
Branch Prediction X Performance: an analysis on
Superscalar Processors

Guilhetme D. Pizzol, MaUIÍcio L. Pilla, Phillipe O. A. Navaux
Instituto de Informática, Universidade Federal do Rio Grande do Sul

Av. Bento Gonçalves 9500- Campus do Vale- Bloco IV
Bairro Agronomia- Porto Alegre- RS -Brasi l

CEP 9 1501-970 Caixa Postal: 15064
(gpizzol, pilla, navaux) @inf.ufrgs.br

Abstract
Simulation is the most used and efficient method to design

new processors. It can reproduce and consider the parameters
and variables of a real processor execution. Branch predictíon
is one of these parameters, being very important in the
research and design of newer and better processors. In this
way, this paper presents a study on the impact of the branch
prediction accuracy in the final performance of superscalar
architectures. The results were obtained by simulation, using
some of the integer and noating-point benchmarks (ammp,
equake, gcc, gzip, mesa, vpr) provided by SPEC2000. Sim
prevar, a variable accuracy branch prediction simulator based
on one of the simulators included in the SimpleScalar Tool Set,
was used to simulate different prediction accuracies. Our
simulations results leads us to conclude that, in some
situations, it is better enlarging lhe hardware than trying to
get better accuracy predictors, achieving very similar results.

Keywords superscalar processors, branch prediction,
SPEC 2000, SimpleScalar

I. [NTRODUCTION

Superscalar processors increase the processing
performance by the concurrent instruction execution
[JOH91]. They explore lhe instruction's parallelism by
making use of multiple stages pipelines. To get maximum
performance of lhe pipeline and, consequently, higher IPC,
a high number of instructions must be inserted in lhe
pipeline.

Even if lhe pipeline fetch stage can deliver a high
amount of instructions per cycle, nowadays processors
cannot use such number of instructions due to some
properties: resource conflicts, data dependence and control
dependence [JOH9 1].

The resource conflicts occur when two or more
instructions compete for the sarne resources [ST A%].
lncrear;ing lhe number of these resources can reduce lhis
problem, but sometimes it is not possible.

Data dependence decreases system performance by
stalling lhe pipeline. One instruction may need the data that
is being calculated by another instruction, so it has to wait
lhe writeback of lhat instruction. There are several methods
that try to reduce this problem, but they are out of the scope
o f this work as well as resource conflicts.

56

On lhe other hand, control dependence is one of the
problems t11at affect the performance of superscalar
processors, as said before. It lirrútates the basic blocks' size,
decreasing lhe throughput of instructions to lhe execution
stages. Branch prediction is lhe most used method to
decrease branch penalties, obtaining a higher instructions
executed per cycle (IPC).

By simulations, it is possible to notice the impact of
branch prediction accuracy in lhe final performance of
SMT (Simultaneous MultiThreaded) and Superscalar
architectures. ln this way, this paper will show lhe branch
prediction impact in superscalar architectures, using some
benchmarks from SPEC 2000 [SPEOO] as lhe base of the
simulations.

The rest of this paper is organized as follows. ln the
next session a briefly presentation about the superscalar
architecture will be made. After, in section 3, an analysis of
the different branch predictors found in superscalar
processors will be made. Section 4 will show the
implementation of the variable accuracy branch prediction
simulator and, also, the simulation environment. The next
sessions, 5 and 6, will show lhe obtained re.<;ults of the
simulations made wilh some benchmarks from SPEC2000
[SPEOO].

TI. THE SUPERSCALAR ARCHITECTURE

Superscalar processors started appearing in the final 80's
and were incorporated by high-performance hardware
manufacturers as a technological standard. Usually, a
superscalar processar has the subsequent characteristics:

• strategies of fetching multiple instructions per
cycle, foreseeing conditional branches;

• methods for deterrnination and treatment of
data dependency among registers;

• methods for multi pie instructions dispatch;
• resources for the parallel execution of multiple

instructions, including: multiple functional
units and memory hierarchy to allow multiple
accesses;

• methods for data communicating through
memory by write/read instructions.

I
I

I
I
I
\

I
I

Figure illustrates lhe organizalion of a typical
superscalar processor's pipeline. The main stages of this
pipeline are: fetch, decode, dispatch, issue, execution and
commit. The branch prediclion can be done in the fetch
stage, in the decode stage, or combined in this two stages as
in PowerPC 620 [DIE95].

