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Abstract-
One of the mosl prominenl syslems for seeuring elcclronic informa

lion, known as RSA (Rivesi-Shamir-Adleman) [RIV78], relies upon lhe 
fact lhat il is compulalionally difficult lo faclor a large inleger inlo its 
componenl prime inlegers. lf an efficicnl algorilhm is developed lhat 
can factor any arbilrarily large inleger in a reaso11ab/e amounl of lime, 
lhe securily value of lhe RSA syslem would be nullified. 

In lhis paper we presenllhe Elliplic Curve Melhod for integer factor
i7.alion and results of its parallel implemenlation using Message-Passing 
Interface (MPI). 

Keywords- lnteger faclorizalion, RSA, Elliplic Curve Method, Par
aliei Processing, Cluster Compuling. 

I . I NTRODUCTION 

The main methods developed until today for integer fac
torization are the Elliptic Curve Method (ECM), the Multiple 
Polynomial Quadratic Sieve (MPQS) and the Number Field 
Sieve (NFS). 

ECM is a fac toring method, due to H. W. 
Lenstra [LEN87], whose expected run time is 
O(cxp(c(lnplnlnp)112 )(1n nn. where c ~ 2 is a 
constant, n is the number to be factored and p is a nontrivial 
facto r o f n. This is a sub-exponential time, mainly dependent 
o f the size o f the factor p. 

MPQS [POM85] and NFS [LEN93, LEN90] are methods 
that use the approach of factor base and their performances 
depend mainly on the size of n, the number to be factored. 
MPQS has expected run time O(exp(c(ln n In In n) 112 )), 

where c ~ 1 is constant. NFS has expected time 
O(exp(c(ln n) 113 (inln n)213)), where c is a constant de
pending on details o f the algorithm and on the form of n (an 
admissible value is c = (64/9) 1 13). This is asymptotically 
considerably better than the other two. 

In practice, ali the three methods are important. Given 
a large integer, with no information about the sizes of their 
nontrivial factors, we could, typically, try ECM untilthe co-
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factor (i.e. the quotient after successive divisions by known 
prime factors) of the original number be sufficiently small. 
Then we could try MPQS or NFS (in the case that cofactor is 
greater than about I I O digits), i f the cofactor doesn ' t be itself 
a prime number. 

In this paper we are interested, particularly, on the results 
o f implementation o f ECM using Message-Passing Interface 
(MPI) on a cluster of workstations. Some results of syn
chronous and asynchronous communication implementation 
are also presented. 

The paper is organized as follows. In section 2 the parallel 
cluster environment considered in the article is presented. In 
section 3 we explain the ECM. Our experimental results are 
presented in section 4 . Finally, in section 5, we present our 
conclusions. 

11. PARALL EL CLUSTER ENVJRONMENT 

Workstations clustered together either physically or vir
tually represent interesting hardware platforms to meet the 
growing computational demand of many organizations. In 
addition, as presented in [DANO I] , tacking some issues o f 
this configuration (e.g. load balancing) the environment can 
be considered to some complex applications such as the fac
torization problem. 

The configuration considered in the article is represented 
by eight loosely-coupled IBM personal computers (without 
monitor, keyboard or mouse) interconnect by a 100 Mbps 
switch. The switch has an equivalent function of lhe inter
connection network found on paralle l machine. Only one 
machine has ali peripheral items (monitor, keyboard and 
mouse) because it works as a monitor o f the cluster (i.e. a 
machine from where we install ali software packages and 
some management actions are taken). Table I shows more 
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characte ristics of cluster environment. 

TABLE I 

C LUSTER ENVIRONMENT 

Processar Architecture Intel Pentium 11 
Clock (MHz) 350 MHz 
Cache 51 2 Kb 
Memory 32Mb 
Switch throughput I O-I 00 Mbps 
Operating System Linux kernel 2.2. 16 

The cluster was designed to execute only local parallel ap
plications and it was not connected to main campus network. 
Ali experiments were executed in a quite workload environ
ment (i.e. the cluster was dedicated to our experiments with
out any other user or application). 

Parallel software environments are designed to enhance 
the execution of concurrent tasks, achieving reasonable par
a liei speedup. The paralle l programming environmenl used 
in this work is based on MPI standard [MPI94, PAR94]. The 
particular implementation used is mpich 1.2.0, from the Ar
gonne National Laboratories. 

Multiple-precision arithmetic is necessary because the 
number n which we want to factor may be much larger than 
can be represented in a single computer word (otherwise the 
problem is trivial). As a mulliple-precision arithmetic pack
age, it was used the Miracl (Multiprecision Integer and Ra
tional Arithmetic C/c++ Library), version 4 .4 [MIRO I ]. 

