
A parallel solution for
systems of integral equations

Marcelo Pasin 1: Edson Luiz Padoin2t
1 Laboratório de Sistemas de Computação

Universidade Federal de Santa Maria (UFSM)
UFSM Campus. 97 105-900, Santa Maria, RS, Brazil

pasin@inf.ufsm.br
2 Universidade Regional do Noroeste do Estado do RS (UNIJUÍ)

Rua São Francisco. 50 I, 98700-000, ljuí. RS, Bmzil
padoin@inf.ufsm.br

Abstract-

This paper presents a parallelizution of a numeric method for solving
systems of integral equations. The a lgorithm was originally dcvcloped
to find transitions of superconductor propcrties based on environment
conditions. Thc sequential numerical method presents a wide range of
parallelizution leveis, with irregular processing costs. A parallcl imple
mentation of it has the oportunity of adapting lhe purullcl grain, com
promising load-balancing and communication, and achieving bcttcr ef
ficiency.

Keywords- Parallel programming, irregular problems, load balanc
ing, numerical methods, integral equations.

I. I NTRODUCTION

This document describes the work on parallelizing a nu
meric method for solving systems of integral equations.
More specifically, a sequential program implementing a nu
merical method was parallelized. The parallel version had to
be load-balanced due to the irregularity of the original nu
merical method.

The sequential program used as basis of paralle lization is
intended to locate phase transitions o f properties o f supercon
ductors. The problem resumes into a four-equations-four
variables system, ali being multi-integral equations. The
equation system is solved numerically using the fixed point
method [Jer99). The integrais are calculated by the Simpson
method. In a regular execution, nearly one hundred billion
integrations (10 11) are calculated.

Few are the data dependencies in the sequential algorithm,
giving plenty o f parallelizing oportunities. During the paral
lelizatrion process, they were exploited in different manners,
to achieve better performance. One problem faced was that
most of the parallel tasks obtained from the parallelization
of the algorithm were irregular, which lead to load-balancig
problems. This paper will present the experience done in par
alle lizing such algorithm, the load balancing decisions made,
and the results obtained.

• Panly supponed by FAPERGS gmnts 9911492.5 and 00/2434. 1.
tPanly supponed by a FATEC gmnt.

32

li. THE SEQUENTIAL ALGORITHM

The goal of the application used in the parallelization pre
sented in this paper is to find points to plot a graph of phase
transitions of superconductors [MSOO]. In this graph, three
environmental properties are in the axes: H , the applied
magnetic field, T, the temperature and G, the strength o f the
pairing interaction. Three surfaces in the (H, T, G) space are
calculated, representing the transitions between three phases
of interest [MSOO]:

• the phase where there is a long range order correspond-
ing to formation o f pairs,

• the normal paramagnetic phase, and
• the spin glass phase.
Four variables have to be calculated in order to determine

the phase of the matter: TJ (superconductivity long-range
order), Q z (spin glass long range order parallel to H), R z
(susceptibility parallel to the magnetic field) and R (sus
ceptibility transversal to the magnetic field). This variables
values are expressed in equations Lhal are dependent of each
olhers' values, form ing a four-variable system of equations.
The equations modeling the system are listed below.

l +oo sinh(,Bp.')
TJ = D(w) I

-oo {3

Q;: = K, [
00

D(w) [J,+00

uD(u) J:: D(v)s,o r
-oo I p

R::
1 ~+oo fo+oo uD(u) f~: vD(v)SpO

= J(D(w) I
r -oo f3

R
1 ~+oo fo+oo u3 D(u) J~: D(v)Sp

= 4 D(w) I
-oo {3

where
I f3 = f0+00 uD(u)J~: D(v) [cosh(,Bp.') +cosh(,B jhl)]

I
\

I
\

\

\

\

e- z2/2
D(x) = ~dx

I<r = 2J(R::- Q:)
Kq = {32 J2 /2
s{3 = sinh(f31hl)/(2{31hl)
O=hz/J

{3 = 1 /T~----,..,..
J.L' = Jf3J.L2 + D,.2ff3
6. = {3Gry/2

hz = J [V J~2(:-=R-: ---=Q-"7::) + W J2(Tz + ~j]
h+ = J/2Ru+
h_= J/2Ru_
J and J.L are constants.
The algorithm used to calculate the points of the phase

transition graph is presented in figure I. A few hundreds of
points must be found in order to plot a graph. The main pro
cedure is currently being done by the user, because it is diffi
cult to choose good intervals and steps for the find-t ransition
procedure. Work is under way to develop a good algorithm
to choose intervals. In any case, every one of these phase
transition points can be found in parallel.