Fig I. A simple superscalar pipcline

A lot of architectures present anolher structurcs and
stages, as renaming tables ;md prefetch mechanisms.
Anothcr diversity that exists among them is lhe inslmction
set uscd. While some of lhcm use RISC instmction scts
(MTPS, SPARC and PowerPC), others use CISC instnJction
sets (Intel and AMD). One must have in mind lhat. over this
geneml organization, there is a pipeline implemcntation
where the specific stages may or may not be aligned wilh
the main phases of the superscalar execution.

Ln the fetch stage, the instmction fetch and, usually. the
branch prediction are perfonned, accessing lhe instruction
cache (1-Cache) and the branch prediction's tables. ll1e
instmct ions are fetcheel in to the instJUction queue. The
decodification <mel issue stages are responsible for lhe
decodilication of lhe instmction in the instJUction queue
anel for lheir issue to lhe issue queue associated with the
functional uniLc;, for !ater issue and execution. After the
instJUction's issuing to the issue queue, if they are alreaely
ready wilhout non-resolved operands, lhey are sent to the
functional unitc;. During lhe dispatch, lhe processor may
allocate entrie.-; in lhe rcordering queues. As lhe insliUctions
may be issued to different functional units, and by lhe way
that these instructions may be executed when lhey are
reaely, lhese instJUclions may be executed out-of-order. So.
lhe proce.c;sor needs to rerurdl1ge these out-of-order
executed instJUctions, making use of reordering queue.c;.

57

In the functional units, instn1ctions m-e executeel in one

or more CPU's cycles, depending on the typc of instn1ction
(integer, Ooating-poinL'i, branche.c;, memory), bcing able to
access the data memory. 1l1e l<t<;l pipeline stage, lhe
commitment, is responsible to retire anel ammge
instmctions executed by lhe previous slage. lt also refreshes
the data cache.c; and the register bank.

III.BRANCII PR EDICTION

Due to lhe high occun-ence rate of branch insuuctions, a
lot of techniques were developcd to reduce lhe cost of this
kind of instmction. These tcchniques were developcd both
in softwmc and in hm·dwm-e. The technique.c; developed in
soliware are used during lhe cornpilation of <UI application.
Arnong lhem, we cru1 menlion: branch folding, function in
lining, loop unroll anel delayed branch [FER921 [HW A93].

On the other hand, techniques cleveloped in hm·dwm-c
are uscd during the execulion of an applicalion. ll1ey me
implementccl dircctly in the CPU's COJ'C. Thcsc techniques
are divieled in two categories: static anel elynamic. In the
static tcchniquc!. the prediction occurs baseei on the
dcfiniLions made in a new proccssor's project time. ll1e
elynamic one~ dym1111ically make the predictions b<t<;ed on
Lhe infom1ation gathe1-cd in cxecution Lime.

The dynamic prediction is the most uscd technique in
real superscal;u· proce!..~ors to rceluce conelitional br.mchcs
pcnalties. ll1e1-c m-e a lot of p1-cdiclion mechanisms. but, in
general, they ali must execute lhe four subsequent step!-.
[SMI95): conditional branch r-ccognition. detcnnination of
Lhe branch result (taken or not-taken), tm·gct calculation m1d
control transfer by fetch rcdirecting.

Dynamic prediction is clone by a table that saves the
bmnch history. This table is callcd BTB (Branch Targct
Buffer), bcing usro to preclict the target to bc followed.
ba~cel on lhe previous results. ll1c BTB is organizcd m; a
cache, where each cntry consists of the aelelres~ of the
bnmch instJUction, a fielel for prediction and thc target
address for that branch (Fig. 2). One possible option for
p1-cdiction is to keep a counter in each BTB enlry [SMI95].
When a br<mch is taken, lhe countcr is incremcnteel (until a
highest value). othcrwise it is decremented (until a lowe~t

valuc). In this way, lhe BTB can keep lhe dominating result
for cach branch. Usually, this counter h<t<; one or two bits.

