
Mâtrix calculations with SIMD floating point 
instructions on x86 processors 

André Muezerie1
, Raul J. Nakashima2

, Gonzalo Travieso3
, Jan Slaets4 

1
' 
2
•
3

•
4 Departmento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo 

Av. Dr. Carlos Botelho, 1465 CEP 13560-250 - São Carlos - SP- Brazil 
1 
{ andremuz@if.sc.usp.br}, 2{junj i @if.sc.usp.br} , 3{gonzalo@ if.sc.usp.br}, 4{jan@if.sc.usp.br } 

Abstract-
This paper describes and evaluates the use of SIMD 

noating point instructions for scientific calculations. The 
performance of these instructions is compared with ordinary 
noating point code. Implementation concerns, the effects of 
loop unroll as well as matrix size variations are analyzed. 
Execution speeds are compared using matrix multiplication. 
The intrinsic incompatibility of the SIMD noating point 
implementations used by different manufacturers requires the 
use of two different instruction sets: 3DNOW! on the AMD K6 
processor and the Streaming-SIMD Extensions (SSE) on the 
Intel Pentium 111 processor. 

Keyword.1~ SIMD, 3DNOW!, SSE, vector operations, 
performance evaluation. 

I. INTRODUCTION 

Today' s microprocessors employ nearly ali the 
performance enhancing techniques used in older 
main frames and super-computers. Modem PC processors 
are now superscalar and their microarchitectural features, 
based on pipelining and instruction levei paralle lism, 
overlapping instructions on separate resources, made it 
possible to obtain extraordinary leveis of parallelism and 
speeds [DIE 99]. 

The fast growing multimedia applications, demanding 
significant processing speeds, led to the implementation of 
new instructions to improve mathematical calcula tions used 
in video processing and speech recognition as well as DSP 
functionality as used in soft modems, ADSL, MP3 and 
Dolby Digital surround sound processing. These new 
instructions are implemented using Sing le Instruction 
Multiple Data (SIMD) technology in which a single 
instruction operates in parallel on multiple pieces of data 
using superscalar implementations [INT 97]. In 1998 a set 
of SIMD tloating point instructions were made available on 
the AMD-K6 processors with the implementation of the 
3DNow! technology [AMD 99a]. Nine months later Intel 
delivered the Pentium lli with "Internet Streaming SIMD 
Extensions" denominated SSE. Up to now the use of these 
instructions is limited to specialized multimedia and DSP 
applications. 

In this paper we illustra te and evaluate the use of these 
SIMD instructions in mathematical vector operations. To 

50 

verify the speedup obtained on an AMD-K6 processor a 
matrix multiplication routine written in C is compared with 
an assembler version making use of the SIMD tloating 
point instructions. The same algorithm •is also used to 
evaluate loop unrolls exploring the functionality of the 
multiple pipelines and execution units present in the 
evaluated microprocessor architectures. Figures illustrate 
the performance improvements obtained exploring loop 
unrolls and SIMD instructions on a Pentium lii and an 
AMD-K6 processor. Matrix multiplication was chosen as a 
benchmark because of its use of linear algebra operations 
important in many algorithms. The principies applied in the 
examples used can be easily extended to other 
mathematical calculations where vector operations can be 
identified. 

li. ÜVERVIEW OFTHE SIMD IMPLEMENTATIONS 

The first implementation of vector operations in the 
microarchitecture of x86 type processors was obtained with 
lntel's MMX technology. This new technology added 57 
new instructions and 4 new data types (byte, word, double 
word and quadword integers) to the x86 basic archi tecture. 
In 1996 Intel publicly released the details of the MMX 
technology turning it part of the today's industry-standard 
x86 instruction set processors. 

Unfortunately di fferent manufacturers added completely 
di fferent architectural implementations of floating point 
SIMD extensions to their x86 microprocessors. 

The AMD-K6 implementation. 

The architecture of the K6 processor implements the 
3DNow! as a simple extension of the MMX instruction set 
[AMD 99b][AMD 99c]. The tloating-point vector 
operations are performed on eight logical 3DNow! registers 
of 64 bits each. This added features permits Lhe 
simultaneous calculation of two vector operations resulting 
in a parallel execution of four single precision floating
point operations. The "femms" instruction enables the user 
to switch between the x87 instruction set and the 3Dnow! 
or MMX instructions. 

