
Mâtrix calculations with SIMD floating point
instructions on x86 processors

André Muezerie1
, Raul J. Nakashima2

, Gonzalo Travieso3
, Jan Slaets4

1
'
2
•
3

•
4 Departmento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo

Av. Dr. Carlos Botelho, 1465 CEP 13560-250 - São Carlos - SP- Brazil
1
{ andremuz@if.sc.usp.br}, 2{junj i @if.sc.usp.br} , 3{gonzalo@ if.sc.usp.br}, 4{jan@if.sc.usp.br }

Abstract-
This paper describes and evaluates the use of SIMD

noating point instructions for scientific calculations. The
performance of these instructions is compared with ordinary
noating point code. Implementation concerns, the effects of
loop unroll as well as matrix size variations are analyzed.
Execution speeds are compared using matrix multiplication.
The intrinsic incompatibility of the SIMD noating point
implementations used by different manufacturers requires the
use of two different instruction sets: 3DNOW! on the AMD K6
processor and the Streaming-SIMD Extensions (SSE) on the
Intel Pentium 111 processor.

Keyword.1~ SIMD, 3DNOW!, SSE, vector operations,
performance evaluation.

I. INTRODUCTION

Today' s microprocessors employ nearly ali the
performance enhancing techniques used in older
main frames and super-computers. Modem PC processors
are now superscalar and their microarchitectural features,
based on pipelining and instruction levei paralle lism,
overlapping instructions on separate resources, made it
possible to obtain extraordinary leveis of parallelism and
speeds [DIE 99].

The fast growing multimedia applications, demanding
significant processing speeds, led to the implementation of
new instructions to improve mathematical calcula tions used
in video processing and speech recognition as well as DSP
functionality as used in soft modems, ADSL, MP3 and
Dolby Digital surround sound processing. These new
instructions are implemented using Sing le Instruction
Multiple Data (SIMD) technology in which a single
instruction operates in parallel on multiple pieces of data
using superscalar implementations [INT 97]. In 1998 a set
of SIMD tloating point instructions were made available on
the AMD-K6 processors with the implementation of the
3DNow! technology [AMD 99a]. Nine months later Intel
delivered the Pentium lli with "Internet Streaming SIMD
Extensions" denominated SSE. Up to now the use of these
instructions is limited to specialized multimedia and DSP
applications.

In this paper we illustra te and evaluate the use of these
SIMD instructions in mathematical vector operations. To

50

verify the speedup obtained on an AMD-K6 processor a
matrix multiplication routine written in C is compared with
an assembler version making use of the SIMD tloating
point instructions. The same algorithm •is also used to
evaluate loop unrolls exploring the functionality of the
multiple pipelines and execution units present in the
evaluated microprocessor architectures. Figures illustrate
the performance improvements obtained exploring loop
unrolls and SIMD instructions on a Pentium lii and an
AMD-K6 processor. Matrix multiplication was chosen as a
benchmark because of its use of linear algebra operations
important in many algorithms. The principies applied in the
examples used can be easily extended to other
mathematical calculations where vector operations can be
identified.

li. ÜVERVIEW OFTHE SIMD IMPLEMENTATIONS

The first implementation of vector operations in the
microarchitecture of x86 type processors was obtained with
lntel's MMX technology. This new technology added 57
new instructions and 4 new data types (byte, word, double
word and quadword integers) to the x86 basic archi tecture.
In 1996 Intel publicly released the details of the MMX
technology turning it part of the today's industry-standard
x86 instruction set processors.

Unfortunately di fferent manufacturers added completely
di fferent architectural implementations of floating point
SIMD extensions to their x86 microprocessors.

The AMD-K6 implementation.

The architecture of the K6 processor implements the
3DNow! as a simple extension of the MMX instruction set
[AMD 99b][AMD 99c]. The tloating-point vector
operations are performed on eight logical 3DNow! registers
of 64 bits each. This added features permits Lhe
simultaneous calculation of two vector operations resulting
in a parallel execution of four single precision floating
point operations. The "femms" instruction enables the user
to switch between the x87 instruction set and the 3Dnow!
or MMX instructions.

This simple implementation requires no additional
support from the operating system. However, programmer

I
\

\

\

\

attention is required in the case of a mixed use of 3DNow
and MMX instructions since the related register sets are
overlapped.

The Pentium 111 implementation.

The Pentium III architecture allows 4 single precision
tloating-point operations to be carried out with a single
instruction. Architecturally the SIMD-FP feature introduces
a new register file containing eight 128-bit registers, each
capable of holding a vector of four sing le precision
tloating-point elements [ABE 99][MAC 99][lNT 99].

Since a new dedicated register set is used to implement
the FP vector operations in the Pentium III architecture,
operating system support is needed to save these new SSE
registers in a multiprogramming environment.