Address History Tm·get
(L.SB) Bits Inf01mation

Fig. 2- BTB's structure

The BTB works like lhis: lhe fetch stage compares the
insuuction's address against the BTB's addresses. lf lhe
address is in lhe BTB, lhen a prediction is made bac;ed on
the corresponding history bits. lf lhe prediction says that lhe
branch wil l be taken, then lhe address in lhe destination
field is used to access the next insuuction. When lhe branch
is resolved, in the execution stage, the BTB can be
corrected wilh lhe right information about what happened
wilh lhe branch, in lhe ca<>e of a previously wrong
prediclion.

After this, Yeh and Pau proposed lhe idea of collecting
dynamically two leveis o f branch history [YEH91]. The
tirst levei keeps lhe history of lhe la<;t K bmnches found.
TI1e second levei storcs what happened wilh the la<>t J
occurrences of a specific standard for the K branchcs.

The first levei is called History Register Table and lhe
second levei a<; Pattem Table. TI1e branch address is
mapped to access lhe first levei a<; in a normal BTB. Afler
mapping lhe right entry, the history register (Bmnch
History Register) gives lhe standard bits lhat will determine
which entry will be accessed in the second levei. Accessing
lhe second levei, the mechanism has lhe prediction bit that
will indicate lhe palh to be fo llowed by lhe fetch stage to
access the next insuuctions.

After lhe branch execution, lhe resull (taken or not
taken) is shifted inside lhe history register of the
corresponding entry on lhe fi rst levei, modifying lhe
standard for lhe branches lhat will map lhat entry. The state
transtuon logic evaluates lhe branch result wilh lhe
previous prediction and gives lhe new prediction bit that
will be used in lhe future.

From 1996, new hybrid and multi-hybrid predictors
started appearing. Hybrid predictors include many
techniques, ali of lhem working in pamllel, but only lhe
technique with lhe better correctness probability gives lhe
prediction's result to the fetch unit. At this moment, it is
possible to get prediction accuracy near to 100% for some
prognu11S [KES99], but, lhe percentage of remaining
branches is still sufficient to decrease lhe perform<mce
reached by superscalar architectures.

IV. THE SIMPLESCALAR SIMULATORS

The SimpleScalar Tool Set [AUS97] is a suite of
execution-driven simulators used to evaluate lhe
performance of caches, branch predictors and state-of-art
superscalar processors. Eight simulators are included in lhe
suite, from a fa<;t and functional simulator to a detailed
timing simulator, lhe sim-outorder.

Sim-pre11ar is an extended sim-oworder lhat features a
new branch prediction mechanism [GONOO]. Using lhis
mechanism, lhe user can introduce any desired rate of
branch prediction accumcy comprised between O and I
(representing O to I 00% o f accuracy in lhe prediction).

58

When a branch insuuction is reached, lhe mechanism
dmws a random number also comprised between O and I. If
lhis number is smaller lhan desired mte, lhe p-edictor forces
a good prediction. In lhis case, if lhe targel or lhe direction
wa<; wrong, Lhe prediclor correct<; to right values, otherwise
il keeps lhe original prediclion. On lhe olher hand, if lhe
random number is above lhe desired rate, lhe predictor
forces a misprediction. ln this ca<;e, if lhe target wac;; right,
lhe predictor redirect the fetch to the wrong address, adding
lhe correct penalty, otherwise it keeps lhe prediction. In this
moment, only direction misprediction is simulated, lhe
target is always predicted correclly when a branch is
correctly predicted taken. Therefore, target mispredictions
are not considered in lhis version.

The results lhat will be shown in lhe next scssion were
obtained using the simulator dcscribed above. Six
benchmarks from SPEC2000 [SPEOO] were Lt'ied in the
simulation, contrumng noating-point applications (ammp,
equake e mesa) and integer applications (gcc, gzip, vpr).
We have chosen ali benchmarks written in C, to avoid
interference of different compilers. Moreover, three
benchmarks are well known and used applications (gcc,
gzip and mesa).

