
Parallel Implementation of Elliptic Curve Method
for Integer Factorization Using Message-Passing

Interface (MPI)
E. Wolski 1, Joel G. S. Filho2, M. A. R. Dantas3

1 Electrical Engineering Department, University of Brasília
Brasília 709 19-970, Braz il

{wolski@unb.br}
2 Electrical Enginccring Department, University of Brasil ia

Brasília 709 19-970, Brazil
{joelgf@ene.unb.br}

3 Computer Science Department, University of Brasília
Brasília 70919-970, Brazil

{ mario@cic.unb.br}

Abstract-
One of the mosl prominenl syslems for seeuring elcclronic informa

lion, known as RSA (Rivesi-Shamir-Adleman) [RIV78], relies upon lhe
fact lhat il is compulalionally difficult lo faclor a large inleger inlo its
componenl prime inlegers. lf an efficicnl algorilhm is developed lhat
can factor any arbilrarily large inleger in a reaso11ab/e amounl of lime,
lhe securily value of lhe RSA syslem would be nullified.

In lhis paper we presenllhe Elliplic Curve Melhod for integer factor
i7.alion and results of its parallel implemenlation using Message-Passing
Interface (MPI).

Keywords- lnteger faclorizalion, RSA, Elliplic Curve Method, Par
aliei Processing, Cluster Compuling.

I . I NTRODUCTION

The main methods developed until today for integer fac
torization are the Elliptic Curve Method (ECM), the Multiple
Polynomial Quadratic Sieve (MPQS) and the Number Field
Sieve (NFS).

ECM is a fac toring method, due to H. W.
Lenstra [LEN87], whose expected run time is
O(cxp(c(lnplnlnp)112)(1n nn. where c ~ 2 is a
constant, n is the number to be factored and p is a nontrivial
facto r o f n. This is a sub-exponential time, mainly dependent
o f the size o f the factor p.

MPQS [POM85] and NFS [LEN93, LEN90] are methods
that use the approach of factor base and their performances
depend mainly on the size of n, the number to be factored.
MPQS has expected run time O(exp(c(ln n In In n) 112)),

where c ~ 1 is constant. NFS has expected time
O(exp(c(ln n) 113 (inln n)213)), where c is a constant de
pending on details o f the algorithm and on the form of n (an
admissible value is c = (64/9) 1 13). This is asymptotically
considerably better than the other two.

In practice, ali the three methods are important. Given
a large integer, with no information about the sizes of their
nontrivial factors, we could, typically, try ECM untilthe co-

44

factor (i.e. the quotient after successive divisions by known
prime factors) of the original number be sufficiently small.
Then we could try MPQS or NFS (in the case that cofactor is
greater than about I I O digits), i f the cofactor doesn ' t be itself
a prime number.

In this paper we are interested, particularly, on the results
o f implementation o f ECM using Message-Passing Interface
(MPI) on a cluster of workstations. Some results of syn
chronous and asynchronous communication implementation
are also presented.

The paper is organized as follows. In section 2 the parallel
cluster environment considered in the article is presented. In
section 3 we explain the ECM. Our experimental results are
presented in section 4 . Finally, in section 5, we present our
conclusions.

11. PARALL EL CLUSTER ENVJRONMENT

Workstations clustered together either physically or vir
tually represent interesting hardware platforms to meet the
growing computational demand of many organizations. In
addition, as presented in [DANO I] , tacking some issues o f
this configuration (e.g. load balancing) the environment can
be considered to some complex applications such as the fac
torization problem.

The configuration considered in the article is represented
by eight loosely-coupled IBM personal computers (without
monitor, keyboard or mouse) interconnect by a 100 Mbps
switch. The switch has an equivalent function of lhe inter
connection network found on paralle l machine. Only one
machine has ali peripheral items (monitor, keyboard and
mouse) because it works as a monitor o f the cluster (i.e. a
machine from where we install ali software packages and
some management actions are taken). Table I shows more

I
\

I
I
I
I
I

characte ristics of cluster environment.

