
Parallel Calculation of Properties of Magnetic
Impurities in Metais

Eloiza Sonoda1 Gonzalo Travieso1

1 Departamento de Física e lnfonnática - IFSC, Universidade de São Paulo
Av. do Trabalhador Sãocarlense 400, São Carlos- SP, Brasil

{ clo,gonzalo} @if.sc.usp.br

Abstract-
The computation of physical properties of dilute magnetic alloys is

a computationally intensive task. In principie, il consists on lhe diago­
nalization of a huge malrix. Through the use of a suitable base and of
lhe rcnormalization group method, lhe diagonalization can be simpli­
fied to lhe iterative dingonalization of a sei of smaller matrices (of lhe
order of some hundreds of lines and columns). The resulting problcm
is nevertheless stiU too large if enough precision is desired. Wc describe
here lhe parallel implementation of an algorithm for this problem in a
duster. The results show that lhe implementation achieves good reduc­
tion of cxecution times, but lacks speedup and scalability due to load
balancing problems. We analyze lhese problems and suggesl palhs to
their resolution.

Keywords-parallel processing, clusters, message passlng, Anderson
model, renormalization group.

I. I NTRODUCTION

Anderson LAnd6 I] h as proposed a model for dilute mag­
netic a lloys with one impurity that was later extended to two
impurities [AA64].

The numeric renormalization group method [Wil75),
[KMWW80] is often used for computations with lhis model,
due to many advantages discussed elsewhere [Oii92]. The
method is numerically efficient, but for the two impurities
problem intensive in both computing time and storage space.

The process consists of the iterative diagonalization of a
real , symmetric matrix H, the quantum Hamiltonian of the
model. In a typical case, the dimension o f the matrix to be di­
agonalized in each iteration is of order 104 . Using a suitable
basis, the matrix is block diagonal and the process can lhen
be simplified to the diagonalization of about hundred smaller
matrices (in each iteration), the Iarger with dimension o f the
order of eight hundred.

To compute some physical property, many program runs
are needed, to tune some parameters and to variate others in
order to reduce typical oscillations of the method.

This short description shows clearly that a high perfor­
mance computer system is needed to tackle this problem.
With the constant reduction of feature size of the chips the
use of parallel architectures in various leveis of implemen­
tation has become common practice [CSG99] . In special,
lhe high performance o f personal computers and commercial
network hardware has made lhe use of networks of worksta­
tions for high performance computing attractive [ACP96].

38

This work describes lhe implementation o f a parallel ver­
sion of a renormalization group program in a Beowulf-like
[Ste95] cluster.

A. Anderson Model

Initially proposed [And6 I] for the description o f local­
ized magnetic moments, lhe Anderson model can also be ap­
plied to di lute magnetic alloys. Localized magnetic moments
are found in non-magnetic metais containing ionic impurities
with incomplete valence orbitais (orbital dor f).

The host non-magnetic metal is represented by a conduc­
tion band with momenta k and energies ek. The impurity
Iies on a different energy levei, separated from the conduc­
tion band. The levei added by the impurity is characterized
by the energy of the d (or f) orbital e d. wilh spin degeneracy
a. According to the Pauli exclusion principie, lhere are four
configurations for the impurity orbital: empty, one electron
wilh spin up, one electron with spin down or two electrons,
one up and one down. The coupling o f the impurity with the
conduction band is represented through the hibridization V.
The transition rate between the impurity and the conduction
band is computed by Fermi's golden rule. The Coulombian
repulsion between electrons in the same orbital U reduces the
probability o f double occupation o f lhe impurity orbital and,
if é d is negative, increases the probability of single occupa­
tion. Figure I gives a schematic representation o f the model.
The Hamiltonian of the model is g iven by:

H = L ekcL,. cku + éd L C~17 Cdu +
IT

V L (ct
17

Cdu + h.c.) + Uc~tCdtC~.J.Cd.J. (I)
ku

where ct creates an electron with momentum k and spin
ku

a = ±1/2 in the conduction band while c~17 creates an elec­
tron in lhe impurity orbital. The abbreviation h.c. indicates
that the hermitian conjugate of lhe preceding term should be
also included.

The Anderson Hamiltonian was at first analyzed by per­
turbative methods, but the first treatment able to describe the
whole temperature range was lhe numerical renormalization
group melhod (see subsection 1-B).

