Branch Prediction X Performance: an analysis on

Superscalar Processors
Guilherme D. Pizzol, Mauricio L. Pilla, Phillipe O. A. Navaux

Instituto de Informdtica, Universidade Federal do Rio Grande do Sul
Av. Bento Gongalves 9500 - Campus do Vale - Bloco IV
Bairro Agronomia - Porto Alegre - RS -Brasil
CEP 91501-970 Caixa Postal: 15064
{gpizzol, pilla, navaux} @inf.ufrgs.br

Abstract

Simulation is the most used and efficient method to design
new processors. It can reproduce and consider the parameters
and variables of a real processor execution. Branch prediction
is one of these parameters, being very important in the
research and design of newer and better processors. In this
way, this paper presents a study on the impact of the branch
prediction accuracy in the final performance of superscalar
architectures. The results were obtained by simulation, using
some of the integer and floating-point benchmarks (ammp,
equake, gce, gzip, mesa, vpr) provided by SPEC2000. Sim-
prevar, a variable accuracy branch prediction simulator based
on one of the simulators included in the SimpleScalar Tool Set,
was used to simulate different prediction accuracies. Our
simulations results leads us to conclude that, in some
situations, it is better enlarging the hardware than trying to
get better accuracy predictors, achieving very similar results.

Keywords superscalar processors, branch prediction,
SPEC 2000, SimpleScalar

[.INTRODUCTION

Superscalar processors increase the processing
performance by the concurrent instruction —execution
[JOH91]. They explore the instruction's parallelism by

making use of multiple stages pipelines. To get maximum
performance of the pipeline and, consequently, higher IPC,
a high number of instructions must be inserted in the
pipeline.

Even if the pipeline fetch stage can deliver a high
amount of instructions per cycle, nowadays processors
cannot use such number of instructions due to some
properties: resource conflicts, data dependence and control
dependence [JOH91].

The resource conflicts occur when two or more
instructions compete for the same resources [STA96].
Increasing the number of these resources can reduce this
problem, but sometimes it is not possible.

Data dependence decreases system performance by
stalling the pipeline. One instruction may need the data that
is being calculated by another instruction, so it has to wait
the writeback of that instruction. There are several methods
that try to reduce this problem, but they are out of the scope
of this work as well as resource conflicts,

On the other hand, control dependence is one of the
problems that affect the performance of superscalar
processors, as said before. It limitates the basic blocks' size,
decreasing the throughput of instructions to the execution
stages. Branch prediction is the most used method to
decrease branch penalties, obtaining a higher instructions
executed per cycle (IPC).

By simulations, it is possible to notice the impact of
branch prediction accuracy in the final performance of
SMT (Simultaneous MultiThreaded) and Superscalar
architectures. In this way, this paper will show the branch
prediction impact in superscalar architectures, using some
benchmarks from SPEC 2000 [SPE0O] as the base of the
simulations.

The rest of this paper is organized as follows. In the
next session a briefly presentation about the superscalar
architecture will be made. After, in section 3, an analysis of
the different branch predictors found in superscalar
processors will be made. Section 4 will show the
implementation of the variable accuracy branch prediction
simulator and, also, the simulation environment. The next
sessions, 5 and 6, will show the obtained results of the
simulations made with some benchmarks from SPEC2000
[SPE0Q].

II. THE SUPERSCALAR ARCHITECTURE

Superscalar processors started appearing in the final 80's
and were incorporated by high-performance hardware
manufacturers as a technological standard. Usually, a
superscalar processor has the subsequent characteristics:

e gtrategies of fetching multiple instructions per
cycle, foreseeing conditional branches;

e methods for determination and treatment
data dependency among registers;
methods for multiple instructions dispatch;
resources for the parallel execution of multiple

of

instructions, including: multiple functional
units and memory hierarchy to allow multiple
accesses;

e methods for data communicating through

memory by write/read instructions.

Figure 1 illustrates the organization of a typical
superscalar processor's pipeline. The main stages of this
pipeline are: fetch, decode, dispatch, issue, execution and
commit. The branch prediction can be done in the feich
stage, in the decode stage, or combined in this two stages as
in PowerPC 620 [DIE9S].