main procedure:
i =0
while not enough points

find- transition ry[i], Q;: [i] , Rz [i] , R[i]
i=i+ I

plot surfaces

Figure I. The ma in procedure (sequential)

In order to finda phase transition point (figure 2), the four
equation system is solved around ten thousand times, for dif
ferent values of an interval of H , T and G. Every solution
has a different phase associated with it. Comparing them it
is possible to find the values for which there is a phase tran
sition point. Ali the steps of an interval, i. e. ali the calls to
the solve procedure, can be calculated in parallel.

In the solve procedure (figure 3), an iteration is done to
calculate the values of the four integral equations until they
converge to a solution (fixed point method). Although the se
quential evaluation of the four equations result in faster sys
tem convergence, ali the four equations can be calculated in
parallel.

Last but not least, the equations are ali integrais of inte
grais of integrais. In any levei chosen, a parallel integration
method can be used.

So, the parallelization leveis found in the algorithm are:
• finding N transition points;

33

find-transition procedure:
k=O
for H= Hi to H1 step SH

for T = Ti to T1 step sr
forG=Gi toG, stepsa

solve ry[k]. Q z [k], Rz [k], R[k]
k=k+l

find j such as there is a phase transition
in ryfj], Q z fj] , R z fj], Rfj]

return ryfj], Qz[j] , Rz[j] , R[j]

Figure 2. The jind-transition procedure (sequential)

solve procedure:
repeat

Eta =I /11 (ry, Q ;z:., Rz, R , H , T, G)
Qz =I /Q. (ry , Qz , R z, R , H , T, G)
Rz =I fn.(TJ, Qz , R z, R , H , T , G)
R= I fn (TJ,Qz, R z, R ,H ,T ,G)

until17, Qz, R:, and R converge

Figure 3. The solve procedure (sequential)

• solvind N equation systems to find a transition;
• calculating the value of N (4) equations; and
• calculating N values o f a function to integrate it.

No matter which levei the parallelization should be chosen,
any o f the N parallel tasks are irregular, because:

• there is no warranty to finda transition in every interval,
so many intervals may have to be chosen until a transi
tion is found;

• the number o f iterations to solve a system depend on the
quality o f the initial values;

• the four integral functions are different; and
• the number of sub-intervals used in the integration of a

function depend on its pitch.

Although the work described here focused only at paral
lelizing the sequential program, progress can still be done in
the sequential method itself. The numerical algorithm is very
expensive and research to improve it is under way. Never
theless, ali the sequential implementations made so far used
both fixed point and Simpson methods. Ali these implemen
tations follow the same scheme and can be used as basis of
the parallelization proposed here.

III . THE PARALLELIZATION

Irregularity appears at every levei o f parallelism of the ap
plication, as presented in the previous section. Load baJ
ancing must be taken into account because ali computations
have different execution times. Adequate frameworks must
be chosen for (a) the parallel decomposition of the work to
be done and for (b) the execution of the decomposed work.

One simple framework that suits well in this case is the
processar pool model [WAOO]. In this model, the algorithm
of the program to be parallelized is recursively broken into
smaller pieces that can be executed in parallel, called parai
lei tasks.

Every task must be registered in order to ask for its execu
tion. In practice, an executing task divide its work into many
smaller tasks and register them, respecting the data depen
dencies.

Many sequential producer-consumer programs, called
nodes, are executed by the processors of the parallel ma
chine. Every processar executes only one node. A node tries
to acquire a registered task to execute as soon as it becomes
idle. When a node acquires a task it starts to execute it, and
becomes idle again after the execution.

Initially, one task is registered (the main procedure) and
ali processors are idle. The work is carried out in pieces by
ali the processors in a concurrent way.

Care should be taken in the task acquisition when they are
irregular, is such a way that ali processors receive the same
amount of work. This can be better done i f the ali tasks are
previously registered and have a known workload. In the al
gorithm presented, ali tasks are previously unknown, differ
ent of each other, and have unpredictable workloads. In this
case, an adaptive load balancing method must be chosen.