111 . ELLIPTIC CURVE M ETHOD 

In 1985 H. W. Lenstra proposed the ECM, one o f the three 
main methods in use today, together with MPQS and NFS. It 
possesses a number of properlies which make it useful even 
i f it is only used in conjunction with olher a lgorithms. 

An elliplic curve over a field J( of characteristic not 2 is 
the set of solutions (x, y) E I< x I< to a cubic equation 

(I ) 

togelher wilh a special point (conceplually (oo,oo)) called the 
poinl al infinity. There is one reslriction to the coefficienls in 
equalion I : the discriminant ofthe cubic polynomial musl be 
nonzero, i.e., 

The points on an elliptic curve form an abelian group 
E(K), when the group operations are suitably defined. The 
negalio n of the point at infinily is itself; the negation of any 
otherpoint P = (x 1,yl) is definedto be-P = (xJ,-Yt ). 
For addition, suppose lhat P and Q are two points on the 
elliptic curve. If eilher the P or Q is the point al infinity, 
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Fig. I. Poinl addition at curve'!! = x3 - 7x + 5 

lhen define P + Q to be the other point. Otherwise sup
pose P = (x1,yl) and Q = (x2,y2). If Xt :f; x2, then 
define P + Q =R, where - Ris the po int where the straight 
tine through P and Q re-intersects (see figure I ). I f instead 
P = Q, lhe duplication of the point P is the point where 
the straight tine langent to lhe curve in P re-inlersecls. A 
calculation gives 

Y3 = A(x3- X t ) + Yt 

..\ = Y2 - Yt if p :f; Q 
X2- Xt 

>. = 3xi +a if p = Q. 
2yl 

Ali group operations are defined in terms of ordinary ad
dition, subtraction, multiplication, division, and compari
son (no square roots), and are meaningful over arbitrary 
fie lds where 2 :f; O. In particular, they are meaningful if 
J( = GF(p), where GF(p) is the finite fie ld o f order the 
odd prime p. The resulting elliplic curve gro up E(GF(p) ) 
is finile; Hasse [SIL86] showed that its order is p + 1 - r, 
where JrJ :::; 2 .;p. By chang ing the constants in equation I, 
we get another curve, whose order is usual ly different. 

I f n is composite, say n = pq where p and q are dislinct 
odd primes, then the ring Z fnZ is not a field, but we can use 
equatio n I to define a curve and a ttempt to use the algebraic 
ru les to do group operations modulo n . We will fa il (i.e., 
be unable to execute the algebraic operations) only i f we at
tempt to divide by a nonzero, non-invertible number modulo 
n. Such a denominator (called a zero divisor) will be d ivisi
ble by por q but not both, and will give usa factor of n. 



A. ECM Examples 

I . In 1995, it was completed the the factorization of the 
309-decimal digit (I 025-bit) Fermat number F 1o = 
2

21 0 + 1. In fact 

F10 = 45592577 · 6487031809· 

4659775785220018543264560743076778192897·P252 

where 46597 ... 92897 is a 40-digit prime and P2s2 = 
13043 ... 24577 is a 252-digit prime. The computation, 
which is described in [BRE99],took about 240 Mips
years. A Mips-year is the amount of computation that 
can be performed in one year by a single DECNAX 
111780. 

2. The largest facto r known to have been found by ECM is 
the 54-digit factor 

484061254276878368125726870 

789180231995964870094916937 

of (643 - 1)42 + 1, found by Nik Lygeros and Michel 
Mizony with Paul Zimmermann's GMP-ECM program 
[ZIM99) in December 1999 (for more details, see 
[BREOO]). 

8 . The Second Phase 

Lenstra elliptic curve algorithm can be speeded up by the 
addition of a second phase. The idea of the second phase is 
to finda factor in the case that the first phase terminates with 
a group element P f (oo,oo), such that I(P}I is reason
ably small (say O(m2)). ((P) is a cyclic group generated by 
P.) There are severa! possible implementations of lhe sec
ond phase. One of the simplest uses a pseudorandom walk in 
(P). There is a good chance that two points in the random 
walk will coincide after O(I(P}I) steps, and when this occurs 
a nontrivial factor of n can usually be found. Details of this 
and other implementations o f the second phase may be found 
in [BRE86, BRE99, DIX93]. 

C. Para/lei lmplementation of ECM 

Using ECM, each new trial (i.e, each new curve) is in
dependent. So long as the expected number of trials is 
much larger than the number P of processors available, lin
ear speedup is possible by performing P trials in parallel. In 
fact, if T1 is the expected run time on one processar, then 
the expected run time on a MIMO parallel machine with P 
processors [BRE99) is 
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IV. EXPERIMENTAL RESULTS 

The experimental work consisted o f implementing the par
aliei version of the ECM using mpich, based on sequential 
version available in Miracl. The programming language used 
was C. 