• gzip: TI1e gzip benchmark is lhe popular data
compression software, but it realizes ali
compression/decompres.r;ion in memory;

• gcc: The gcc benchmark is bac;ed on lhe GNU gcc
v2. 7 .2.2, generating code for lhe 88100 processo r
from Motorola. The compi1er ha<; had itr,; inlining
heuristics altered to inline more code, resulting in
more timing analyzing iL<s source code inputs, and
using more memory;

• vpr: The vpr benchmark is a FPGA (Field
Programmable Gate Army) partitioning and rouling
software and, algorithmically, belongs to
combinationa1 optimization ela<>.<; of progrruns;

• ammp: The ammp benchmark models large systems
of molecules, running molecular dynarnics on a
protein-inhibitor complex lhal is embedded in
water;

• mesa: The mesa benchmark is a free libmry like
OpenGL lhal, from a 20 scalar field produces a
PNG image;

• equake: The equake benchmark simulates lhe
propagation of ela<;lic waves in large and
heterogeneous valleys, like San Femando Valley, in
Califomia.

The benchmarks were compiled using lhe cros.<;
compi1ed gcc v2.6.3 provided by lhe SimpleScalar Tool
Set. TI1e optimization levei chosen wa<; lhe greatest
supported by lhe compiler (-03 -unroll-loops).

Two differenl configurations were simulated. TI1e first
one consists on a configumtion with few amount of
hardware, repre.<>enting personal computers used nowadays.

The second one represent<; a configuration with more
hardware, representing servers and futm-e personal
computers generations. Table I shows these configurations,
where lA = integer ALU, FA = floating-point ALU, LS =
load/store unit<>, IM = integer Mult/Div and FM = floating
point Mult/Div.

Width
LI cache
12cache

FU's

RUU
LSQ

TABLEI
SIMULATION CONFIGURATION

Superscalar I Superscalar 11
8 16

32K 64K
512K 1024K

3lA, 3FA, 2LS, I IM, 5lA, 5FA, 2LS, I IM,
IFM IFM
32 64
16 32

V.BRANCH PREDICTION X PERFORMANCE

In figures 3 and 4, it is possible to see the Superscalar I
(SS f) ru1d the Superscalar II (SS 11) performru1ces,
respectively. We can notice that architecture SS O reaches
higher performru1ce (IPC) thru1 SS I, as expected.

Accuracy Rale (')

Fig. 3 - Superscalar I - IPC

The ammp's performance does not alter significantly
with the increac;e in the branch prediction accuracy. This
happened because the benchmark had a higher miss rate in
cache L2 ru1d in data cache. In this way, it cru1 be noticed
that after 90% the performru1ce decrea<>es. As we have a
higher correct instructions flow, it would be necessary a

59

higher ready data volume, what is not happening because of
the higher miss rate in caches.

Another important characteristic is that some
benchmarks take more advantage on the accuracy increa<;e
thru1 otl1ers, a<> we can see in vpr. This benchmark, wit11 an
accuracy of about 50%, ha<; a lower IPC than equake, gzip,
gcc ru1d mesa. With about 85-90%, its growth is very big,
being the benchmark with the best performru1ce in ways of
IPC.

Accuracy Rale (~)

Fig. 4- Superscalar II - IPC

Analyzing figure 4, it is possible to see t11at the ammp
benchmark presented the same previous behavior,
confirming that this benchmark does not take advantage of
t11e accuracy increase. And also, the amount of hardware
inserted in SS O does not increase it<; IPC as it increa<;ed the
other benchmark's lPCs. Once more, we nolice that vpr
takes more advantage on the accuracy increa<;e. With an
accuracy of about 50%, this benchmark has one of the
worst TPC, but when the accuracy reaches about 85% its
performance increac;es exponentiaiJy.

Figure 5 shows that the distance between the
perfonnances of both architectures increac;es according to
accuracy increase. This happens because when there is
more available hardware the instruction levei parallelism is
better exploited. However, this advantage just is possible
when the1-e is an efficient predictor and vice-versa And
besides, with a better predictor, more easiJy, also, the lLP
will be better exploited because fewer instructions will be
speculated on the wrong path, increasing the instruction rate
executed per cycle.

~ ~ w ~ ~ 8 ~ ~ ~ ~ ~

Accuracy Rale ('t J

Fig. 5- Averagc IPC

In ligurc~ 6, 7 and 8 we have the IPC ~peedup whcn thc
accuracy gocs from 85% to I 00% in thc architectures SS I e
SS 11. rcspccti vcly. 1l1c ammp benchmarks does nol appcar
in thcsc ligurc:-. duc to its instablc comportmcnt in thc:-.c
~ i mulations.