This implementation is, from the programmers' point of
view, a little bit more complicated due to the need of SO
support and the requirement of special initialization
instructions as pointed out in the description of the test
programs below.

III . THE M ATRI X M ULTIPLICATION T EST PROGRAM

A simple matrix multipHcation test program is written in
C language with the matrix elements stored row by row in
consecutive memory positions as shown in list I. This
sequential matrix storage technique is adopted to optimize
memory and cache access. This a lignment enhances also
the needed memory to vector register transfers used in the
SIMD floating point implementations of the test programs.

The basic C language routine, here denominated "c I", is
modified as shown in list 2 and 3 implementing loop
unrolls of 2 and 4 as will be needed !ater by the vector
implementations of the program. We will call the C
programs with loop unrolls respectively "c2" and "c4". The
"C" code is compiled and linked wi th the gcc compiler as
described in the following section.

int prod_c_cl(float *x, float *y, float *z,
long int N)
{register long int i, j, k ;

for (i = O; i < N; i++)
for (j = O; j < N; j++)
for (k = O; k < N; k++)

z[i*N+k] += x[i*N+j] * y[j*N+k];
return O;

List I - The c l basic test program.

int prod_c_c2(float *x, float *y, float *z,
long int N)
{register long int i, j, k ;

for (i = O; i < N; i++)
for (j = O; j < N; j++)
for (k = O; k < N; k+=2)

{ z[i*N+k] += x[i*N+j] * y[j*N+k);
z[i*N+k+l] += x[i*N+j] * y[j*N+k+l);

51

return O;

List 2 - The c2 test routine with a loop unroll of 2.

int prod_c_c4(float *x, float *y, float *z,
long int N)
{register long int i, j, k;

for (i = O; i < N; i++)
for (j = O; j < N; j ++)
for (k = O; k < N; k+=4)

{ z[i*N+k] += x[i*N+j] * y [j*N+k];
z[i*N+k+l] += x[i*N+j] * y[j*N+k+l];
z[i*N+k+ 2] += x[i*N+j] * y[j*N+k+2];
z[i*N+k+3] += x[i*N+j] * y[j*N+k+3];

return O;

List 3 - The c4 test program with a loop unroll of 4

The code with vector instructions is obtained editing the
core loop of the assembler code produced by the gcc
compiler. Since the gcc compiler produces an assembler
code in GNU format a conversion to Intel's assembler
format is performed with the optimizer [OPT 98] utility. To
produce pure x86 code the optimizer program is used
without applying any optimizations performing only a GNU
to Intel assembler conversion. This conversion is needed
because the NASM assembler [NAS 99] which is capable
of assembling 3DNow! as well as SSE instructions do not
accept GNU formal

The vector instructions are introduced into the Intel
assembler codes generated from the original C programs in
substitution to the ordinary instructions that performed the
matrix calcula tion in the core loop.

For the K6 based systems two versions of the test
program are developed and are referred to as a2 for the
version with a loop unroll of 2 and a4 for the
implementation with a loop unroll of 4. The measuring of
the elapsed time was done with the UNlX system call
gellimeofday leading to result with a resolution of I
microsecond. The programs were executed in single user
mode, to avoid interference from other processes.

The SSE implementation called a4-sse is illustrated in
list 6 and uses a loop unroll of 4. m this case a Windows
NT time call was used with a resolution of 1160 seconds to
determine the elapsed time.

The assembler code shown in lists 4 to 6 contains the
vector instructions introduced in the core o f the loop.

. L13 :
mo v
add
mo v
add
mo v
mo v
movd
movq
psllq
por
mo v
movq
pfmul
mo v
movq
pfadd
movq
add
cmp
jl

eax, [ebp- 8)
eax, ecx
edx, [ebp-12)
edx, ecx
edi, [ebp-20)
esi, [ebp+8)
mmO, [esi+edi*4)
mm3, mmO
mmO, 32
mmO, mm3
edi, [ebp+12)
mm1, [edi+edx*4)
mmO, mm1
esi, [ebp+16)
mm2, [esi+eax*4)
mmO, mm2
[esi+eax*4], mmO
ecx, 2
ecx, [ebp+20)
near .L13

List 4 - The core of the a2 program with loop unroll of 2.

.L13 :
mo v
add
mo v
add
mo v
movd
movq
psllq
por
movq
mo v
movq
pfmul
movq
pfadd
movq
mo v
movq
pfmul
movq
pfadd
movq
add
cmp
jl

eax, [ebp-8)
eax, ecx
edx, [ebp-12)
edx, ecx
edi, [ebp+8)
mmO, [edi+ebx*4)
mm3, mmO
mmO, 32
mmO, mm3
mm4, mmO
edi, [ebp+12)
mm1, [edi+edx*4J
mmO, mm1
mm2, [esi+eax*4)
mmO, mm2
[esi+eax*4), mmO
edi, [ebp+12)
mmS, [edi+edx*4+8)
mmS, mm4
mm6, [esi+eax*4+8)
mm5, mm6
[esi+eax*4+8), mmS
ecx, 4
ecx, [ebp+20)
near .L13

List 5 - The core of the a4 program with loop unroll of 4.