It is easy to recognize that i f the load baJancing algorithm
is centralized, the processar pool model can be simplified to
a master-slave model, being the master responsible for the
load balancing. For a first implementation of this parallel
algorithm it was decided that the load balancing aJgorithm
should be simple and central. It should be kept to a minimum,
in order to minimize the parallel overhead introduced by it.

A. Para/lei programming environment

A parallel machine to execute the algorithm had to be cho
sen. In order to minimize the need for special hardware, the
authors decided to use a network of workstations as a vir
tual parallel machine. This could be done because o f the low
amount data used by the parallel tasks, requiring less net
work traffic. A classroom with 20 personal computers was
allocated for this project's private use during the hours this
application was executed. Ali the computers had AMD K6-II
processors at 450 MHz and 64MB of RAM, running Redhat
Linux version 6.2. They were connected by a private Fast
Ethernet (I OObaseT) network.

34

The software used to implement the parallel algorithms
had to be well adapted to such a virtual parallel machine,
and MPI [For93] or PVM [Sun90] would be the standard
choices. Using either MPI or PVM is was impossible be
cause most of their implementations are not suited for multi
threaded use (not thread-aware). The Athapascan-0 commu
nication em multithreading runtime library [PGBP97] was
chosen because:

• it was conceived to run on networks of workstations
and,

• it supports multiple cooperating threads on every parai
lei process,

• it supports remote procedure calls.
Ali 20 available computers were used as processing nodes

for the applic!ltion. Ata time, each node ran only one heavy
weight process (Unix process) and many lightweight pro
cesses (Unix threads).

B. Simple master-slave model

Two initial implementations of the find-transition proce
dure (figure 2) were done to measure the overhead imposed
by the master-slave model. The first implementation, called
predistribute, previously distributed identical portions of the
work to ali the processors. This implementation had no
master-slave overhead, as ali work is previously distributed.
In the second implementation, called na"ive, 1 a master pro
cessor distributed the work to the slave processors as they
become available.

To avoid load-unbalancing problems, a regular interval of
H, T and G was chosen, with 40 steps and no transition in it.
In both implementations only the find-transition procedure
was executed. The calls to solve for every step were done
in parallel and ali the parallel calls returned in roughly the
same time. The results are shown in figure 4. The overhead
of na·ive over predistribute was nearly constant and close to
one second per step.

C. The benchmark interval

A certain irregular interval was chosen as a· benchmark,
with a large degree o f irregularity. H and T were respectively
fixed in 0.25 and 1.0 and G ranged from 4 to 11.9 with 0.1
steps (80 different values). One should note that ali the inter
vais that contain phase transitions (i.e. ali the intervals that
matter) present the same order of irregularity. The figures 5
and 6 present respectively the sequential time to execute and
the number of iterations needed to converge on every step.
The total amount of time spent in a sequential execution of
ali the steps in any ofthe available computers was 33370 sec
onds (a little more than 9 hours).

The na"ive implementation was then used to execute the

1 For na"ive load balancing.

I
I

~r-~~~--~---r---.--~--~-----~~==·

750

600

\

\
\
\

~ed·······

\\
'-..:

-......:: ... _
-... ____________ ·····

300

150

a 10 12 14 '" 18 20-............
Figure 4. Master-slave overhead

12000

9000

6000

3000

0 ollllll111ll . • 10 " 12

Figure 5. An irregular interval, execution time of the steps

benchmark interval on I O nodes. The algorithm delivered
the fi rst 10 steps to the nodes and, as the nodes finished their
work, another steps were allocated to them until ali ended.
One first execution (not shown here) yielded an execution
time of 23600 seconds. Of course, due to the simplicity of
the load balancing algorithm, many nodes were idle for most
of the time, but this was not the most important problem.
Adding ali the busy CPU times o f the nodes totaled to 67916
seconds, far more than the sequential time. After a careful
look, it was found out that the Athapascan-0 communication
daemon was polling the network too often, spending nearly
50% o f the CPU time.

To reduce the Athapascan-0 communication daemon in
terference, its priority was changed to the minimum allowed.
This decision does not empoverish communication perfor
mance because the only moment where it is needed in the
na"lve implementation is when a node needs more work. In
that moment the working threads are blocked and the com
munication daemon would inevitably run.