The implementation was based on a SPMD (Simple Pro
gram Multiple Data) approach and on the following proce
dures: 

I. We took the sequential implementation o f the Lentra al
gorithm available in the Miracl package. 

2. The partitioning phase was naturally defined (i.e., for 
each new curve we have a partition). 

3. The communication phase was defined as follows: the 
master process performs an initial broadcast in order to 
transmit to ali processes the value and size of the num
ber n to be factored. Ali remaining communication is 
made through send/receive primitives, existing two ver
sions to be compared: synchronous and asynchronous 
mode. We use control messages to tell a process that 
it will receive the parameters of a new trial, or to tell 
it to finalize the program. Other control messages in
form the master process that a slave found a factor or 
that this slave wants new parameters to perform another 
trial. The data messages are used to te ll a process the 
parameters of a new curve, in master-slave direction, or 
to receive the found factor, as this is the case, in slave
master direction. 

4. The agglomeration and mapping phases tend to become 
a single phase in SPMD implementation (as the map
ping becomes implicit to agglomeration) [FOS95]. The 
single mas ter and P - 1 si aves approach was convenient 
for the processar amount used and the number size to be 
factored, as we will see in the graphics. Greater number 
sizes to be factored and processors may require other 
forms o f agglomerations and mapping, like binary trees. 

The data used in the tests was composed by the integers 
that was factored, in ali cases generated as the product of 
two primes. The size o f the integers factored and their factors 
are variable and they are presented in each test. The resul ts 
consider: 

• the average time of the values obtained during severa! 
executions with same source of data. 

• the average time of the values obtained during severa! 
executions with different source of data, when some 
randomness is required. 

• dedication o f the cluster to the experiments without any 
other user or application (quite workload). 

• time precision in seconds, since the total times are 
greater enough to demmand a finer precision. 

The performed tests looked for results that: 
I. check the run time dependency of ECM related to the 

nontrivial factor size. 
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Fig. 2. Graphic of obtained run times in the asynchronous parallel 
implementation with fixed n 
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Fig. 3. Graphic of obtained run times in the asynchronous parallel 
implemenlation for sevcra l valucs of n 

2. plot the increasing curve of run times, as the size of the 
problem increase. 

3. check the parallel implementation of ECM considering 
the speedup, efficiency and scalability metrics. 

4. compare run times between synchronous and asyn
chronous versions o f ECM implementation. 

In the first test we confirm that the expected run time of 
ECM is dependent on the facto r size. 

Using the asynchronous parallel version and executing on 
the 8 processors, we obtain the graphic of the ECM curve, 
showed in figure 2, where n is a 64-digit number (~ 2 12 bits) 
and p has variable sizes (26, 40, 53, 66, 80, 93, 106 bits). 

We can observe the increasing run time o f ECM related to 
the factor size. As MPQS (see fi gure 2) and NFS has an ap
proximately constant run time behavior in function o f the fac
tor size, a nice strategy to apply in a conjugate use o f methods 
to factor random large integers would be run first ECM until 
a limit of curves, or until we find small prime factors, and 
then run MPQS or NFS to factor the cofactor. 

In the second test, we present the sub-exponential behavior 
o f run times o f ECM as the size o f n increases. Ali such used 
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Fig. 4. Graphic of the speedup obtained 

n have half size factors, which is the worst case for ECM. But 
this fact doesn' t change the curve tendency. We can observe 
in the graphic of figure 3 that the increased times fi t to a 
straight line (considering the logarithmic scale). It is risky 
to make an extrapolation of these results, since the size of 
factored numbers and the amount o f processors are limited. 

The third test checks the speedup obtained in the execution 
of processes in the cluster. We took 64-dig it integers (2 12 
bits) and factored them using severa! amount of processors. 
The results are presented in the graphic o f the figure 4. 

We define the speedup as a performance metric which 
states the ratio between the average sequential code time ex
ecution and the average requi red time to execute the same 
problem in a specific parallel architecture with P proces
sors. lndeed, the speedup of a parallel algorithm is given 
byS= f;. 

Considering that we have few processors and that we 
adopted a strategy based on divide-and-conquer parallelism, 
we didn't include the master process in the computation of 
speedup, since this process doesn 't perform a "trial". Pro
ceeding accordingly, we have speedup I with two processors 
at the origin. I f we work with a greater amount o f processors, 
this detail would be less important. 

ECM presents speedup very close to the linear one, for 
the amount of processors used, as we could expect from the 
theoretical considerations. 