Fetch

v

Decode

v
Dispatch

v

Issue

v
v

Commit

Fig I. A simple superscalar pipeline

A lot of architectures present another structures and
stages. as renaming tables and prefetch mechanisms.
Another diversity that exists among them is the instruction
set used. While some of them use RISC instruction sets
(MIPS, SPARC and PowerPC), others use CISC instruction
sets (Intel and AMD). One must have in mind that. over this
general organization, there is a pipeline implementation
where the specific stages may or may not be aligned with
the main phases of the superscalar execution.

In the fetch stage, the instruction fetch and, usually, the
branch prediction are performed, accessing the instruction
cache (I-Cache) and the branch prediction’s tables. The

instructions are fetched into the instruction queue. The
decodification and issue stages are responsible for the
decodification of the instruction in the instruction queue

and for their issue to the issue queue associated with the
functional units, for later issue and execution. Afier the
instruction’s issuing to the issue queue, if they are already
ready without non-resolved operands, they are sent to the
functional units. During the dispatch, the processor may
allocate entries in the reordering queues. As the instructions
may be issued to different functional units, and by the way
that these instructions may be executed when they are
ready, these instructions may be executed out-of-order. So,
the processor needs to rearrange these out-of-order
executed instructions, making use of reordering queues.

57

In the functional units, instructions are executed in one
or more CPU's cycles, depending on the type of instruction
(integer, floating-points, branches, memory), being able to
access the data memory. The last pipeline stage, the
commitment, is responsible to retire and arrange
instructions executed by the previous stage. It also refreshes
the data caches and the register bank.

ITI.BRANCH PREDICTION

Due to the high occurrence rate of branch instructions, a
lot of techniques were developed to reduce the cost of this
kind of instruction. These techniques were developed both
in software and in hardware. The techniques developed in
software are used during the compilation of an application.
Among them, we can mention: branch folding, function in-
lining, loop unroll and delayed branch [FER92] [HWA93].

On the other hand, techniques developed in hardware
are used during the execution of an application. They are
implemented directly in the CPU's core. These techniques
are divided in two categories: static and dynamic. In the
static techniques the prediction occurs based on the
definitions made in a new processor's project time. The
dynamic ones dynamically make the predictions based on
the information gathered in execution time.

The dynamic prediction is the most used technique in
real superscalar processors to reduce conditional branches
penalties. There are a lot of prediction mechanisms, but, in
general, they all must execute the four subsequent steps
[SMI95]: conditional branch recognition, determination of
the branch result (taken or not-taken), target calculation and
control transfer by fetch redirecting.

Dynamic prediction is done by a table that saves the
branch history. This table is called BTB (Branch Targel
Buffer), being used to predict the target to be followed,
based on the previous results. The BTB is organized as a
cache, where each entry consists of the address of the
branch instruction, a field for prediction and the target
address for that branch (Fig. 2). One possible option for
prediction is to keep a counter in each BTB entry [SMI95].
When a branch is taken, the counter is incremented (until a
highest value), otherwise it is decremented (until a lowest
value). In this way, the BTB can keep the dominating result
for each branch. Usually, this counter has one or two bits.

Address
(LSB)

Target

Information

History
Bits

Fig. 2 - BTB’s structure

The BTB works like this: the fetch stage compares the
instruction’s address against the BTB's addresses. If the
address is in the BTB, then a prediction is made based on
the corresponding history bits. If the prediction says that the
branch will be taken, then the address in the destination
field is used to access the next instruction. When the branch
is resolved, in the execution stage, the BTB can be
corrected with the right information about what happened
with the branch, in the case of a previously wrong
prediction.

After this, Yeh and Patt proposed the idea of collecting
dynamically two levels of branch history [YEH91]. The
first level keeps the history of the last K branches found.
The second level stores what happened with the last J
occurrences of a specific standard for the K branches.

The first level is called History Register Table and the
second level as Pattern Table. The branch address is
mapped to access the first level as in a normal BTB. After
mapping the right entry, the history register (Branch
History Register) gives the standard bits that will determine
which entry will be accessed in the second level. Accessing
the second level, the mechanism has the prediction bit that
will indicate the path to be followed by the fetch stage to
access the next instructions.

After the branch execution, the result (taken or not-
taken) is shifted inside the history register of the
corresponding entry on the first level, modifying the
standard for the branches that will map that entry. The state
transition logic evaluates the branch result with the
previous prediction and gives the new prediction bit that
will be used in the future.

