 

Loop unrolling involves replicating the functional 
components of a loop, while reducing the iteration count 
proportionately. 

The major benefits of loop unrolling are : 
• Data dependence delays can be reduced or eliminated 
• Loads and stores may be eliminated in successive loop 

iterations 
• Loop overhead may be reduced 
• Larger basic blocks and more instructions between 

branches 
For loops with very small iteration counts, it is possible 

to eliminate the loop entirely. This is the simples! form of 
loop unrolling. The advantage of unrolling an innermost 
loop is that there is no need to modify the layout of the 
array to accommodate the tuning. There may be an 
advantage to unrolling the outer loop to improve 
instructions scheduling and to reduce the number of loads 
and stores. Although this technique brings little 
performance improvement, it shows two internai loops as 
natural candidates for the parallel implementation of this 
c ode. 

Array Elements in Loops 

When making repeated use o f an array element within a 
loop, one wants to be charged just once for loading it from 
memory. Compilers should recognize that each array 
element is being used a few times and that it only be load 
once, but not ali can do it. Using scalar variables is an 
optimization that some compilers are not free to make. 

Interestingly, whi le using scalar variables is useful for 
RISC and superscalar machines, it does not help code that 
runs on parallel hardware. A parallel compiler looks for 
opportunities to eliminate the scalars or, at least, to replace 
them with temporary vectors. If the code runs on a parallel 
machine from time to time, one must be careful about 
introducing scalar variables in loops. A dubious 
performance gain in one instance could be a real 
performance loss in another. 

C. Experimental Results Summary 

Applications are run on a SGI's Origin 2000 with 8 Gb 
memory and 16 R I 0000 250 MHz processors. The 
operational system is I RIX, version 6.5 . I Om and the 
compiler is MIPSpro, version 7.3.I.m. Profiler is 
SpeedShop. Ali codes were compiled with -n32 - mips4 -03 
compiling options. Ssrun was used with the - ideal option. 
[SGI OI) [SGI 02) 

The effects o f each technique in the overall performance 
of a small problem can be seen in Table I. Once the overall 
performance is limited by the contribution of each 
procedure being tuned, the effect of each optimization 
technique is shown in Table 2. 

29 

Small systems can be greatly affected by cache size. 
Therefore, performance must be measured with a larger 
sample. With a larger set of data, the same application 
brings the results shown in Table lli and the contribution 
o f each procedure is presented in Table IV. 

Tables show the percentage ratio of the execution time 
of the new version with respect to the execution time of the 
original version. 

TABLE I 
I 000 ELEMENTS - PROGRAM PERFORMANCE 

Original version 
Substitution of SLNPD by SGESV 
Arithmetic optimizations 
lnlining EXTIN 
Loop interchange 
Conditional branch elimination 
Loop unrolling 

TABLE II 

Secs 
5.413 
3.819 
3.567 
3.454 
2.137 
2.072 
2.063 

70.5% 
65.8% 
63.8% 
39.4% 
38.2% 
38.1% 

I 000 ELEMENT S- SUBROUTINES PERFORMANCE 

Function Secs % 
Original version EXTIN 1.631 
Arithmetic optimizations EXTIN 1.380 84.6% 
lnlining EXTIN GHMAT 1.324 81 .1% 
Loop interchange GHMAT 0.443 27.1% 
Conditional branch elimination GHMAT 0.377 23.1% 
Loop unrolling GHMAT 0.368 22.5% 

TABLE III 
8000 ELEMENTS- PROGRAM PERFORMANCE 

Original version 
Substitution of SLNPD by SGESV 
Arithmetic optimizations 
lnlining EXTIN 
Loop interchange 
Conditional branch elimination 
Loop unrolling 

TABLEIV 

Secs 
626.625 
339.598 
323.697 
317.289 
232.467 
228.127 
227.554 

% 

54.1% 
51 .6% 
50.6% 
37.0% 
36.4% 
36.1% 

8000 ELEMENTS- SUBROUTINES PERFORMANCE 

Original version 
Arithmelic optimizations 
lnlining EXTIN 
Loop interchange 
Conditional branch elimination 
Loop unrolling 

Function 
EXTIN 
EXTIN 
GHMAT 
GHMAT 
GHMAT 
GHMAT 

Secs 
103.771 

87.870 
85.594 
28.358 
24.004 
23.431 

V. P ARALLEL PROCESSING 

% 

84.6% 
82.2% 
27.3% 
23.1% 
22.5% 

Because there is always a limit to the performance of a 
single CPU, computer programs have increased their 
performance by using multiple CPUs. 



