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Abstract-
The computation of physical properties of dilute magnetic alloys is 

a computationally intensive task. In principie, il consists on lhe diago­
nalization of a huge malrix. Through the use of a suitable base and of 
lhe rcnormalization group method, lhe diagonalization can be simpli­
fied to lhe iterative dingonalization of a sei of smaller matrices (of lhe 
order of some hundreds of lines and columns). The resulting problcm 
is nevertheless stiU too large if enough precision is desired. Wc describe 
here lhe parallel implementation of an algorithm for this problem in a 
duster. The results show that lhe implementation achieves good reduc­
tion of cxecution times, but lacks speedup and scalability due to load 
balancing problems. We analyze lhese problems and suggesl palhs to 
their resolution. 

Keywords-parallel processing, clusters, message passlng, Anderson 
model, renormalization group. 

I. I NTRODUCTION 

Anderson LAnd6 I] h as proposed a model for dilute mag­
netic a lloys with one impurity that was later extended to two 
impurities [AA64]. 

The numeric renormalization group method [Wil75), 
[KMWW80] is often used for computations with lhis model, 
due to many advantages discussed elsewhere [Oii92]. The 
method is numerically efficient, but for the two impurities 
problem intensive in both computing time and storage space. 

The process consists of the iterative diagonalization of a 
real , symmetric matrix H, the quantum Hamiltonian of the 
model. In a typical case, the dimension o f the matrix to be di­
agonalized in each iteration is of order 104 . Using a suitable 
basis, the matrix is block diagonal and the process can lhen 
be simplified to the diagonalization of about hundred smaller 
matrices (in each iteration), the Iarger with dimension o f the 
order of eight hundred. 

To compute some physical property, many program runs 
are needed, to tune some parameters and to variate others in 
order to reduce typical oscillations of the method. 

This short description shows clearly that a high perfor­
mance computer system is needed to tackle this problem. 
With the constant reduction of feature size of the chips the 
use of parallel architectures in various leveis of implemen­
tation has become common practice [CSG99] . In special, 
lhe high performance o f personal computers and commercial 
network hardware has made lhe use of networks of worksta­
tions for high performance computing attractive [ACP96]. 
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This work describes lhe implementation o f a parallel ver­
sion of a renormalization group program in a Beowulf-like 
[Ste95] cluster. 

A. Anderson Model 

Initially proposed [And6 I] for the description o f local­
ized magnetic moments, lhe Anderson model can also be ap­
plied to di lute magnetic alloys. Localized magnetic moments 
are found in non-magnetic metais containing ionic impurities 
with incomplete valence orbitais (orbital dor f). 

The host non-magnetic metal is represented by a conduc­
tion band with momenta k and energies ek. The impurity 
Iies on a different energy levei, separated from the conduc­
tion band. The levei added by the impurity is characterized 
by the energy of the d (or f) orbital e d. wilh spin degeneracy 
a. According to the Pauli exclusion principie, lhere are four 
configurations for the impurity orbital: empty, one electron 
wilh spin up, one electron with spin down or two electrons, 
one up and one down. The coupling o f the impurity with the 
conduction band is represented through the hibridization V. 
The transition rate between the impurity and the conduction 
band is computed by Fermi's golden rule. The Coulombian 
repulsion between electrons in the same orbital U reduces the 
probability o f double occupation o f lhe impurity orbital and, 
if é d is negative, increases the probability of single occupa­
tion. Figure I gives a schematic representation o f the model. 
The Hamiltonian of the model is g iven by: 

H = L ekcL,. cku + éd L C~17 Cdu + 
IT 

V L (ct
17

Cdu + h.c.) + Uc~tCdtC~.J.Cd.J. ( I) 
ku 

where ct creates an electron with momentum k and spin 
ku 

a = ±1/2 in the conduction band while c~17 creates an elec­
tron in lhe impurity orbital. The abbreviation h.c. indicates 
that the hermitian conjugate of lhe preceding term should be 
also included. 