TABLE I

C LUSTER ENVIRONMENT

Processar Architecture Intel Pentium 11
Clock (MHz) 350 MHz
Cache 51 2 Kb
Memory 32Mb
Switch throughput I O-I 00 Mbps
Operating System Linux kernel 2.2. 16

The cluster was designed to execute only local parallel ap
plications and it was not connected to main campus network.
Ali experiments were executed in a quite workload environ
ment (i.e. the cluster was dedicated to our experiments with
out any other user or application).

Parallel software environments are designed to enhance
the execution of concurrent tasks, achieving reasonable par
a liei speedup. The paralle l programming environmenl used
in this work is based on MPI standard [MPI94, PAR94]. The
particular implementation used is mpich 1.2.0, from the Ar
gonne National Laboratories.

Multiple-precision arithmetic is necessary because the
number n which we want to factor may be much larger than
can be represented in a single computer word (otherwise the
problem is trivial). As a mulliple-precision arithmetic pack
age, it was used the Miracl (Multiprecision Integer and Ra
tional Arithmetic C/c++ Library), version 4 .4 [MIRO I].

111 . ELLIPTIC CURVE M ETHOD

In 1985 H. W. Lenstra proposed the ECM, one o f the three
main methods in use today, together with MPQS and NFS. It
possesses a number of properlies which make it useful even
i f it is only used in conjunction with olher a lgorithms.

An elliplic curve over a field J(of characteristic not 2 is
the set of solutions (x, y) E I< x I< to a cubic equation

(I)

togelher wilh a special point (conceplually (oo,oo)) called the
poinl al infinity. There is one reslriction to the coefficienls in
equalion I : the discriminant ofthe cubic polynomial musl be
nonzero, i.e.,

The points on an elliptic curve form an abelian group
E(K), when the group operations are suitably defined. The
negalio n of the point at infinily is itself; the negation of any
otherpoint P = (x 1,yl) is definedto be-P = (xJ,-Yt).
For addition, suppose lhat P and Q are two points on the
elliptic curve. If eilher the P or Q is the point al infinity,

45

10

a
6

4

----- Q

o
-2

-4

-6

.a R=P+Q '\.

-10
-4 -3 ·2 -1 o 2 3 4 5 6

Fig. I. Poinl addition at curve'!! = x3 - 7x + 5

lhen define P + Q to be the other point. Otherwise sup
pose P = (x1,yl) and Q = (x2,y2). If Xt :f; x2, then
define P + Q =R, where - Ris the po int where the straight
tine through P and Q re-intersects (see figure I). I f instead
P = Q, lhe duplication of the point P is the point where
the straight tine langent to lhe curve in P re-inlersecls. A
calculation gives

Y3 = A(x3- X t) + Yt

..\ = Y2 - Yt if p :f; Q
X2- Xt

>. = 3xi +a if p = Q.
2yl

Ali group operations are defined in terms of ordinary ad
dition, subtraction, multiplication, division, and compari
son (no square roots), and are meaningful over arbitrary
fie lds where 2 :f; O. In particular, they are meaningful if
J(= GF(p), where GF(p) is the finite fie ld o f order the
odd prime p. The resulting elliplic curve gro up E(GF(p))
is finile; Hasse [SIL86] showed that its order is p + 1 - r,
where JrJ :::; 2 .;p. By chang ing the constants in equation I,
we get another curve, whose order is usual ly different.

I f n is composite, say n = pq where p and q are dislinct
odd primes, then the ring Z fnZ is not a field, but we can use
equatio n I to define a curve and a ttempt to use the algebraic
ru les to do group operations modulo n . We will fa il (i.e.,
be unable to execute the algebraic operations) only i f we at
tempt to divide by a nonzero, non-invertible number modulo
n. Such a denominator (called a zero divisor) will be d ivisi
ble by por q but not both, and will give usa factor of n.