This simple implementation requires no additional 
support from the operating system. However, programmer 
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attention is required in the case of a mixed use of 3DNow 
and MMX instructions since the related register sets are 
overlapped. 

The Pentium 111 implementation. 

The Pentium III architecture allows 4 single precision 
tloating-point operations to be carried out with a single 
instruction. Architecturally the SIMD-FP feature introduces 
a new register file containing eight 128-bit registers, each 
capable of holding a vector of four sing le precision 
tloating-point elements [ABE 99][MAC 99][lNT 99]. 

Since a new dedicated register set is used to implement 
the FP vector operations in the Pentium III architecture, 
operating system support is needed to save these new SSE 
registers in a multiprogramming environment. 

This implementation is, from the programmers' point of 
view, a little bit more complicated due to the need of SO 
support and the requirement of special initialization 
instructions as pointed out in the description of the test 
programs below. 

III . THE M ATRI X M ULTIPLICATION T EST PROGRAM 

A simple matrix multipHcation test program is written in 
C language with the matrix elements stored row by row in 
consecutive memory positions as shown in list I. This 
sequential matrix storage technique is adopted to optimize 
memory and cache access. This a lignment enhances also 
the needed memory to vector register transfers used in the 
SIMD floating point implementations of the test programs. 

The basic C language routine, here denominated "c I", is 
modified as shown in list 2 and 3 implementing loop 
unrolls of 2 and 4 as will be needed !ater by the vector 
implementations of the program. We will call the C 
programs with loop unrolls respectively "c2" and "c4". The 
"C" code is compiled and linked wi th the gcc compiler as 
described in the following section. 

int prod_c_cl(float *x, float *y, float *z, 
long int N) 
{register long int i, j, k ; 

for (i = O; i < N; i++) 
for (j = O; j < N; j++) 
for (k = O; k < N; k++) 

z[i*N+k] += x[i*N+j] * y[j*N+k]; 
return O; 

List I - The c l basic test program. 

int prod_c_c2(float *x, float *y, float *z, 
long int N) 
{register long int i, j, k ; 

for (i = O; i < N; i++) 
for (j = O; j < N; j++) 
for (k = O; k < N; k+=2) 

{ z[i*N+k] += x[i*N+j] * y[j*N+k); 
z[i*N+k+l] += x[i*N+j] * y[j*N+k+l); 
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return O; 

List 2 - The c2 test routine with a loop unroll of 2. 

int prod_c_c4(float *x, float *y, float *z, 
long int N) 
{register long int i, j, k; 

for (i = O; i < N; i++) 
for ( j = O; j < N; j ++) 
for (k = O; k < N; k+=4) 

{ z[i*N+k] += x[i*N+j] * y [ j*N+k]; 
z[i*N+k+l] += x[i*N+j] * y[j*N+k+l]; 
z[i*N+k+ 2] += x[i*N+j] * y[j*N+k+2]; 
z[i*N+k+3] += x[i*N+j] * y[j*N+k+3]; 

return O; 

List 3 - The c4 test program with a loop unroll of 4 

The code with vector instructions is obtained editing the 
core loop of the assembler code produced by the gcc 
compiler. Since the gcc compiler produces an assembler 
code in GNU format a conversion to Intel's assembler 
format is performed with the optimizer [OPT 98] utility. To 
produce pure x86 code the optimizer program is used 
without applying any optimizations performing only a GNU 
to Intel assembler conversion. This conversion is needed 
because the NASM assembler [NAS 99] which is capable 
of assembling 3DNow! as well as SSE instructions do not 
accept GNU formal 

The vector instructions are introduced into the Intel 
assembler codes generated from the original C programs in 
substitution to the ordinary instructions that performed the 
matrix calcula tion in the core loop. 

For the K6 based systems two versions of the test 
program are developed and are referred to as a2 for the 
version with a loop unroll of 2 and a4 for the 
implementation with a loop unroll of 4. The measuring of 
the elapsed time was done with the UNlX system call 
gellimeofday leading to result with a resolution of I 
microsecond. The programs were executed in single user 
mode, to avoid interference from other processes. 