52

.L13:
mov eax, [ebp-8)
add eax, ecx
mov edx, [ebp-12 J
add edx, ecx
mov edi, [ebp+8)
movs s xmmO , [e di +ebx * 4 J
shufps xmmO, xmmO, O
mov edi, [ebp+ 12)
movaps xmml, [edi+edx*4)
mulps xmmO , xmml
movaps xmm2, [esi+eax*4)
addps xmmO , xmm2
movaps [esi+eax*4], xmmO
add ecx, 4
cmp ecx, [ebp+20)
jl near . L13

List 6 - The core of the a4-sse program with loop unroll of 4.

IV. THETESTENVIRONMENT

The single precision floating point vector instructions
were evaluated on lhree systems: two AMO K6 and one
Pentium III microprocessor with lhe following hardware
and software configuration:

The K6-/l/ system with externai video controller

The AMO K6-III system runs at 450 MHz, is equipped
with 128 Mbytes of RAM memory and an 8 Gbytes EIDE
Hard Disk. It is based on an Asus P5SB, which uses lhe
SiS® 530 AGP chipset [ASU 99], motherboard wilh
onboard video controller disabled.

The Linux Slackware 7.0 (kemel 2.2.13) operating
system is used with nasm version 0.98 and egcs 2.91.66
199903 14 (egcs-1.1.2 release)

The K6-/l/ system with onboard video controller

Similar with lhe previous one, but using the onboard
video controller.

The Plll system

The Pentium III processor operating at 400MHz
equipped wilh 128 MB RAM and a 2 Gbytes EIDE Hard
Disk mounted on an ASUS P3v133 (VIA® Apollo Pro133
Series Chipset) Molherboard is denominated in lhis paper
as the Pentium III system.

Here the Windows NT 4 with service pack 5 is used as
operating system since lhe Linux S1ackware 7.0 didn't offer
support for the SSE extensions. To create an UNIX-1ike
API on top of the Win32 API, the Cygwin tool [CYG 00] is
used. This enables us to use the same version of nasm and
egcs.

I
I
I
I
I

V. RESULTS

In lhis section we compare execution times of the
different test program obtained on the K6 and Pentium III
systems. For each matrix size lhe multiplication is
performed three times. The average execution time is
calculated and used to evaluate lhe performance.

Figure I shows the data obtained on the Pentium lli
processar executing the simple C program (c l) as well as
lhe C versions wilh loop unrolls of 2 (c2) and 4 (c4). As
expected the best result is obtained using the SSE
instructions (a4-sse). This figure illustrates also lhat no
execution gain was obtained with a loop unroll of 2. An
intermediate result is obtained with a loop unroll of 4.

A better idea of lhe relative speedup due to the use of
lhe SSE instructions can be obtained comparing the c4
algorilhm with lhe a4-sse implementation as shown in
figure 2. We attribute lhe initial dispersion of lhe graphic to
lhe low resolution of the used time function (1/60 seconds).
As can be observed, a typical speedup of 1.5 can be
obtained. For matrices with dimensions above 350 a lower
speedup (about 1.4) is obtained due to the high rate of
cache misses and lhe greater importance of memory
performance for the faster SSE implementation.

Similar behaviors are seen in figures 3, 4 and 5 where
the performances of the K6 systems are evaluated.

The execution of the c2 routine shows that a speedup,
although small , is obtained with this routine on the K6
processar.

The speedup of the more efficient a4 routine is in the
K6 about 1.6 for large matrices, better then the 1.4 of the
Pentium III. For smaller matrices, the gain is even larger,
about 2.2, showing the importance of efficient memory
systems for these high-performance instructions.

A comparison of figures 3 and 4 that show the execution
times as a function of matrix size and an analysis of the
speedups of the versions using the SIMD instructions with
respect to the C versions in figures 5 and 6 shows that the
effective reduction of memory bandwidth due to the
onboard memory controller is very important, specially for
the optimized versions using SIMD instructions. The
speedup achieved for matrix sizes larger than about
400x400 on the system with onboard controller (about 1.4
for c4/a4) is significantly smaller than on the system with
externai controller (1.6 for c4/a4). The effect on absolute
execution time is even larger: for a matrix size of
IOOOx iOOO the system with onboard video takes 38% more
time.