The Cray Scientific Library, SCSL, is an optimized 
library containing BLAS and LAPACK routines, many of 
them parallelized and linked into the program using a 
compiling option. Once the solver takes the most part of the 
execution time, a very simple and effective approach to 
implement a parallel version of the program is to use a 
parallel the solver, done with a simple compiler option. 

The other parts of the code should be paral le lized 
manually. We use OpenMP, which is a standard and 
portable Application Programming Interface (API) for 
wri ting shared memory parallel programs. [CHA O I] 

In shared memory architectures ali processors has direct 
and equal access to a li the memory in the system. One 
advantage of the shared memory paralle lization is that it 
can be done incrementally. That is, the user can identify the 
most time-consuming part of the code, usually loops, and 
parallelize just that. Another advantage of this 
parallelization style is that loops can be parallelized wi thout 
being concerned about how the work is distributed across 
multiple processors and how data elements are accessed by 
each CPU. 

OpenMP is a set of compiler directives that may be 
embedded within a program written with a standard 
programming language such as Fortran or C/C++. In 
Fortran these directives take form of source code comments 
identified by the $0MP prefix and are simply ignored by a 
non-OpenMP compiler. Thus, the same source code can be 
used to compile a serial or parallel version of the 
application. In addition to directives, OpenMP also includes 
a set of runtime library routines and environment variables 
that are used to examine and modify the execution 
parameters. lntroduction of OpenMP directives defines 
parallel regions to be executed by multiple CPU's 
concurrently as shown : 

subroutine GHMAT 

i nteger .. i,j,k,kk 
real :: ax,bx,ay,by,sl,eta1,eta2,ra,rd1,rd2,ch, & 

xco1,yco1,xco2,yco2,xco3,yco3,xco4,yco4, & 
tmp1,tmp2,tmp3,tmp4,rdn1,rdn2,rdn3,rdn4 

X(N+1) = X(1) 
Y(N+1) = Y(1) 
!$0MP PARALLEL DO SHARED(N,X,Y,XM,YM) 
do i=1,N 

XM(i ) = (X(i) + X(i+1)) * 0.5 
YM(i) = (Y(i) + Y(i+1)) * 0.5 

enddo 
!$0MP END PARALLEL DO 

G=O. ;H=O. 
do j=1,N 

kk j + 1 
ax (X(kk) - X(j)) * 0.5 
bx (X(kk) + X(j)) * 0.5 
ay (Y(kk) - Y(j)) * 0.5 
by (Y(kk) + Y(j)) * 0.5 
sl sqrt(ax * ax + ay * ay) 

30 

eta1 ay I sl 
eta2 -ax I sl 
xco1 ax * GI(1) + bx 
yco1 ay * GI(1) + by 

!$0MP PARALLEL DEFAULT(SHARED) 
!$0MP DO PRIVATE(i,ra,rd1,rd2,tmp1,tmp2,tmp3, 

tmp4,rdn1, rdn2,rdn3,rdn4) 
do i=1,j-1 

ra = sqrt((XM(i)-xco1)*(XM(i)-xco1) + 

tmp1 
rd1 
rd2 

(YM(i)-yco1)*(YM(i)-yco1)) 
1. I ra 
(xco1- XM(i)) * tmp1 
(yco1 - YM(i) ) * tmp1 

rdn1 rd1 * eta1 + rd2 * eta2 

G(i,j ) 

H(i,j) 

enddo 
!$0MP ENDDO 

(log(tmp1) * OME(1) + & 
log( t mp2) * OME(2) + & 
log(tmp3) * OME(3) + & 
log(tmp4) * OME(4)) * sl , 

-(rdn1 * OME(1) * tmp1 + & 
rdn2 * OME(2) * tmp2 + & 
rdn3 * OME(3) * tmp3 + & 
rdn4 * OME(4) * tmp4) * sl 