A. ECM Examples

I . In 1995, it was completed the the factorization of the
309-decimal digit (I 025-bit) Fermat number F 1o =
2

21 0 + 1. In fact

F10 = 45592577 · 6487031809·

4659775785220018543264560743076778192897·P252

where 46597 ... 92897 is a 40-digit prime and P2s2 =
13043 ... 24577 is a 252-digit prime. The computation,
which is described in [BRE99],took about 240 Mips
years. A Mips-year is the amount of computation that
can be performed in one year by a single DECNAX
111780.

2. The largest facto r known to have been found by ECM is
the 54-digit factor

484061254276878368125726870

789180231995964870094916937

of (643 - 1)42 + 1, found by Nik Lygeros and Michel
Mizony with Paul Zimmermann's GMP-ECM program
[ZIM99) in December 1999 (for more details, see
[BREOO]).

8 . The Second Phase

Lenstra elliptic curve algorithm can be speeded up by the
addition of a second phase. The idea of the second phase is
to finda factor in the case that the first phase terminates with
a group element P f (oo,oo), such that I(P}I is reason
ably small (say O(m2)). ((P) is a cyclic group generated by
P.) There are severa! possible implementations of lhe sec
ond phase. One of the simplest uses a pseudorandom walk in
(P). There is a good chance that two points in the random
walk will coincide after O(I(P}I) steps, and when this occurs
a nontrivial factor of n can usually be found. Details of this
and other implementations o f the second phase may be found
in [BRE86, BRE99, DIX93].

C. Para/lei lmplementation of ECM

Using ECM, each new trial (i.e, each new curve) is in
dependent. So long as the expected number of trials is
much larger than the number P of processors available, lin
ear speedup is possible by performing P trials in parallel. In
fact, if T1 is the expected run time on one processar, then
the expected run time on a MIMO parallel machine with P
processors [BRE99) is

46

IV. EXPERIMENTAL RESULTS

The experimental work consisted o f implementing the par
aliei version of the ECM using mpich, based on sequential
version available in Miracl. The programming language used
was C.

The implementation was based on a SPMD (Simple Pro
gram Multiple Data) approach and on the following proce
dures:

I. We took the sequential implementation o f the Lentra al
gorithm available in the Miracl package.

2. The partitioning phase was naturally defined (i.e., for
each new curve we have a partition).

3. The communication phase was defined as follows: the
master process performs an initial broadcast in order to
transmit to ali processes the value and size of the num
ber n to be factored. Ali remaining communication is
made through send/receive primitives, existing two ver
sions to be compared: synchronous and asynchronous
mode. We use control messages to tell a process that
it will receive the parameters of a new trial, or to tell
it to finalize the program. Other control messages in
form the master process that a slave found a factor or
that this slave wants new parameters to perform another
trial. The data messages are used to te ll a process the
parameters of a new curve, in master-slave direction, or
to receive the found factor, as this is the case, in slave
master direction.

4. The agglomeration and mapping phases tend to become
a single phase in SPMD implementation (as the map
ping becomes implicit to agglomeration) [FOS95]. The
single mas ter and P - 1 si aves approach was convenient
for the processar amount used and the number size to be
factored, as we will see in the graphics. Greater number
sizes to be factored and processors may require other
forms o f agglomerations and mapping, like binary trees.

The data used in the tests was composed by the integers
that was factored, in ali cases generated as the product of
two primes. The size o f the integers factored and their factors
are variable and they are presented in each test. The resul ts
consider:

• the average time of the values obtained during severa!
executions with same source of data.

• the average time of the values obtained during severa!
executions with different source of data, when some
randomness is required.

• dedication o f the cluster to the experiments without any
other user or application (quite workload).

• time precision in seconds, since the total times are
greater enough to demmand a finer precision.

The performed tests looked for results that:
I. check the run time dependency of ECM related to the

nontrivial factor size.