The SSE implementation called a4-sse is illustrated in 
list 6 and uses a loop unroll of 4. m this case a Windows 
NT time call was used with a resolution of 1160 seconds to 
determine the elapsed time. 

The assembler code shown in lists 4 to 6 contains the 
vector instructions introduced in the core o f the loop. 



. L13 : 
mo v 
add 
mo v 
add 
mo v 
mo v 
movd 
movq 
psllq 
por 
mo v 
movq 
pfmul 
mo v 
movq 
pfadd 
movq 
add 
cmp 
jl 

eax, [ebp- 8) 
eax, ecx 
edx, [ebp-12) 
edx, ecx 
edi, [ebp-20) 
esi, [ebp+8) 
mmO, [esi+edi*4) 
mm3, mmO 
mmO, 32 
mmO, mm3 
edi, [ebp+12) 
mm1, [edi+edx*4) 
mmO, mm1 
esi, [ebp+16) 
mm2, [esi+eax*4) 
mmO, mm2 
[esi+eax*4], mmO 
ecx, 2 
ecx, [ ebp+20) 
near .L13 

List 4 - The core of the a2 program with loop unroll of 2. 

.L13 : 
mo v 
add 
mo v 
add 
mo v 
movd 
movq 
psllq 
por 
movq 
mo v 
movq 
pfmul 
movq 
pfadd 
movq 
mo v 
movq 
pfmul 
movq 
pfadd 
movq 
add 
cmp 
jl 

eax, [ebp-8) 
eax, ecx 
edx, [ebp-12) 
edx, ecx 
edi, [ebp+8) 
mmO, [edi+ebx*4) 
mm3, mmO 
mmO, 32 
mmO, mm3 
mm4, mmO 
edi, [ebp+12) 
mm1, [edi+edx*4J 
mmO, mm1 
mm2, [esi+eax*4) 
mmO, mm2 
[esi+eax*4), mmO 
edi, [ebp+12) 
mmS, [edi+edx*4+8) 
mmS, mm4 
mm6, [esi+eax*4+8) 
mm5, mm6 
[esi+eax*4+8), mmS 
ecx, 4 
ecx, [ebp+20) 
near .L13 

List 5 - The core of the a4 program with loop unroll of 4. 
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.L13: 
mov eax, [ebp-8) 
add eax, ecx 
mov edx, [ebp-12 J 
add edx, ecx 
mov edi, [ebp+8) 
movs s xmmO , [ e di +ebx * 4 J 
shufps xmmO, xmmO, O 
mov edi, [ ebp+ 12) 
movaps xmml, [ edi+edx*4) 
mulps xmmO , xmml 
movaps xmm2, [ esi+eax*4) 
addps xmmO , xmm2 
movaps [ esi+eax*4], xmmO 
add ecx, 4 
cmp ecx, [ ebp+20 ) 
jl near . L13 

List 6 - The core of the a4-sse program with loop unroll of 4. 

IV. THETESTENVIRONMENT 

The single precision floating point vector instructions 
were evaluated on lhree systems: two AMO K6 and one 
Pentium III microprocessor with lhe following hardware 
and software configuration: 

The K6-/l/ system with externai video controller 

The AMO K6-III system runs at 450 MHz, is equipped 
with 128 Mbytes of RAM memory and an 8 Gbytes EIDE 
Hard Disk. It is based on an Asus P5SB, which uses lhe 
SiS® 530 AGP chipset [ASU 99], motherboard wilh 
onboard video controller disabled. 

The Linux Slackware 7.0 (kemel 2.2.13) operating 
system is used with nasm version 0.98 and egcs 2.91.66 
199903 14 (egcs-1.1.2 release) 

The K6-/l/ system with onboard video controller 

Similar with lhe previous one, but using the onboard 
video controller. 

The Plll system 

The Pentium III processor operating at 400MHz 
equipped wilh 128 MB RAM and a 2 Gbytes EIDE Hard 
Disk mounted on an ASUS P3v133 (VIA® Apollo Pro133 
Series Chipset) Molherboard is denominated in lhis paper 
as the Pentium III system. 