The Anderson Hamiltonian was at first analyzed by per­
turbative methods, but the first treatment able to describe the 
whole temperature range was lhe numerical renormalization 
group melhod (see subsection 1-B). 
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Fig. I. Schematic representation of the one impurity Anderson model. The 

host non-magnetic metal is represented by a half- filled conduction band 
with width 2D and states with energy f:k. The magnetic impurity is 
characterized by states with energy êd· U is the Coulombian repulsion 
between e lectron occupying the same impurity orbital. lnteraction be­
tween impurity and conduction band is through hibridization V. 
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Fig. 2. Block organization of the Hamiltonian in charge q, spin s and parity 
p. Each block is called a secror and labeled qsp 

As the single impurity case was already thoroughly stud­
ied, research now focus on impurity agglomerates. The 
two impurities case considered in this work is the simples! 
one that takes the interaction of many impurities into ac­
count. Its Hamiltonian is an extension of the Hamiltonian 
I, see [AA64]. 

The two impurities problem has inversion symmetry: the 
Hamiltonian does not change under the exchange of the two 
impurities. As a consequence, the states of the conduction 
band can be classified according to their parity: the ones 
which change signal under an exchange (the odd states) and 
the ones that does not change signal (the even ones). The 
states can then be classified through three characteristics: 
their electric charge q, their spin s and their parity p . The 
diagonalization process can then be done in sub-matrices 
where ali states have the same values for q, s and p. The 
whole Hamiltonian may be visualized as a set of these sub­
matrices, as shown in figure 2 

B. Numerical Renormalization Group Method 

In the numerical renormalization group method the con­
tinuum of energy leveis of the conduction band is subjected 
to a logarithmic discretization, proposed by Wilson [Wil75]. 

In this work, we use an altemate discretization procedure 
that introduces another parameter, usually called z. The pro­
cedure is described in [YW090], [CPL0 97]. Energies are 
chosen so that the Fermi energy is zero e F = O and energies 
less than - D or greater than D are not considered. The in­
terval between - D and D is divided in pieces as shown in 
figure 3. 
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Fig. 3. Logarithmic discretization of the conduction band. Energies from 
-Dto D, measured from the Ferrni energy f:F = O, are divided in a 
intervals at rales A - t, where A is a discretization parameter . 
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Fig. 4. Active and inactive sectors in one phase. The arrows shows data 
dependencies. (To simplify the figure, parities are not considered.) 

C. l terative Process 

The number of states in the base of the Hamil tonian (and 
therefore the dimension of this Hamiltonian) grows very fast. 
For example, already in the second iteration there are 2 16 

states. It is thus mandatory to place some limit on the size of 
the matrices, what is achieved by neglecting states with ener­
gies greater than a limit, because these have lower probabi lity 
and are not thermodynamically relevant. 

Each iteration is done in two phases, called high and low, 
with only half of the sectors (distributed as in a chess-board) 
altemately active in each phase (fig. 4). This means that in a 
given moment only half o f the sectors will be computing. 

The operations in each phase can be summarized as fol­
lows: 

• execution parameters are adjusted; 
• neighboring sectors to the north, south, east and west 

(fig. 4, continuous arrows) are consulted to compute the 
new states; 

• the Hamiltonian is computed using values from the other 
iteration (eigenvalues and invariant matrix elements, the 
latter stored in structures that will be called here pages); 

• the Hamiltonian is diagonalized (computation of the 
eigenvalues and eigenvectors); 

• new values for the pages are computed using eigenval­
ues and eigenvectors o f this sector ando f two neighbors 
at northeast and northwest (fig. 4, interrupted arrows); 

• thermodynamic values of interest are computed and 
saved in a fi le after ali sectors are computed as above. 



The first iteration, called iteration - 1, is handled separately 
and given as input to the program. 