From 1996, new hybrid and multi-hybrid predictors
started appearing. Hybrid predictors include many
techniques, all of them working in parallel, but only the
technique with the better correctness probability gives the
prediction's result to the fetch unit. At this moment, it is
possible to get prediction accuracy near to 100% for some
programs [KES99], but, the percentage of remaining
branches is still sufficient to decrease the performance
reached by superscalar architectures.

IV.THE SIMPLESCALAR SIMULATORS

The SimpleScalar Tool Set [AUS97] is a suite of
execution-driven simulators used to evaluate the
performance of caches, branch predictors and state-of-art
superscalar processors. Eight simulators are included in the
suite, from a fast and functional simulator to a detailed
timing simulator, the sim-outorder.

Sim-prevar is an extended sim-outorder that features a
new branch prediction mechanism [GONOO]. Using this
mechanism, the user can introduce any desired rate of
branch prediction accuracy comprised between 0 and |
(representing 0 to 100% of accuracy in the prediction).

58

When a branch instruction is reached, the mechanism
draws a random number also comprised between 0 and 1. If
this number is smaller than desired rate, the medictor forces
a good prediction. In this case, if the target or the direction
was wrong, the predictor corrects to right values, otherwise
it keeps the original prediction. On the other hand, if the
random number is above the desired rate, the predictor
forces a misprediction. In this case, if the target was right,
the predictor redirect the fetch to the wrong address, adding
the correct penalty, otherwise it keeps the prediction. In this
moment, only direction misprediction is simulated, the
target is always predicted cormrectly when a branch is
correctly predicted taken. Therefore, target mispredictions
are not considered in this version.

The results that will be shown in the next session were

obtained using the simulator described above. Six
benchmarks from SPEC2000 [SPEOO] were used in the
simulation, containing floating-point applications (ammp,

equake e mesa) and integer applications (gee, gzip, vpr).

We have chosen all benchmarks written in C, to avoid
interference of different compilers. Moreover, three
benchmarks are well known and used applications (gec,
gzip and mesa).
e ozip: The gzip benchmark is the popular data
compression software, but it realizes all

compression/decompression in memory;

e occ: The gee benchmark is based on the GNU gee
v2.72.2, generating code for the 88100 processor
from Motorola. The compiler has had its inlining
heuristics altered to inline more code, resulting in
more liming analyzing its source code inputs, and
using more memory;

e vpr: The vpr benchmark is a FPGA (Field-
Programmable Gate Array) partitioning and routing
software and, algorithmically, belongs to
combinational optimization class of programs;

e ammp: The ammp benchmark models large systems
of molecules, running molecular dynamics on a
protein-inhibitor complex that is embedded in
walter;

e mesa: The mesa benchmark is a free library like
OpenGL that, from a 2D scalar field produces a

PNG image;

e cquake: The equake benchmark simulates the
propagation of elastic waves in large and
heterogeneous valleys, like San Fernando Valley, in
California.

The benchmarks were compiled using the cross-

compiled gcc v2.6.3 provided by the SimpleScalar Tool
Set. The optimization level chosen was the greatest
supported by the compiler (-O3 -unroll-loops).

Two different configurations were simulated. The first
one consists on a configuration with few amount of
hardware, representing personal computers used nowadays.

The second one represents a configuration with more
hardware, representing servers and future personal
computers generations. Table 1 shows these configurations,
where TA = integer ALU, FA = floating-point ALU, LS =
load/store units, IM = integer Mul/Div and FM = floating-
point Mult/Div.

TABLEI
SIMULATION CONFIGURATION
Superscalar [Superscalar I1

Width 8 16

L1 cache 32K 64K
L2 cache 512K 1024K
FU's 3IA, 3FA, 2LS, 11M, | 5IA, 5FA, 2LS, 1IM,

IFM IFM

RUU 32 64

LSQ 16 32

V.BRANCH PREDICTION X PERFORMANCE

In figures 3 and 4, it is possible to see the Superscalar I
(SS I) and the Superscalar II (SS 1I) performances,
respectively. We can notice that architecture SS II reaches
higher performance (IPC) than SS [, as expected.

,j /

gl3

05 T————r *

%5 60 6 M B 8 B W %

Accuracy Rate(%)

10

Fig. 3 — Superscalar [- [PC

The ammp's performance does not alter significantly
with the increase in the branch prediction accuracy. This
happened because the benchmark had a higher miss rate in
cache L2 and in data cache. In this way, it can be noticed
that after 90% the performance decreases. As we have a
higher correct instructions flow, it would be necessary a

higher ready data volume, what is not happening because of
the higher miss rate in caches.