0-----

+ ++-- 2Gd+U
EF= O----_) + -------- Ed

-o ---- v
Fig. I. Schematic representation of the one impurity Anderson model. The

host non-magnetic metal is represented by a half- filled conduction band
with width 2D and states with energy f:k. The magnetic impurity is
characterized by states with energy êd· U is the Coulombian repulsion
between e lectron occupying the same impurity orbital. lnteraction be­
tween impurity and conduction band is through hibridization V.

• • • • •

.......
• • Di>t111<1 Povlly

Fig. 2. Block organization of the Hamiltonian in charge q, spin s and parity
p. Each block is called a secror and labeled qsp

As the single impurity case was already thoroughly stud­
ied, research now focus on impurity agglomerates. The
two impurities case considered in this work is the simples!
one that takes the interaction of many impurities into ac­
count. Its Hamiltonian is an extension of the Hamiltonian
I, see [AA64].

The two impurities problem has inversion symmetry: the
Hamiltonian does not change under the exchange of the two
impurities. As a consequence, the states of the conduction
band can be classified according to their parity: the ones
which change signal under an exchange (the odd states) and
the ones that does not change signal (the even ones). The
states can then be classified through three characteristics:
their electric charge q, their spin s and their parity p . The
diagonalization process can then be done in sub-matrices
where ali states have the same values for q, s and p. The
whole Hamiltonian may be visualized as a set of these sub­
matrices, as shown in figure 2

B. Numerical Renormalization Group Method

In the numerical renormalization group method the con­
tinuum of energy leveis of the conduction band is subjected
to a logarithmic discretization, proposed by Wilson [Wil75].

In this work, we use an altemate discretization procedure
that introduces another parameter, usually called z. The pro­
cedure is described in [YW090], [CPL0 97]. Energies are
chosen so that the Fermi energy is zero e F = O and energies
less than - D or greater than D are not considered. The in­
terval between - D and D is divided in pieces as shown in
figure 3.

39

D-----

-D ----

.· .· .·

·.

o/o

Fig. 3. Logarithmic discretization of the conduction band. Energies from
-Dto D, measured from the Ferrni energy f:F = O, are divided in a
intervals at rales A - t, where A is a discretization parameter .

• • •

4L ln:.cth·e S«tor • • • Aclive Sec1or

• •
• • •

Fig. 4. Active and inactive sectors in one phase. The arrows shows data
dependencies. (To simplify the figure, parities are not considered.)

C. l terative Process

The number of states in the base of the Hamil tonian (and
therefore the dimension of this Hamiltonian) grows very fast.
For example, already in the second iteration there are 2 16

states. It is thus mandatory to place some limit on the size of
the matrices, what is achieved by neglecting states with ener­
gies greater than a limit, because these have lower probabi lity
and are not thermodynamically relevant.

Each iteration is done in two phases, called high and low,
with only half of the sectors (distributed as in a chess-board)
altemately active in each phase (fig. 4). This means that in a
given moment only half o f the sectors will be computing.

The operations in each phase can be summarized as fol­
lows:

• execution parameters are adjusted;
• neighboring sectors to the north, south, east and west

(fig. 4, continuous arrows) are consulted to compute the
new states;

• the Hamiltonian is computed using values from the other
iteration (eigenvalues and invariant matrix elements, the
latter stored in structures that will be called here pages);

• the Hamiltonian is diagonalized (computation of the
eigenvalues and eigenvectors);

• new values for the pages are computed using eigenval­
ues and eigenvectors o f this sector ando f two neighbors
at northeast and northwest (fig. 4, interrupted arrows);

• thermodynamic values of interest are computed and
saved in a fi le after ali sectors are computed as above.

The first iteration, called iteration - 1, is handled separately
and given as input to the program.

Il. TOOLS

The continuous reduction of feature size in VLSI tech­
nologies, with the consequent possibilities to increase the
clock rates and the number o f transistors per chip has resulted
in a convergence in the parallel computer architecture field
[CSG99], in the possibility to attack new problems [Fos95]
and in the use of commercial, low cost systems to do parallel
processing, as in network of workstations [ACP96] and the
Beowulf project [Ste95].

In this work, the system used is a cluster of personal
computers with 450 MHz K6-III processors, 256 Mbytes of
memory, each with its own system, swap and temporary disk
space. The computers are connected by a ELhernet hub and
a Fast Ethernet swilch. The Ethernet connection is used to
mount remote user file system and for administration. The
Fast Ethernet connection is dedicated to communications of
the parallel applications. The systems under Linux kernel 2 .2
[Ker], and the program development is done using the GNU
tools [Fou] and an MPI [Mes95] implementation from the
Argonne National Laboratory (MPICH) [GL96].