Here the Windows NT 4 with service pack 5 is used as 
operating system since lhe Linux S1ackware 7.0 didn't offer 
support for the SSE extensions. To create an UNIX-1ike 
API on top of the Win32 API, the Cygwin tool [CYG 00] is 
used. This enables us to use the same version of nasm and 
egcs. 
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V. RESULTS 

In lhis section we compare execution times of the 
different test program obtained on the K6 and Pentium III 
systems. For each matrix size lhe multiplication is 
performed three times. The average execution time is 
calculated and used to evaluate lhe performance. 

Figure I shows the data obtained on the Pentium lli 
processar executing the simple C program (c l ) as well as 
lhe C versions wilh loop unrolls of 2 (c2) and 4 (c4). As 
expected the best result is obtained using the SSE 
instructions (a4-sse). This figure illustrates also lhat no 
execution gain was obtained with a loop unroll of 2. An 
intermediate result is obtained with a loop unroll of 4. 

A better idea of lhe relative speedup due to the use of 
lhe SSE instructions can be obtained comparing the c4 
algorilhm with lhe a4-sse implementation as shown in 
figure 2. We attribute lhe initial dispersion of lhe graphic to 
lhe low resolution of the used time function ( 1/60 seconds). 
As can be observed, a typical speedup of 1.5 can be 
obtained. For matrices with dimensions above 350 a lower 
speedup (about 1.4) is obtained due to the high rate of 
cache misses and lhe greater importance of memory 
performance for the faster SSE implementation. 

Similar behaviors are seen in figures 3, 4 and 5 where 
the performances of the K6 systems are evaluated. 

The execution of the c2 routine shows that a speedup, 
although small , is obtained with this routine on the K6 
processar. 

The speedup of the more efficient a4 routine is in the 
K6 about 1.6 for large matrices, better then the 1.4 of the 
Pentium III. For smaller matrices, the gain is even larger, 
about 2.2, showing the importance of efficient memory 
systems for these high-performance instructions. 

A comparison of figures 3 and 4 that show the execution 
times as a function of matrix size and an analysis of the 
speedups of the versions using the SIMD instructions with 
respect to the C versions in figures 5 and 6 shows that the 
effective reduction of memory bandwidth due to the 
onboard memory controller is very important, specially for 
the optimized versions using SIMD instructions. The 
speedup achieved for matrix sizes larger than about 
400x400 on the system with onboard controller (about 1.4 
for c4/a4) is significantly smaller than on the system with 
externai controller ( 1.6 for c4/a4). The effect on absolute 
execution time is even larger: for a matrix size of 
IOOOx iOOO the system with onboard video takes 38% more 
time. 
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Fig. 3- Execution times of the fi ve routines on the K6 lU system 
with onboard video card enabled. 
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Fig. 4 - Execution times of the five routines on the K6 III system 
with externai video card. 

54 

2.4 

2.2 

o 
€b.o 

l 
Cl) 
g? 1.8 

·~ 

~ 1.6 

o 

1.4 
g 

o 

o 

o O 
o 

OooooooooooooooOooooo 

o o 
Dooaaoaaoooocooo coao 

Matrixsize 

Fig 5 - Rei ati ve speedups of the SlMD versions with respect to the 
C versions on a K6111 processor with an externai video card. 
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Fig 6- Rei ative speedups of the SIM O versions with respectto the 
C versions on a K6UI processor with onboard video enabled. 

VI. CONCLUSIONS 

We prove that with a little effort the use of single 
precision floating point vector operations can speed up 
significantly computational intensive matrix calculations. 
This paper reveals also that loop unroll techniques are very 
important to take profit of the new highl y parallel 
multiscalar microcomputer architectures. Although the 
automatic use of these instructions by compilers does not 
appear to be straightforward, they are good candidates for 
manually optimized implementations of general linear 
algebra routines like BLAS. Recently Intel (with SSE2) has 
included double precision arithmetic vector support in the 
Pentium 4, turning the use of these instructions in scientific 
calculations even more interesting. 
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