Il. TOOLS 

The continuous reduction of feature size in VLSI tech­
nologies, with the consequent possibilities to increase the 
clock rates and the number o f transistors per chip has resulted 
in a convergence in the parallel computer architecture field 
[CSG99], in the possibility to attack new problems [Fos95] 
and in the use of commercial, low cost systems to do parallel 
processing, as in network of workstations [ACP96] and the 
Beowulf project [Ste95]. 

In this work, the system used is a cluster of personal 
computers with 450 MHz K6-III processors, 256 Mbytes of 
memory, each with its own system, swap and temporary disk 
space. The computers are connected by a ELhernet hub and 
a Fast Ethernet swilch. The Ethernet connection is used to 
mount remote user file system and for administration. The 
Fast Ethernet connection is dedicated to communications of 
the parallel applications. The systems under Linux kernel 2 .2 
[Ker], and the program development is done using the GNU 
tools [Fou] and an MPI [Mes95] implementation from the 
Argonne National Laboratory (MPICH) [GL96]. 

III. IMPLEMENTATION 

The language chosen for the implementation was C++ 
[Str97] and for the communication between the parallel pro­
cesses an MPI library [GL96] was used. 

The first step was to rewrite an existing sequential program 
in an object oriented style. It followed an analysis of data de­
pendencies to assess the parallelization possibilities and the 
corresponding communication costs. 

As already explained (see section I) the program must be 
run for many different values of some parameters. This fact 
was the starting point for a first parallel version, based on the 
variation o f input parameters. 

To avoid some limitations o f this parallelization method, a 
second parallelization was made, based on the parallel exe­
cution o f the calculations o f each sector. 

The following subsections describe these implementa­
tions. 

A. Sequential Version 

The development of a new sequential version of the pro­
gram had three objectives: 

I. to get acquainted with the technical details of the pro­
gram; 

2. to organize the program in such a way as to faci litate 
the parallelization process, specially through the use of 
object oriented techniques; 

3. to reduce the amount o f memory copying in some parts 
o f the program. 
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TABLEI 

EXECUTION TIMES ( I N HOURS) FOR THE ORIGINAL ANO NEW 

SEQUENTIAL VERSIONS 

Original New Reduction 

Small 0.70 0.24 66% 
Medium 20 6.7 67% 
Large 65 21 68% 

The reduction in memory copying together with Lhe sim­
plification of some functions have resulted in a significant 
reduction in execution time. Times of the new version are 
about a third of the limes of the old version, as exemplified 
by the typical result o f table I for three problem sizes (small, 
medium and large). 

8 . Parameter Variation 

As stated above (section I) Lhe program must be run with 
different parameters during a process of tuning. But it also 
must be run with different values of a parameter (called z 
above) to reduce oscillations due to the discretization of the 
energy leveis. The process is described in detail, for example, 
in [dP98] . 

An initial parallelization method used consists then in run­
ning the program for the different values of z simultaneously. 
A master process reads a files that describes the values of z 
to be used and send one at a time to each slave. The slaves 
receive one value, executes what is in essence the sequential 
program and then ask the master for another job. When ali 
z were already sent for computation to some slave, the next 
slave to request a job will receive a finalization message. 

This implementation is not considered in detail here. lt 
has a good speedup (only somewhat restricted by the fact that 
different zs have different computing times), but lack scala­
bility both on the number of processors and on the problem 
size. It does not scale with the number o f processors because 
the number of different zs is limited (about eight are used). 
Also, to have more precision in the computations, needed for 
some problems, it is necessary to grow the size of the matri­
ces, and this leads to a huge use o f memory resources. As ali 
matrices from one z need to be stored on the memory of the 
same node, the amount o f memory in one node is a limitation 
to the precision achieved. 

It is important then that the computations of each value of 
z be done in parallel. This is the goal of the second parallel 
implementation. 
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Fig. 5. Communication of parent data between processes (parity is not 
shown). Shadow sectors does not do any computations. they only store 
data. 