!$0MP DO PRIVATE(i,ra,rd1,rd2,tmp1,tmp2,tmp3, 
tmp4,rdn1,rdn2,rdn3,rdn4) 

do i=j+1,N 

enddo 
!$0MP ENDDO 
!$0MP END PARALLEL 
G(j,j) = 2. * s1 * (1.- log(sl)) 
H(j,j) = 3.1415926 

enddo 
!$0MP PARALEL DO PRIVATE(i,ch) 
do j=1,N 

if (KODE(j) > 0) then 
do i=1,N 

c h 
G(i,j) 
H(i ,j) 

enddo 
endif 

enddo 

G(i, j) 
-H (i, j) 
-c h 

! $0MP END PARALLEL DO 
call SGEMV('N' ,N,N,1.,H,NX,FI,1,0.,DFI,1) 
end subroutine GHMAT 

The execution times of the parallelized version of the 
programare shown in Table V. 

T ABLE V 
PARALLEL PERFORMANCE 

C PUs Use r S:tstem Total seeedue 
1 848.508 3.628 14:16.68 
2 858.356 3.578 7:13.60 1,98 
4 896.089 3.464 3:47.54 3,77 
8 945.865 3.763 2:01.71 7,04 
16 1090.762 3.927 1:11.72 11 ,95 



VI. CONCLUSION 

Profiles show the solver as the maio and the first part of 
the code to be tuned. Use of optimized libraries is the 
simplest and the best way to improve performance. The 
benefits are greater in larger systems. Hand tuning 
techniques also bring good results but loop optimization is 
the most effective technique use in the application .. Besides 
the performance gain, single node optimization allows to 
identify in an easy way the best parts of the code to be 
parallized. This parallelization is accomplished simply by 
the insertion o f OpenMP directives. 

Suggestions for future works are the use of a parallel 
solver from an existing library and the implementation of 
serial and parallel versions of iterative solvers. [BLA 97] 
[BAR 92] 

ACKNOWLEDGEMENTS : 

Authors thank to SIMEPAR - Sistema de Meteorologia 
do Paraná that kindly granted lhe use of its supercomputing 
facilities and provided support needed in this work. 

REFERENCES : 

[AND 99] ANDERSON, E. et ai. LAPACK User 's Cuide. 3rd ed. 
SIAM, 1999. 

[BAR 92] BARRA, L.P.S. ; COUTINHO, A.L.G.A.; TELLES, 
J.C.F., et ai. lterative So/ution of BEM Equations by 
CMRES Algorithm. Computer and Structures. 44: (6) 
1249- 1253 SEP 3 1992. 

[BLA 97] BLACKFORD, L. S. et ai; ScaLAPACK User's Cuide. 
SIAM, 1987. 

[BRE 84] BREBBIA, C.A.; TELLES, J.C.F.; WROBEL, L.C.; 
Bowulary Elemellls Teclmiques : Theory and 
Applications in Engineering. Springer-Verlag, 1984. 

[BRE 92] BREBBIA, C. A.; DOMINGUEZ, J . Boundary 
Elements : An lntroductory Course, 2nd ed. CMP -
McGraw Hill, 1992. 

[CHA OI] CHANDRA, R. et ai. ; Parai/e/ Programming in 
OpenMP, Academic Press, 200 1. 

[DOW 98] DOWD, K. ; SEVERANCE, C. High Pe1jormance 
Compllling, 2nd ed. O' Reilly, 1998. 

[FOS 94] FOSTER, I. Designing and Bui/ding Para/lei 
Programs, Addison-Wesley, 1994. 

[OMP OI] OpenMP. At (JUNO I): www.openmp.org. 
[SGI 98] Origin 2000 and Onyx2 Performance Ttming and 

Optimization Cuide. Silicon Graphics Inc., document 
007-3430-002, 1998. http://techpubs.sgi.com/library. 

[SGI O I] SC/ 64-Bit UNIX Operating System. At (JUNO I) : 
www.sgi.com/software/irix6.5. 

[SGI 02] SCI Deve/opments Products. At (JUNO I): 
www.sgi.com/developers/devtools/index.html. 

[TEL 83] TELLES, J.C.F. The Boundary E/ement Metlwd 
Applied to lne/astic Problems, Springer-Verlag, 1983. 

[WAD 00] WADLEIGH, K. R.; Crawford, I. L. Software 
Optimization for High Performance Computing. 
Prentice-Hall , 2000. 

31 