30

25
I

' L 20
.-----

.--- 085-90
... 15 >-- 1 90-95

I
.-! I-

~

f .--- -
i ...-,

i
,_r- >---- c- -

~ i

•' 1...... L.. '- '-

lO

o

Fig. 6 - Petformancc Specdup - SS I

These figures rcinforce what was exposed beforc. With

thc accumcy increao;e, the IPC also incrc<L'>CS. Although, in
SS I architecture, thc accumcy incre<L'>C corrcspond<;, in
most cases, in a higher IPC incre<L<;e Lhan in previous bando;.

On the other hand, i is possible to note that in SS 11 , when

60

we incre<L<;e the accumcy from 95 to 100%, the [PC increa-.c

is not so big <L<; in another bands (85-90 and 90-95).

2i

""15

lO

r:;
-

·-r--

-

- - ---'

equa~e

1-

L..;

r-

- ~

'- -
gzip

llfnchmarks

1-

r- 1-

-~'
f-

,....

~

l
,....

'.,

-. I
- '"""

I 'fi'

Fig. 7- Perfotmance Speedup- SS 11

r---
[Jil-91

~-~1

[]9l-100
=--

1l1is W<L'> caused by <UJ unbalanccd amount of hardware.

In SS 11, thc fctch and dispatch width and thc cachcs were
cnltu·ged, a<; well m; thc number of functional uniL<t.
1l1crcfore, the number of functional units W<L'> not cnough

whcn a large mnount of instructions were insctted in the
pipeline. The numbcr of cyclcs which thc RUU was full
incrca<>cd too much due to the lack of functional units,
stalling the pipclinc, conscquently, not allowing thc IPC to
increa<;c <L<; it were expected.

18

16

12

10

1--

-
-

i!§
o

I- r-
>

- - r- -
' - - - - : 1- -

- - 1- ' - - - 1- -

- - 1- - 1- , -
- ' ' - - 1- ' - - . - . .- -

'• '

,\cm acy Rale(%)

Fig. 8 - Performance lncrea<;e- SS I x SS 11

-
fOsSiil
~

VI.CONCLUSIONS ANO FUTURE WORK

Wilh si111-prel'(lr it is possible to do a lot of studics
about thc bchavior of difTcrent architectures towards lhe
branch prcdictors accumcy. Thus, it is possiblc to know, for

example, if it is a valid cffo11 investing on a predictor to
inc1-e<t'iC its accuracy mte from 90 to 95% or from 95 to
100%. With this study, it was possible to notice lhat some

applications can take more adv;mtage then others with thc
accuracy incrcasc, only dcpending of how its source codc is

fonned. And bcsides, il is ea~ier to exploit lhe inslruction

levei parallclism when we havc more hardware available
anel higher bmnch prediclion accuracy.

It was possible to note lhat, not always that the accuracy

is incre<t'iCd. we get a pcrfomlrulce incrca'iC in lhe same
order. Besides, the perfonmtnce obtained by the SS I
arehitecturc wilh a higher accuracy rale may be reached by

the SS 11 arehitecture with less accumcy rale, as we could
sce in figure 5. The perfonnru1ce obtained by SS I with
accuracy of about 85% and 100% is similar to the

perfom1ance obtained by SS fl with 75% anel 90%,
accordingly. This lead us to conclude that it is possible to
rcdirect the cfforts in making a better prcdictor to enlarge

the hm·dware, a<>, for cxmnple, caches, functional units <tnd
bandwidlh, reaching the s.:une perfom1ru1ce.

We must have in mind that to get the maximum

perf01mance increa<;e, we need, not only, to invest in the
other pmts of the hardware, but we must COITectly enlarge it
to avoid crealing ml unbalru1ced architecture <md,
consequently, stalling lhe pipeline.

Having a good accuracy and few/unbalanced hardware,
we only change lhe bott lencck's place. !t is not wo11h

leeding lhe pipcline with a higher instruction flow if it
cannot éxecute lhem, even being by Lhe lack of functional
units or rcady data.