C. Parallelizing Sector Computations 

The computations done in each sector qsp are to an ex­
tent independent o f the computations in another sector in the 
same phase. So it is possible to parallelize the program by 
distributing the computation o f the sectors. 

But the computations are not totally independent, due to 
the data dependencies depicted in figure 4: 

• for the construction of the Hamiltonian, data from the 
neighbors in the horizontal and vertical, here called par­
ents, directions of figure 4 are needed; 

• for the computation of the new pages, data from the 
neighbors in the diagonal in figure 4, here called just 
neighbors, are needed. 

We note here that, when a sector is being computed, its par­
ents are not active (they will be active in the next phase). 
It should also be noted that these two communications are 
needed in different moments during the computations (see 
section 1-C). 

The parallelization is based on a division of the sectors 
(figure 2) through the directions q and s, but not p. The 
division in direction p will introduce much more commu­
nications and synchronizations between processes for large 
blocks. Each process has then a certain amount of sectors to 
compute and additionally some shadow sectors to store data 
from sectors that it needs from its neighbor processes (these 
are the hatched sectors in figures 5 and 6). 

Figure 5 shows the communication of parent data to its 
shadow (only one process and its neighbors is shown). 

After the diagonalization of the Hamiltonian, sectors on 
the border send some of ils data to the neighboring process, 
where it will be put in the corresponding shadow, as in fig­
ure 6. Only neighbors up are needed, and so not ali border 
sector must be sent. 
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Fig. 6. Communication of neighbors between processes (parity is not 
shown). 

TABLE 11 

EXECUTION T IM ES OF SOME SECTORS. 

Sector (q,s,p) Time (s) 

O, 2, I 1539 
-I, I, O I I 17 
-2, I, O 452 
3,4,0 1.77 
-4, 5, I 0.05 

Seclors lhal are not in lhe border can do its computalions 
without waiting for these communications. 

It can be seen from the description above that ample parai­
lei execution possibilities does exist, but also many synchro­
nization points limit the independent execution. The follow­
ing section shows the results of the implementation of this 
program on the cluster described in section li. 

IV. RESULTS 

To complete the parallelization we need to decide the map­
ping o f sectors to processes. But there is a problem: the com­
putational load is very different from one sector to another. 
Sectors near the origin in figure 2 do more computations than 
seclors wilh larger values o f q or s. Table 11 shows total com­
putation times of selected sector on the same program run to 
demonstrate lhe large differences present. 

The effect o f this imbalance on the speedup o f the parallel 
program can be seen by the comparison in table III. Both 
times are for the execution of the same problem on 15 pro­
cessors. They differ by the fact lhal in one run ali sectors with 
the same value of q (sector in the same line of figure 2) are 
computed by the same processor; lhe other run distributed 



four sectors, (q, s) and (q,s + 1) in both parities, to each pro­
cess (called fine distribution in table lll), and maps the pro­
cesses to the processors in a round-robin scheme. This last 
division is the most aggressive possible without dividing also 
the parities; its advantage is that the sector with Iarge com­
putational load can be distributed to different processors, as 
happens with the round-robin scheme used. A further divi­
sion of (q,s) from (q,s + 1) would not help, because when 
one is active the other is inactive. The advantage can be seen 
in the results shown in table ITI: an almost doubling of the 
speedup. 

TABLE 111 

EXECUTION T IME FOR 15 PROCESSORS, WITH TWO DIFFERENT 

MAPPING OF SECTORS TO PROCESSORS. 

Division 7ime (hours) 

By !ines 3.4 
Fine 1.8 

Using the last division and mapping scheme cited on 
the previous paragraph, table IV gives execution times and 
speedups (absolute with respect to sequential time o f the new 
version, table I) for different number o f processors, from 3 to 
16. Less then 3 processors where not tested because of a 
limitation in the MPI library implementation used: MPICH 
(version 1.2.0) has problems starting too many processes on 
the same processing node. 