35

150

120

..

12

Figure 6. An irregular interval, iterations to converge of the steps

The same na"lve implementation was run again on I O nodes
and better results were obtained. The execution times for ev
ery processing node are drawn in figure 7. The bars displayed
represent the amount of processing done in every processor.
Gray and black were used to di fferentiate the steps of the
same node. Adding ali the busy times o f the processors g ives
36655 seconds, but the last processor (node 3) became idle
at 15589 seconds. Speedup is 2. 14 (efficiency is 21.4%), still
very low.

15000

12000

I 9000

.f
0000

3000

I .I I = - !!! - - -
• --

Figure 7. Master-slave, irregular interval, nai"ve load balancing

Visibly the load is unbalanced. Most of the nodes receive
very small steps to process, while node 3 receives the step
5.3, that lasts much longer than others. Even if better load
distributions could be found, none of them would be close
to the ideal. The steps are too irregular. Worse, there are
not enough steps to allow the balance in the long-term. The
problem is that the granularity [KS88] chosen is too coarse.

Chosing another granularity means deciding to parallelize
in a different levei. For example, the parallelization could be

I

45

L.
j

15

7 8 O 10 11 12 13 1.t tS -oi-
Figure 10. Parallel simpson execution time

fixed point and Simpson, that were not touched so far.
The centralized master-slave load balancing algorithm

should be abandoned and a distributed implementation sould
be adopted. This would reduce the current bottleneck of
task allocation. One new implementation is under study, us
ing migrating asynchronous remote procedure calls [ATK92,
GRCD98].

Also, load balancing has again proven to be difficult and
grain-dependent. The presented application has a wide range
of choices for its granularity, which is not usually the case.
Further study would be necessary to generalize the concept
of grain adaptation [Cav99].

A CKNOWLEDGEMENTS

This paper acknowledges the authors of the sequential al
gorithm, Alex André Schmidt, and of the physical problem,
Sérgio Garcia Magalhães, respectively working at the the de
partments of Mathematics and Physics of UFSM. It would
not be possible to produce this paper without their work and
collaboration.

REFERENCES

(ATK921 A. L. Ananda, B. H. Tay, and E. K. Koh. A Survey of Asyn
chronous Remate Procedure Calls. sigops, 26(2), April 1992.

(Cav99] Gerson-Geraldo-Homrich Cavalheiro. Athapascan I : Inter
face genérique pour l'ordonnancement dwrs rur enviromreme/ll
d'exécwion paraJJele. These de doctorat en informatique, In
stitui National Polytechnique de Grenoble, France, November
1999.

(For93] Message Passing Interface Forum. MPI: A Message Passing In
terface. Proceedings of the Supercomputing Conference, pages
878-885, November 1993.

(GRCD98] François Gallilée, Jean-Louis Roch, Gerson G. H. Cavalheiro,
and Mathias Doreille. Athapascan- 1: On-line building data
flow graph in a parallel language. In Proceedings ofthe 1998
lmemational Conference on ParaJJel Architectures and Com
pilation Tec/miques (PACT '98), pages 88- 95, Paris, France,
October 12-18, 1998. 1EEEComputerSociety Press.

37

[Jer99]

[KS88]

[MSOOI

Abdul J. Jerri. lntroduction to Integral Equations With Appli
cations. John Wiley & Sons, 2nd edition, 1999.

Clyde P. Kruskal and Carl H. Smith. On the notion of granu
larity. The Jormral of Supercomputing, I (4):395--408, August
1988.

Sérgio Garcia Magalhães and Alex André Schmidt. Fermionic
heisenberg model for spin glasses with BCS pairing interaction.
Physical Review 8, 62(17):686-693, November 2000.

[PGBP97J Marcelo Pasin, llan Ginzburg, Jacques Briat, and Brigitte

(Sun90)

[WAOO(

Plateau. Athapascan runlime: efficiency for irregular problems.
In Proceedings of Euro-Par'97. Aug 1997.

V. S. Sunderam. PVM: a framework for parallel distributed
computing. Concurrency, practice and experience, 2(4):315-
339, December 1990.

Barry Wilkinson and Michael Allen. ParaJJe/ programming:
teclmiques and applications using networked workstations and
paraJJe/ comwers. Prentice-Hall , 2000.