In our simulations, a<> wa<; said before, were used some
of the bcnchmarks providcd by SPEC2000. Despite of the
strange bchavior of mmnp benchmark, lhe olhers

benchmarks showed that SPEC2000 is more up to date to
s imulate statc-of-art architectures than SPEC95. It is also
more exigcnt in tem1s of <tnlount of hardware to bc

simulated thm1 its ru1tecedent.
In Lhe next stage of lhis research, lhe source code anel

assembly code wilh different leveis of optimizations wi ll be

analyzed. With lhis, we wait achieve a better knowlcdge
about SPEC 2000 intemals anel lhe differences among the

perfom1ances of each benchmark.

VII . REFERENCES

[AUS97] AUSTIN. T. M., A Uscr 's and Hackcr's G uidc to thc
Simplcsca lar Architcctural Tool ScL, Intel
MicroComputer Research Labs, January 1997.

61

[BUR97] BURGER, D .. AUSTlN, T. M., Thc S implcScalar
Tool Set , Version 2.0. Tcchnical Report # 1 3~2.
University of Wisconsin - Madison, June. 1997.

[DIE95] DIEP, T.A, NELSON, C., SHEN, J.P .. Performance
Evaluation of thc PowcrPC 620 Microarchitccture,
Proceedings of the 22nd Annual lnternational
Symposium on Computcr Architecture. Santa
Margherita Ligure, ltaly, June, 1995.

[FER92] FERNANDES. E. S. T. . SANTOS. A. D.,
Arquiteturas Super Escalares: Detecção c
Exploração do Paralelismo de Baixo Nível , VIl
Escola de Computação. Gramado-RS, Agosto de 1992.

[FER97] f-ERNÁNDEZ. A., Un Aná lisis Cua nlitativo dei
Spcc95. Un iversital Politccnica de Catalunya.
Barcelona (Technical Report)

[GONOI] GONÇALVES, R. A. L PILLA, M. L.: PIZZOL, G.
DAL: SANTOS, T. G. S.: SANTOS: R. R.:
NAVAUX, P. O. A. Evaluating lhe Effects of
Branch Prediction Accuracy on lhe Performance of
SMT Archilecturcs. In. EUROM ICRO WORKSHOP
ON PARALLEL ANO DISTRIBUTED
PROCESSING, 9., 2001, Mantova. Proceedings ...
IEEE Computcr Society, 200 I. p. 355-362.

[HWA93] HWANG, K. Advanced Computcr Architccturc:
Parallclism , scalability, programmability. Ncw
York: McGraw-Hill, 1993.

[KES99] KESSLER. R. E. Thc Alpha 21264 Microprocessor .
IEEE Micro, v.l9, n.2. March/April 1999

[JOH91] JOH NSON, M. Supcrscalar Microprocessor Design.
Englewood Cliffs: Prentince Hall, 1991.

[PIZOOI PIZZOL, G. D .. PILLA, M. L., NA V AUX. P. O. A.
Variablc Accuracy Branch Prcdiction with
Simplcscalar Tool Sei. SIM 2000 - UFRGS
Microelelronics Seminar. Torres, Julho 2000.

[SM I95 1 SMITH, J.E, SOHI, G.S .. T hc Microarchitccture of
SupcrScalar Proccssors, Procccdings of thc IEEE.
83(12), pp. l609- 1624, December. 1995.

[SOH90] SOHI. G. S. lnslruction lssue Logic for High
Pcrformancc, lntcrruptible, Mulliplc Funcional
Unit, J>ipelincd Computcrs. IEEE Transactions on
Computers, 39(3):349-359, March 1990.

[SPE95 J SJ>EC CPU 95 Technical Manual. SPEC Steering
Committe, 1995

[SPEOO) SPEC CPU 2000 Tcchnical Manual. SPEC Steering
Committe, 2000

[STA96] STALLI NGS, W. Compute r Organization and
Architccturc: Dcsigning for Performance. Upper
Saddle River: Prentice Hall, 1996.

[TAL95] TALCOTr, Adam R. Rcducing lhe lmpact of lhe
Branch Problcm in Supcrpipclined and
Supcrscalar Processors. Santa Barbara: UCSB, 1995
(Ph.D. Thesis).

[YEH931 YEH, Tsc-Yu: PATT, Yale N. A Comparison of
Dyna mic Branch Predictors tha t use Two Leveis of
Branch History. In: ANNUAL INTERNATIONAL
SYMPOSIUM ON COMPUTER ARCHITECTURE.
20., 1993. Proceedings ... New York: ACM, 1993. p.
257-266