III. IMPLEMENTATION

The language chosen for the implementation was C++
[Str97] and for the communication between the parallel pro­
cesses an MPI library [GL96] was used.

The first step was to rewrite an existing sequential program
in an object oriented style. It followed an analysis of data de­
pendencies to assess the parallelization possibilities and the
corresponding communication costs.

As already explained (see section I) the program must be
run for many different values of some parameters. This fact
was the starting point for a first parallel version, based on the
variation o f input parameters.

To avoid some limitations o f this parallelization method, a
second parallelization was made, based on the parallel exe­
cution o f the calculations o f each sector.

The following subsections describe these implementa­
tions.

A. Sequential Version

The development of a new sequential version of the pro­
gram had three objectives:

I. to get acquainted with the technical details of the pro­
gram;

2. to organize the program in such a way as to faci litate
the parallelization process, specially through the use of
object oriented techniques;

3. to reduce the amount o f memory copying in some parts
o f the program.

40

TABLEI

EXECUTION TIMES (I N HOURS) FOR THE ORIGINAL ANO NEW

SEQUENTIAL VERSIONS

Original New Reduction

Small 0.70 0.24 66%
Medium 20 6.7 67%
Large 65 21 68%

The reduction in memory copying together with Lhe sim­
plification of some functions have resulted in a significant
reduction in execution time. Times of the new version are
about a third of the limes of the old version, as exemplified
by the typical result o f table I for three problem sizes (small,
medium and large).

8 . Parameter Variation

As stated above (section I) Lhe program must be run with
different parameters during a process of tuning. But it also
must be run with different values of a parameter (called z
above) to reduce oscillations due to the discretization of the
energy leveis. The process is described in detail, for example,
in [dP98] .

An initial parallelization method used consists then in run­
ning the program for the different values of z simultaneously.
A master process reads a files that describes the values of z
to be used and send one at a time to each slave. The slaves
receive one value, executes what is in essence the sequential
program and then ask the master for another job. When ali
z were already sent for computation to some slave, the next
slave to request a job will receive a finalization message.

This implementation is not considered in detail here. lt
has a good speedup (only somewhat restricted by the fact that
different zs have different computing times), but lack scala­
bility both on the number of processors and on the problem
size. It does not scale with the number o f processors because
the number of different zs is limited (about eight are used).
Also, to have more precision in the computations, needed for
some problems, it is necessary to grow the size of the matri­
ces, and this leads to a huge use o f memory resources. As ali
matrices from one z need to be stored on the memory of the
same node, the amount o f memory in one node is a limitation
to the precision achieved.

It is important then that the computations of each value of
z be done in parallel. This is the goal of the second parallel
implementation.

I
I

Fig. 5. Communication of parent data between processes (parity is not
shown). Shadow sectors does not do any computations. they only store
data.

C. Parallelizing Sector Computations

The computations done in each sector qsp are to an ex­
tent independent o f the computations in another sector in the
same phase. So it is possible to parallelize the program by
distributing the computation o f the sectors.

But the computations are not totally independent, due to
the data dependencies depicted in figure 4:

• for the construction of the Hamiltonian, data from the
neighbors in the horizontal and vertical, here called par­
ents, directions of figure 4 are needed;

• for the computation of the new pages, data from the
neighbors in the diagonal in figure 4, here called just
neighbors, are needed.

We note here that, when a sector is being computed, its par­
ents are not active (they will be active in the next phase).
It should also be noted that these two communications are
needed in different moments during the computations (see
section 1-C).

The parallelization is based on a division of the sectors
(figure 2) through the directions q and s, but not p. The
division in direction p will introduce much more commu­
nications and synchronizations between processes for large
blocks. Each process has then a certain amount of sectors to
compute and additionally some shadow sectors to store data
from sectors that it needs from its neighbor processes (these
are the hatched sectors in figures 5 and 6).

Figure 5 shows the communication of parent data to its
shadow (only one process and its neighbors is shown).

After the diagonalization of the Hamiltonian, sectors on
the border send some of ils data to the neighboring process,
where it will be put in the corresponding shadow, as in fig­
ure 6. Only neighbors up are needed, and so not ali border
sector must be sent.

4 1

Fig. 6. Communication of neighbors between processes (parity is not
shown).

TABLE 11

EXECUTION T IM ES OF SOME SECTORS.

Sector (q,s,p) Time (s)

O, 2, I 1539
-I, I, O I I 17
-2, I, O 452
3,4,0 1.77
-4, 5, I 0.05

Seclors lhal are not in lhe border can do its computalions
without waiting for these communications.