Another important characteristic is that some
benchmarks take more advantage on the accuracy increase
than others, as we can see in vpr. This benchmark, with an
accuracy of about 50%, has a lower IPC than equake, gzip,
gee and mesa. With about 85-90%, its growth is very big,
being the benchmark with the best performance in ways of
IPC.

4,
o //
3
AR
% / + pquake
-
£ Iy
- ms
1 ;/
S ==

Accuracy Rate(%)

Fig. 4 — Superscalar IT — IPC

Analyzing figure 4, it is possible to see that the ammp
benchmark presented the same previous behavior,
confirming that this benchmark does not take advantage of
the accuracy increase. And also, the amount of hardware
inserted in SS II does not increase its IPC as it increased the
other benchmark's IPCs. Once more, we notice that vpr
takes more advantage on the accuracy increase. With an
accuracy of about 50%, this benchmark has one of the
worst IPC, but when the accuracy reaches about 85% its
performance increases exponentially.

Figure 5 shows that the distance between the
performances of both architectures increases according to
accuracy increase. This happens because when there is
more available hardware the instruction level parallelism is
better exploited. However, this advantage just is possible
when there is an efficient predictor and vice-versa. And
besides, with a better predictor, more easily, also, the ILP
will be better exploited because fewer instructions will be
speculated on the wrong path, increasing the instruction rate
executed per cycle.

‘Lj]
1
* Superescalar I
& * Syperescalr]
15
1
03 — —
5 €0 &€ N B N OB W0 K ¥
Accuracy Rate (%)

Fig. 5 — Average IPC

In figures 6, 7 and 8 we have the IPC speedup when the
accuracy goes from 85% to 100% in the architectures SS I e
SS 11, respectively. The ammp benchmarks does not appear
in these figures due to its instable comportment in these
simulations.

10

5

20

w15

|

1
| |
i i i

enip
Benchmarks

|
i

ae

w

Fig. 6 — Performance Speedup - SS |

These figures reinforce what was exposed before. With
the accuracy increase, the IPC also increases. Although, in
SS I architecture, the accuracy increase corresponds, in
most cases, in a higher IPC increase than in previous bands.
On the other hand, i is possible to note that in SS II, when

60

we increase the accuracy from 95 to 100%, the IPC increasc
is not so big as in another bands (85-90 and 90-95).

k]

i
u

equake uzip mesa

Benchmarks

o

Fig. 7 — Performance Speedup— SS 11

This was caused by an unbalanced amount of hardware.
In SS II, the fetch and dispatch width and the caches were
enlarged, as well as the number of functional units.
Therefore, the number of functional units was not enough
when a large amount of instructions were inserted in the
pipeline. The number of cycles which the RUU was full
increased too much due to the lack of functional units,
stalling the pipeline, consequently, not allowing the IPC to
increase as it were expected.

B——— —

61—

n B 0 &

Accuracy Rale (%)

Fig. 8 — Performance Increase — SSTx SS 11

VI.CONCLUSIONS AND FUTURE WORK

With sim-prevar it is possible to do a lot of studies
about the behavior of different architectures towards the
branch predictors accuracy. Thus, it is possible to know, for
example, if it is a valid effort investing on a predictor to
increase its accuracy rate from 90 to 95% or from 95 to
100%. With this study, it was possible to notice that some
applications can take more advantage then others with the
accuracy increase, only depending of how its source code is
formed. And besides, it is easier to exploit the instruction
level parallelism when we have more hardware available
and higher branch prediction accuracy.

It was possible to note that, not always that the accuracy
is increased, we get a performance increase in the same
order. Besides, the performance obtained by the SS |
architecture with a higher accuracy rate may be reached by
the SS II architecture with less accuracy rate, as we could
see in figure 5. The performance obtained by SS I with
accuracy of about 85% and 100% is similar to the
performance obtained by SS I with 75% and 90%,
accordingly. This lead us to conclude that it is possible to
redirect the efforts in making a better predictor to enlarge
the hardware, as, for example, caches, functional units and
bandwidth, reaching the same performance.

We must have in mind that to get the maximum
performance increase, we need, not only, to invest in the
other parts of the hardware, but we must correctly enlarge it
to avoid creating an unbalanced architecture and,
consequently, stalling the pipeline.