I
\

\

\

\

\

100000

c;

~
10000 •

.~
E 1000
~ ·;; • • "' lU O
~
~ • E 10 •

•
o 20 40 no ~o 100 120

.... 4.'tor Miz c (in hitx)

Fig. 2. Graphic of obtained run times in the asynchronous parallel
implementation with fixed n

1()1)000

c;
10000 ij

~ / .
.~
E 1000
~

/ ·~ . 1()1)

~
Q

~ lO

120 140 1no 1~0 zuo 22u
Si.,c uf thc fMrturcU numhcr

Fig. 3. Graphic of obtained run times in the asynchronous parallel
implemenlation for sevcra l valucs of n

2. plot the increasing curve of run times, as the size of the
problem increase.

3. check the parallel implementation of ECM considering
the speedup, efficiency and scalability metrics.

4. compare run times between synchronous and asyn
chronous versions o f ECM implementation.

In the first test we confirm that the expected run time of
ECM is dependent on the facto r size.

Using the asynchronous parallel version and executing on
the 8 processors, we obtain the graphic of the ECM curve,
showed in figure 2, where n is a 64-digit number (~ 2 12 bits)
and p has variable sizes (26, 40, 53, 66, 80, 93, 106 bits).

We can observe the increasing run time o f ECM related to
the factor size. As MPQS (see fi gure 2) and NFS has an ap
proximately constant run time behavior in function o f the fac
tor size, a nice strategy to apply in a conjugate use o f methods
to factor random large integers would be run first ECM until
a limit of curves, or until we find small prime factors, and
then run MPQS or NFS to factor the cofactor.

In the second test, we present the sub-exponential behavior
o f run times o f ECM as the size o f n increases. Ali such used

47

7

n

:. s
~

"' .. 4
~
., 3

2

2 3 4 7 ')

1\muunt of llnJc:clumn

Fig. 4. Graphic of the speedup obtained

n have half size factors, which is the worst case for ECM. But
this fact doesn' t change the curve tendency. We can observe
in the graphic of figure 3 that the increased times fi t to a
straight line (considering the logarithmic scale). It is risky
to make an extrapolation of these results, since the size of
factored numbers and the amount o f processors are limited.

The third test checks the speedup obtained in the execution
of processes in the cluster. We took 64-dig it integers (2 12
bits) and factored them using severa! amount of processors.
The results are presented in the graphic o f the figure 4.

We define the speedup as a performance metric which
states the ratio between the average sequential code time ex
ecution and the average requi red time to execute the same
problem in a specific parallel architecture with P proces
sors. lndeed, the speedup of a parallel algorithm is given
byS= f;.

Considering that we have few processors and that we
adopted a strategy based on divide-and-conquer parallelism,
we didn't include the master process in the computation of
speedup, since this process doesn 't perform a "trial". Pro
ceeding accordingly, we have speedup I with two processors
at the origin. I f we work with a greater amount o f processors,
this detail would be less important.

ECM presents speedup very close to the linear one, for
the amount of processors used, as we could expect from the
theoretical considerations.

Let W be the problem size, i. e. the time complexity T s
of the sequential problem. This means that, if we have an
increase of the problem size, we always have a proportional
increase of computation. Furthermore, we can consider the
interprocess communication (IPC) as the biggest overhead
actor, here denoted by T0 . The overhead is a function of W
and P (the amount o f processors) and we can define it as:

T0 (W, P) = PTp - W (2)

From experimental results, we can obtain for equation 2
a very small overhead value. Therefore, the efficiency E is,

12&!'1e: lenstralo.l:!!.2g
- Broadcast - Compute CJ Send O Rccelve

o 0.025571 0.051143 0.076715 0.102287 0.127859 0.153431 0.1790

Fig. 5. Graphic of ECM execution on a 212-bit integer with a 40-bit factor

100000 1

'ü
] 10000

~
E 1000 • A. -4)'nchonou~ .c
i: vcr.ãon
~

100 • Synchmnou• "' ~ ventem
~

E l O

l U~

t-a'-."'tor 11ixc (in llitlf)