53

18

16
o c1

o o
o c2

14 6 c4 8 A

12 " a4-SSE
8

A

10 9

~
6 A

9
Ql 8 e A E 9

F 6 él A 9

0 A 9
4 o 6 9

2
& ~ 9

o o o o o o o e 6 ª g "
o 100 200 300 400 500 600 700 800

Matrixsize

Eig. I - Execution times of the four routines on the Pentium li
system.

3,0

2,5

2,0
a.

~
~ 1,5

"' ~ 1,0

"' ~
0,5

0.0 o o o

o

o

I o c4/a4 1

ooooOooooooo

000000000000000

100 200 300 400 500 600 700

Matrix size

Fig. 2- Rei ative speedup of lhe SSE routine on the Pentium m.

50

40

10

o 200 400

o c1
o c2
6 c4
'V a2
<> a4

600

Matrix slze

800

o
o

o
o

o
o

1000

Fig. 3- Execution times of the fi ve routines on the K6 lU system
with onboard video card enabled.

50 o c1
o c2

40 6 c4
'V a2
<> a4

o 200 400 600

Matrixsize

800

o
o

o
o

1000

Fig. 4 - Execution times of the five routines on the K6 III system
with externai video card.

54

2.4

2.2

o
€b.o

l
Cl)
g? 1.8

·~

~ 1.6

o

1.4
g

o

o

o O
o

OooooooooooooooOooooo

o o
Dooaaoaaoooocooo coao

Matrixsize

Fig 5 - Rei ati ve speedups of the SlMD versions with respect to the
C versions on a K6111 processor with an externai video card.

2.4

~
Do

2.2
ooo o68

o a2
o

2.0
a.
:> i 1.8

~ o

.~ 1.6
o

õj o
ooooooooooooooooooooo 0

~ 1.4 o

o
1.2 o o o ooooaooooocoooooo coa

1.0

o 200 400 600 800 1000

Matrixsize

Fig 6- Rei ative speedups of the SIM O versions with respectto the
C versions on a K6UI processor with onboard video enabled.

VI. CONCLUSIONS

We prove that with a little effort the use of single
precision floating point vector operations can speed up
significantly computational intensive matrix calculations.
This paper reveals also that loop unroll techniques are very
important to take profit of the new highl y parallel
multiscalar microcomputer architectures. Although the
automatic use of these instructions by compilers does not
appear to be straightforward, they are good candidates for
manually optimized implementations of general linear
algebra routines like BLAS. Recently Intel (with SSE2) has
included double precision arithmetic vector support in the
Pentium 4, turning the use of these instructions in scientific
calculations even more interesting.

VII. ACKNOWLEDGMENTS

The authors would like to thank the financiai support
recei ved from FAPESP under grant 98114681-8 as well as
the scholarship 99/05484-7 obtained from FAPESP by the
first author.

VIII. REFERENCES

[ABE 99) ABEL, James et ai. Application Tuning for
Streaming SIM D Extensions. Intel Technology
Journal Q2, 1999.

[AMO 99a) AMO White Paper. Enhanced JDNow{M
Technology for the AMD Athlon Processar. AMD-
52598A A·dvanced Micro Devices , Inc. October
4,199.

[AMO 99b] AMO Application Note. 3DNow!™ lnstruction
Porting Guide. AMD Publication #226 1, August
1999.

[AMO 99c] AMO Manual, Extensions to the 3DNow!TM and
MMX lnstruction Sets. AMD-224668 Advanced
Micro Devices, Inc. August, 1999.

[ASU 99] Asus motherboard documentation.
http://asus.com/Products/Motherboard/

[BLA O I] BLAS - Basic Linear Algebra Subprograms
http://www.netlib.org/blas/

[CYG 00] The Cygwin toolpack.
http:/ /sourceware.cygnus.com/cygwi n/

[DlE 99] Diefendorff, Keith. Pemium 111 = Pentium 11 + SSE
Internet SSE Architecture Boosts Mu/timedia
Performance. Microprocessor Report. v. l3, n.3,
March 1999. p.6-ll.

[INT 97] Intel , Intel Architecture MMXTM Technology in
Business Applications. Intel Order Number 243367-
002 June 1997.

[INT 99] Application Note. Software Development Strategies
For Streaming SIMD Extensions. Intel AP-814
Order Number 243648-002 January 1999.

[MAC 99] Mackay, David; Chio, Steven. Streaming SIMD
Extensions and General Vector Operations. ISV
Performance Lab, Intel Corporation 1999,
http://cedar.intel.com/software/idap/medialpdf/SIM
D VectorWP.gdf

[NAS 99) The NASM conversion utility.
h!!p://www.kernel.org/pub/software/devel/nasm/

[OPT 98] The optimizer utility.
http://www.imada.ou.dk/-jews/ogtimizer/

55