Having a good accuracy and few/unbalanced hardware,
we only change the bottleneck’s place. It is not worth
feeding the pipeline with a higher instruction flow if it
cannot éxecute them, even being by the lack of functional
units or ready data.

In our simulations, as was said before, were used some
of the benchmarks provided by SPEC2000. Despite of the
strange behavior of ammp benchmark, the others
benchmarks showed that SPEC2000 is more up to date to
simulate state-of-art architectures than SPEC95. It is also
more exigent in terms of amount of hardware to be
simulated than its antecedent.

In the next stage of this research, the source code and
assembly code with different levels of optimizations will be
analyzed. With this, we wait achieve a better knowledge
about SPEC 2000 intemmals and the differences among the
performances of each benchmark.

VII.REFERENCES

AUSTIN, T. M., A User's and Hacker's Guide to the
Simplescalar Architectural Tool Set,Intel
MicroComputer Research Labs, January 1997,

[AUS97]

6l

[BUR97]

[DIE9S]

[FER92]

[FER97]

[GONOI]

[HWA93]

[KES99]

[JOH91]

[PIZ00]

[SMI95]

[SOH90]

[SPE9S5]

[SPE0O]

[STA96]

[TAL9S]

[YEH93]

BURGER, D., AUSTIN, T. M., The SimpleScalar
Tool Set, Version 2.0, Technical Report #1342,
University of Wisconsin — Madison, June, 1997,
DIEP, T.A, NELSON, C., SHEN, J.P., Performance
Evaluation of the PowerPC 620 Microarchitecture,
Proceedings of the 22nd Annual International
Symposium on Computer Architecture, Santa
Margherita Ligure, ltaly, June, 1995.

FERNANDES, E. S. T., SANTOS, A. D,
Arquiteturas Super Escalares: Detecgiio e
Exploragio do Paralelismo de Baixo Nivel, VII
Escola de Computagiio, Gramado-RS, Agosto de 1992.
FERNANDEZ, A., Un Anilisis Cuantitativo del
Spec9s. Universitat Politeenica de Catalunya,
Barcelona (Technical Report)

GONCALVES, R. A. L.; PILLA, M. L.; PIZZOL, G.
DAL; SANTOS, T. G. S.; SANTOS: R. R.
NAVAUX, P. O. A. Evaluating the Effects of
Branch Prediction Accuracy on the Performance of
SMT Architectures. In. EUROMICRO WORKSHOP
ON PARALLEL AND DISTRIBUTED
PROCESSING, 9., 2001, Mantova. Proceedings...
IEEE Computer Society, 2001, p. 355-362,

HWANG, K. Advanced Computer Architecture:
Parallelism, scalability, programmability. New
York: McGraw-Hill, 1993.

KESSLER, R. E. The Alpha 21264 Microprocessor.
[EEE Micro, v.19, n.2, March/April 1999

JOHNSON, M. Superscalar Microprocessor Design.
Englewood Cliffs: Prentince Hall, 1991.

PIZZOL, G. D., PILLA, M. L., NAVAUX. P. O. A.

Variable Accuracy Branch Prediction with
Simplescalar Tool Set. SIM 2000 - UFRGS

Microeletronics Seminar. Torres, Julho 2000.

SMITH, J.E, SOHI, G.S., The Microarchitecture of
SuperScalar Processors, Proceedings of the 1EEE,
83(12), pp.1609-1624, December, 1995.

SOHI, G. S. Instruction Issue Logic for High-
Performance, Interruptible, Multiple Funcional
Unit, Pipelined Computers. [EEE Transactions on
Computers, 39(3):349-359, March 1990.

SPEC CPU 95 Technical Manual. SPEC Steering
Committe, 1995

SPEC CPU 2000 Technical Manual. SPEC Steering
Committe, 2000

STALLINGS, W. Computer Organization and
Architecture: Designing for Performance. Upper
Saddle River: Prentice Hall, 1996.

TALCOTT, Adam R. Reducing the Impact of the
Branch Problem in Superpipelined and
Superscalar Processors. Santa Barbara: UCSB, 1995
(Ph.D. Thesis).

YEH, Tse-Yu; PATT, Yale N. A Comparison of
Dynamic Branch Predictors that use Two Levels of
Branch History. In: ANNUAL INTERNATIONAL
SYMPOSIUM ON COMPUTER ARCHITECTURE,
20., 1993. Proceedings... New York: ACM, 1993. p.
257-260