T A BLEIV 

E XECUTION T IMES (T) ANO ABSOLUTE SPEEDUP (S ) OF THE 

PARALLEL PROGRAM . 

p T (hours) s 
03 4.0 1.7 
04 7.6 0.9 
05 3.5 1.9 
06 2. 1 3.3 
07 2. 1 3.2 
08 3. 1 2.2 
09 2. 1 3.2 
10 1.9 3.5 
li 2. 1 3.3 
12 2. 1 3.3 
13 2.0 3.4 
14 1.8 3.8 
15 1.8 3.7 
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Some problems can be seen by these results, ali of them 
related with the Ioad imbalances described in the discussion 
o f the results o f table li: 

I . The efficiency is not good, being about 50% for the 
better results. This is because the large computation 
time differences among the sectors make a load bal­
anced mapping almost impossible. 

2. The speedup does not grow after six processors. This 
is due to the fact that, after six processors are available, 
ali processes with very high computation times are in 
different processors and so the total computation time 
is dependent only on the computation time of the slow­
est process. If we compare the execution time of the 
most demanding sector with the total execution time we 
come to the conclusion that the theoretical maximum 
speedup achievable is 5.5, disregarding communication 
times. We see then that the factor that limits the speedup 
are the load imbalances, with communication costs of 
second importance. 

3. Computation with four processors is slower than wi th 
three processors, and with eight processors is slower 
than with seven. This is an anomaly due to the fact 
that, with this number of processors, the round-robin 
mapping scheme puts a process with many calculations 
together in the same processor with the slowest process, 
thus resulting in sensibly enlarged total time. 

In spite of the low efficiency achieved, the parallel pro­
gram is very useful, because being able to reduce to a third 
the execution time of a program that may take some weeks 
to execute, as is the case in some of the interesting physi­
cal problems, is very important to the advancement of the 
research in the field. 

V. CONCLUSIONS ANO FURTHER WORK 

The numeric renormalization group method applied to the 
Anderson model with two impurities is a computationally in­
tensive problem. Its execution time limits the ability of the 
researcher to explore the configuration space and the com­
putation o f different physical properties; its memory require­
ments limit the precision that can be achieved. A parallel 
implementation of the method can help solve these two prob­
lems by distributing the computations and the data set among 
many processing nodes. 

This work shows that a parallelization is possible and 
achieves significant reductions in execution times, as shown 
in section IV, although with somewhat limited efficiency in 
the use of the resources and scalability. 

The problem has shown to be amenable to cluster com­
puting, because it is not lirnited by communication costs, the 
weaker part of clusters of commercial hardware for parallel 
computing. 

Efficiency and scalabil ity can be enhanced by combining 
the parallelization described in section III-C, and whose re-
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sults are shown in section IV, with that described in sec­
tion III-B based on parameter variation. This will enable, for 
example, to achieve speedup with the use o f ali 16 processors 
in our cluster by running four parameter sets in parallel. This 
is a simple extension of the work already done and is being 
worked out now. 

Another form to increase scalability and efficiency is to 
allow division by parity. This may enable a doubling on 
the scalability because sectors that differ only in the parity 
have almost the same computational difficulty, which means 
that the two heaviest sectors go always to the same processor 
in the parallelization described above. The problems with 
this solution are that the communications and synchroniza­
tion grow significantly and that the parallel algorithm is more 
complex. An implementation under these !ines is being con­
sidered. 

To reduce the scalability limitations further the solution 
will be to parallelize the computations done inside a sec­
tor. These computations include (section 1-C) diagonaliza­
tion and a form of matrix multiplication (to compute the 
pages). These computations could be parallelized with the 
use o f ScaLapack [BCC+97], although a careful study is nec­
essary to enable the harmonious integration of the existing 
parallelization with that done by the ScaLapack routines. 

The implementation of these alternatives will increase the 
importance of communication costs for the performance of 
the parallel program. The assessment of the usefulness of 
clusters under these conditions wi ll be of great interest. 
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