Let W be the problem size, i. e. the time complexity T s 
of the sequential problem. This means that, if we have an 
increase of the problem size, we always have a proportional 
increase of computation. Furthermore, we can consider the 
interprocess communication (IPC) as the biggest overhead 
actor, here denoted by T0 . The overhead is a function of W 
and P (the amount o f processors) and we can define it as: 

T0 (W, P) = PTp - W (2) 

From experimental results, we can obtain for equation 2 
a very small overhead value. Therefore, the efficiency E is, 
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basically, maximal. The figure 5 shows, graphically, that the 
overhead occurs at the beginning and at the end of process
ing, being the intermediate time used completely for the fac
toring computation, i.e. the communication!computation ra
tio is small. The graphic of this figure was generated from a 
mpich application called jumpshot. lt shows, at y-axis, sev
era] events occuring in processors O to 7. The events are 
listed at the legend. At x-axis the graphic presents the time 
scale o f events occurrences. The small amount o f processors 
in the cluster, however, doesn' t allow to measure, experimen
tally, the ratio between the size problem W and the number 
of processors P, to which we have the efficiency maintained. 

As a final test we present the performance difference be
tween the synchronous and asynchronous parallel implemen
tations of ECM. The histogram of the figure 6 shows this 
difference, although small , always pointing to a better per
formance of the asynchronous version. This occurs since, in 
asynchronous version, the master process may not wait un
til the next slave process sends a message to it. Instead, the 
master checks whether there is a message from this process. 
If not, it follows probing the next process. Later, it probes 
that process again, and receives the message, as it is the case. 
Indeed, the whole execution is less dependent of slow pro
cesses. 
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It is important to note that our cluster is composed by ho
mogeneous workstations. The showed difference tends to in
crease in favor of the asynchronous version using heteroge
neous stations in the cluster, as the processing time difference 
among the workstations is higher than in the synchronous 
case. 

V. CONCLUSIONS 

Among the severa] known factorization methods, Number 
Field Sieve is the algorithm wich presents the better asymp
tot ically execution time. But Elliptic Curve Method and Mul
tiple Polynomial Quadratic Sieve still play important roles in 
this problem. Particularly, ECM can be used as a first ap
proach i f we do not know the factors sizes. Lenstra and Ver
heul [LEN99] do a prospection of the required computational 
power to factor severa] integers. A short extract from the data 
presented by them is showed in the table 11. 

TABLE 11 
R EQU IR ED COMI'UTATIONAL POWER TO FACTOR ING INTEGERS US ING 

NFS 
number o f bits of n Required Mips-years 
768 4 X 10!! 
1024 2 X 1010 

1280 5 X 10 11 

1536 9 X 1012 

2048 1 X 10 15 

Still from this paper of Lenstra and Verheul [LEN99], 
RSA of 512 and 768 bits key sizes are nomore secure. Keys 
o f I 024 bits will be secure until 2002 and keys o f 1280 bits 
wi ll be secure until 2008. 

It is impossible to predict the next advance in integer fac
torization, but we could estimate the cryptanalytic progress 
based on the evolution in the last 20 years. The number of 
expected months, in average, such that cryptanalytic devel
opments affecting classic asymmetric systems (RSA and dis
crete logarithm) become two-fold more effective is 18, i.e. 
we must wait 18 months, from now on, for an attack to the 
same classic asymmetric system does cost half o f today com
putational effort. Therefore, the algorithmic development h as 
been, historically, comparable to the hardware development 
(Moore's Law). 

The question of adopting a greater or smaller RSA
modulus depends on the sensibi lity of the data records to be 
protected. For many records the security requirements are 
not serious, in that loss o f secrecy in I O months or I O days 
is acceptable. However, for some records, even I 0-year pro
tection is not sufficient. In these cases it might be prudent to 
use 5,000-bit moduli or greater. 

The multiple-precision library plays an important ro le in 
cryptographic applications. One must have special attention 



I 
\ 

\ 

to use good implementation of basic operations over rings 
and fields. 

The ECM parallel implementation is very efficient, mak
ing the linear ·needup a possible deal. It could be used as a 
parameter to test a distributed environment ("vanille" appli
cation). 

lt is important to the programmer to know the characteris
tics of the algorithm to implement and the parallel environ
ment in order to explore the better implementation forrn. 

It is worth to mention that a very active research area is 
the parallel programming based in patterns (also known as 
template-based programming). The aim is to offer to the pro
grammer an abstract environment that allows him/her, sim
ply based on high levei patterns of parallel programming, 
to build parallel programs. As an example see POOMA 
(Parallel Object-Oriented Methods and Applications), devel
oped by American Energy Department's Advanced Comput
ing Laboratory [POOOI]. 

MPI offers a good base for parallel programming develop
ment, using different environments (from network of work
stations to massive parallel processors machines), allowing 
for the parallel computation a great advance in the next few 
years. 
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