It can be seen from the description above that ample parai­
lei execution possibilities does exist, but also many synchro­
nization points limit the independent execution. The follow­
ing section shows the results of the implementation of this
program on the cluster described in section li.

IV. RESULTS

To complete the parallelization we need to decide the map­
ping o f sectors to processes. But there is a problem: the com­
putational load is very different from one sector to another.
Sectors near the origin in figure 2 do more computations than
seclors wilh larger values o f q or s. Table 11 shows total com­
putation times of selected sector on the same program run to
demonstrate lhe large differences present.

The effect o f this imbalance on the speedup o f the parallel
program can be seen by the comparison in table III. Both
times are for the execution of the same problem on 15 pro­
cessors. They differ by the fact lhal in one run ali sectors with
the same value of q (sector in the same line of figure 2) are
computed by the same processor; lhe other run distributed

four sectors, (q, s) and (q,s + 1) in both parities, to each pro­
cess (called fine distribution in table lll), and maps the pro­
cesses to the processors in a round-robin scheme. This last
division is the most aggressive possible without dividing also
the parities; its advantage is that the sector with Iarge com­
putational load can be distributed to different processors, as
happens with the round-robin scheme used. A further divi­
sion of (q,s) from (q,s + 1) would not help, because when
one is active the other is inactive. The advantage can be seen
in the results shown in table ITI: an almost doubling of the
speedup.

TABLE 111

EXECUTION T IME FOR 15 PROCESSORS, WITH TWO DIFFERENT

MAPPING OF SECTORS TO PROCESSORS.

Division 7ime (hours)

By !ines 3.4
Fine 1.8

Using the last division and mapping scheme cited on
the previous paragraph, table IV gives execution times and
speedups (absolute with respect to sequential time o f the new
version, table I) for different number o f processors, from 3 to
16. Less then 3 processors where not tested because of a
limitation in the MPI library implementation used: MPICH
(version 1.2.0) has problems starting too many processes on
the same processing node.

T A BLEIV

E XECUTION T IMES (T) ANO ABSOLUTE SPEEDUP (S) OF THE

PARALLEL PROGRAM .

p T (hours) s
03 4.0 1.7
04 7.6 0.9
05 3.5 1.9
06 2. 1 3.3
07 2. 1 3.2
08 3. 1 2.2
09 2. 1 3.2
10 1.9 3.5
li 2. 1 3.3
12 2. 1 3.3
13 2.0 3.4
14 1.8 3.8
15 1.8 3.7

42

Some problems can be seen by these results, ali of them
related with the Ioad imbalances described in the discussion
o f the results o f table li:

I . The efficiency is not good, being about 50% for the
better results. This is because the large computation
time differences among the sectors make a load bal­
anced mapping almost impossible.

2. The speedup does not grow after six processors. This
is due to the fact that, after six processors are available,
ali processes with very high computation times are in
different processors and so the total computation time
is dependent only on the computation time of the slow­
est process. If we compare the execution time of the
most demanding sector with the total execution time we
come to the conclusion that the theoretical maximum
speedup achievable is 5.5, disregarding communication
times. We see then that the factor that limits the speedup
are the load imbalances, with communication costs of
second importance.

3. Computation with four processors is slower than wi th
three processors, and with eight processors is slower
than with seven. This is an anomaly due to the fact
that, with this number of processors, the round-robin
mapping scheme puts a process with many calculations
together in the same processor with the slowest process,
thus resulting in sensibly enlarged total time.

In spite of the low efficiency achieved, the parallel pro­
gram is very useful, because being able to reduce to a third
the execution time of a program that may take some weeks
to execute, as is the case in some of the interesting physi­
cal problems, is very important to the advancement of the
research in the field.

V. CONCLUSIONS ANO FURTHER WORK

The numeric renormalization group method applied to the
Anderson model with two impurities is a computationally in­
tensive problem. Its execution time limits the ability of the
researcher to explore the configuration space and the com­
putation o f different physical properties; its memory require­
ments limit the precision that can be achieved. A parallel
implementation of the method can help solve these two prob­
lems by distributing the computations and the data set among
many processing nodes.

This work shows that a parallelization is possible and
achieves significant reductions in execution times, as shown
in section IV, although with somewhat limited efficiency in
the use of the resources and scalability.

The problem has shown to be amenable to cluster com­
puting, because it is not lirnited by communication costs, the
weaker part of clusters of commercial hardware for parallel
computing.