Fig. 6. Histogram of times obtaincd in synchronous and asynchronous
implementation of ECM

basically, maximal. The figure 5 shows, graphically, that the
overhead occurs at the beginning and at the end of process
ing, being the intermediate time used completely for the fac
toring computation, i.e. the communication!computation ra
tio is small. The graphic of this figure was generated from a
mpich application called jumpshot. lt shows, at y-axis, sev
era] events occuring in processors O to 7. The events are
listed at the legend. At x-axis the graphic presents the time
scale o f events occurrences. The small amount o f processors
in the cluster, however, doesn' t allow to measure, experimen
tally, the ratio between the size problem W and the number
of processors P, to which we have the efficiency maintained.

As a final test we present the performance difference be
tween the synchronous and asynchronous parallel implemen
tations of ECM. The histogram of the figure 6 shows this
difference, although small , always pointing to a better per
formance of the asynchronous version. This occurs since, in
asynchronous version, the master process may not wait un
til the next slave process sends a message to it. Instead, the
master checks whether there is a message from this process.
If not, it follows probing the next process. Later, it probes
that process again, and receives the message, as it is the case.
Indeed, the whole execution is less dependent of slow pro
cesses.

48

It is important to note that our cluster is composed by ho
mogeneous workstations. The showed difference tends to in
crease in favor of the asynchronous version using heteroge
neous stations in the cluster, as the processing time difference
among the workstations is higher than in the synchronous
case.

V. CONCLUSIONS

Among the severa] known factorization methods, Number
Field Sieve is the algorithm wich presents the better asymp
tot ically execution time. But Elliptic Curve Method and Mul
tiple Polynomial Quadratic Sieve still play important roles in
this problem. Particularly, ECM can be used as a first ap
proach i f we do not know the factors sizes. Lenstra and Ver
heul [LEN99] do a prospection of the required computational
power to factor severa] integers. A short extract from the data
presented by them is showed in the table 11.

TABLE 11
R EQU IR ED COMI'UTATIONAL POWER TO FACTOR ING INTEGERS US ING

NFS
number o f bits of n Required Mips-years
768 4 X 10!!
1024 2 X 1010

1280 5 X 10 11

1536 9 X 1012

2048 1 X 10 15

Still from this paper of Lenstra and Verheul [LEN99],
RSA of 512 and 768 bits key sizes are nomore secure. Keys
o f I 024 bits will be secure until 2002 and keys o f 1280 bits
wi ll be secure until 2008.

It is impossible to predict the next advance in integer fac
torization, but we could estimate the cryptanalytic progress
based on the evolution in the last 20 years. The number of
expected months, in average, such that cryptanalytic devel
opments affecting classic asymmetric systems (RSA and dis
crete logarithm) become two-fold more effective is 18, i.e.
we must wait 18 months, from now on, for an attack to the
same classic asymmetric system does cost half o f today com
putational effort. Therefore, the algorithmic development h as
been, historically, comparable to the hardware development
(Moore's Law).

The question of adopting a greater or smaller RSA
modulus depends on the sensibi lity of the data records to be
protected. For many records the security requirements are
not serious, in that loss o f secrecy in I O months or I O days
is acceptable. However, for some records, even I 0-year pro
tection is not sufficient. In these cases it might be prudent to
use 5,000-bit moduli or greater.

The multiple-precision library plays an important ro le in
cryptographic applications. One must have special attention

I
\

\

to use good implementation of basic operations over rings
and fields.

The ECM parallel implementation is very efficient, mak
ing the linear ·needup a possible deal. It could be used as a
parameter to test a distributed environment ("vanille" appli
cation).

lt is important to the programmer to know the characteris
tics of the algorithm to implement and the parallel environ
ment in order to explore the better implementation forrn.

It is worth to mention that a very active research area is
the parallel programming based in patterns (also known as
template-based programming). The aim is to offer to the pro
grammer an abstract environment that allows him/her, sim
ply based on high levei patterns of parallel programming,
to build parallel programs. As an example see POOMA
(Parallel Object-Oriented Methods and Applications), devel
oped by American Energy Department's Advanced Comput
ing Laboratory [POOOI].

MPI offers a good base for parallel programming develop
ment, using different environments (from network of work
stations to massive parallel processors machines), allowing
for the parallel computation a great advance in the next few
years.

ACKNOWLEDGEMENTS

This paper used the laboratory of Computer Science De
partment of University of Brasilia. We gratefully acknowl
edge their contribution.

REFER ENCES

[LEN93] LENSTRA, A. K. and LENSTRA, H. W. Jr. (editors). The De
velopment of the Number Field Sieve. Lecture Notes on Math
ematics 1554, Springer-Verlag, Bcrlin, 1993.

(FOS95) FOSTER, I. Dcsigning and Building Parallel Programs.
Addison-Wesley Longman,lnc., Sidney, Australia, 1995.

(SIL86] SILVERMAN, J. H. The Arithmetic of Elliptic Curves. volume
106 of Graduate Texts in Mathematics, page 131, Springer
Verlag, New York, 1986.

[RIV78] RIVEST. R. L.; SHAMIR, A. ; ADLEMAN, L. A method for
obtaining digital signatures and public-key cryptosystems. Com
munications ofthe ACM, v.21. p. l20-126. 1978.

)LEN87] LENSTRA, H. W. Jr. Factoring integers with elliptic curves. An·
nals o f Mathcmatics, v. l26, p.649-673, 1987.

[POM85] POMERANCE, C. The quadratic sieve factoring algorithm. Ad·
vances in Cryptology, Proc. Eurocrypt '84, v.LNCS 209,
p. l69-182, 1985. I (LEN9(l] LENSTRA, A. K.; LENSTRA. H. W. Jr.; MANASSE, M. S.;
POLLARD, J. M. The number field sieve. Proc 22nd Annual
ACM Confcrencc on Thcory of Computing. Baltimore, Mary
land, p.564-572, 1990.

[MPI941 MPI-Forum. MPI: A Message-Passing Interface Standard. Inter
national Journal of Supercomputcr Application, v.8, n.3-4,
1994.

\

[PAR94l PARALLEL COMPUTING, Special issue: Mcssagc passing in
terface. Parallcl Computing. v.20. n.4, 1994.

[BRE99] BRENT, R. P. Factorization of the tenth Fermat number. Math.
Comp., v.68, p.429-451 , 1999.

[BRE86] BRENT. R. P. Some integer factorisati·on algorithms using elliptic
curves. Australian Computcr Science Communications, v.8,
p. l49-163, 1986.

[DIX93] DIXON, B. ; LENSTRA, A. K. Massively parallel elliptic curve
factoring. Proc. Eurocrypt'92, v.LNCS 658, p.l83-193. 1993.

[BRE99] BRENT, R. P. Some parallel algorithms for integcr factorization.
European Conference on Parallcl Processing, p. l-22, 1999.

[LEN99] LENSTRA, A. K.; VERHEUL, E. R. Selecting Cryptographic
Key Sizes. http://www.cryptosavvy.com/, 1999.

IZIM99) ZIMMERMAN, P. The ECMNET Project.
http://www.loria.fr/rvzimmcrmalrccords/ccmnct.html,
1999.

IBREOO] BRENT, R. P. Large factors found by ECM.
Oxford University Computing Laboratory
ftp://ftp.comlab.ox.ac.uk/pub/Documents/techpapcrs/Richard.BrenUcha
2000.

IDANOI] DANTAS, M. A. R.; LOPES, F. M. lmproving load balancing
in a parallel cluster cnvironment using mobile agents. Accepted
paper HPCN2001 Europe, Amsterdam, 2001.

IMIROI) SHAMUS SOFTWARE. Miracl. http://indigo.ie/rvmscotU,
2001.

IPOOOI] ADVANCED COMPUTING LABORATORY. POOMA.
http://www.acl.lanl.gov/pooma, 200 I.

49