Efficiency and scalabil ity can be enhanced by combining
the parallelization described in section III-C, and whose re-

I
\

I
\

\

I
\

sults are shown in section IV, with that described in sec­
tion III-B based on parameter variation. This will enable, for
example, to achieve speedup with the use o f ali 16 processors
in our cluster by running four parameter sets in parallel. This
is a simple extension of the work already done and is being
worked out now.

Another form to increase scalability and efficiency is to
allow division by parity. This may enable a doubling on
the scalability because sectors that differ only in the parity
have almost the same computational difficulty, which means
that the two heaviest sectors go always to the same processor
in the parallelization described above. The problems with
this solution are that the communications and synchroniza­
tion grow significantly and that the parallel algorithm is more
complex. An implementation under these !ines is being con­
sidered.

To reduce the scalability limitations further the solution
will be to parallelize the computations done inside a sec­
tor. These computations include (section 1-C) diagonaliza­
tion and a form of matrix multiplication (to compute the
pages). These computations could be parallelized with the
use o f ScaLapack [BCC+97], although a careful study is nec­
essary to enable the harmonious integration of the existing
parallelization with that done by the ScaLapack routines.

The implementation of these alternatives will increase the
importance of communication costs for the performance of
the parallel program. The assessment of the usefulness of
clusters under these conditions wi ll be of great interest.

ACKNOWLEDGMENTS

We would like to thank Professor Luis Nunes de Oliveira
for the useful collaboration at severa! stages. Financiai
support from FAPESP under grant number 98/1468 1-8 and
scholarship number 99/04805-4 (ES) is acknowledged.

REFERENCES

(AA64) S. Alexander and P. W. Anderson. lnteraction betwccn local­
ized s tates in metais. Phys Rev, 133(6), 1964.

[ACP96] T. E. Anderson. D. E. Culler, and D. A. Patterson. A case for
now. IEEE Micro, 1(15), 1996.

(And6 1) P. W. Anderson. Localized magnetic states in metais. Phys
Rev, 124(1), 1961.

(BCC+97) L. Blackford, J. Choi, A. Cleary, E. o· Azevedo, J. Demmel,
I. Dhillon. J. Dongarra. S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley. ScalApack User's
Guide. S IAM, 1997.

[CPL097] S. C. Costa, C. A. Paula, V. L. Libero, and L. N. Oliveira. Nu­
merical renormalization-group computation of specific heats.
Phys. Rev. 8 , 55(1), 1997.

(CSG99] David E. Culler. Jaswinder Pai S ing, and Anoop Gupta.
Parai/e/ Computer Architecture. A Hardware/Software Ap­
proach. Morgan Kaufmann. 1999.

[dP981 C. A. de Paula. Densidade espectral para o modelo de An­
derson de duas impurezas. PhD thesis, IFSC-USP, 1998.

[Fos95) lan Foster. Designing mui 8uilding Parai/e/ Programs. Ad­
dison Wesley. 1995.

[Fou] Free Software Foundation. The gnu project,
http: I /www. gnu. org. visitcd 2001105/04.

43

[GL96] Willian Gropp and Edwing Lusk. User's Guide for MPICH,
A Portable lmplementation of MP!. Argonne National Labo­
ratory. 1996.

[Kcr(Thc Linux Kcmel. http : //www.kernel.org. visited
200 1/05/04.

[KMWW80] H. R. Krishna-Munhy, J. W. Wilkins, and K. G. Wi lson.
Renormalization-group approach to Lhe anderson model of di­
lute magnetic alloys. Phys Rev 8 , 21(3}, 1980.

[Mes95) Messagc Passing Interface Forum. MP!: A Message-Passing
lmerjace Standard, 1995.

[Oii92] L. N. Oliveira. The numerical renormalization group and the
problem of impurities in metais. Braz. J. of Phys., 22(3).
1992.

[Ste951 T. Sterling. Beowulf: a pamllcl workstation for scientific
computing. In Proc. of the 1995 11111. Conf 0 11 Parai/e/ Pro­
cessing, 1995.

[Str97) Bjame Stroustrup. The C++ Programming LAnguage. Addi­
son Weslcy, 3rd edition cdition, 1997.

[Wil75] K. G. Wilson. The renormalization group: criticai phenornena
and the kondo problern. Rev of Mod Physics. 47(4), 1975.

[YW090] M. Yoshida, M. A. Whitaker, and L. N. Oliveira.
Renorrnalization-group calculation of excitation propenies
for impurity models. Phys. Rev. B, 41 (3). 1990.

