
A Reconfigurable Computer REOMP
Alessandro Noriaki Ide1

, José Hiroki Saito2

1Universidade Fede~al de S~o Carlos, _Programa de Pós-Graduação em Ciência da Computação
Rodov1a Washtngton LUis (SP-3 1 0), Km 235, São Carlos, SP, Brasil

{ noriaki @dc.ufscar.br}
2Universidade Federal de São Carlos, Departamento de Computação
Rodovia Washington Luis (SP-3 1 0), Km 235, São Carlos, SP, Brasil

{ saito@dc.ufscar.br}

Abstract-
This work describes a proposal of reconfigurable computer,

and their appl ication to hardware implementations of neural
networks. Although lhe neural network funclions correspond lo
the brain functions, our computer is based on the current
technology, which is completely di fferent from the internai
structure of the brain based on the neuronal cells. The proposed
Reconfigurable Orthogonal Multiprocessor. REOMP, is based on
processing units that are reconfigured to execute the algorithms by
demanding driven rule. The performance analysis of the
architecture is made with the implementation of an artificial neural
network, neocognitron, which involves concurrent operations of a
great number of arti fic ial neurons. The analysis of the architecture
showed that its speed-up is linear in a wide range, where the
implementation of REOMP is appropriate. We conclude that the
proposed architecture is able to be used to neural network
hardware implementation. To obtain the best performance of the
architecture, the neural network model should make use of
massively parallel neural processing of the previously processed
data that is the case of feedforward neural networks.

Keywords- Reconfigurable Computer, Neural Network,
Hardware lmplementation, FPGA, MPI

I. i NTRODUCflON

This work proposes a reconfigurable hardware to
the implementa tion of neural networks. Although the neural
networks corresponds to the functions of the human brain,
the proposed arch itecture is based on the current digita l
technology, which is comple tely di fferent from the brain
internai structure based on the neuronal cells. This is the
same when we think about the airplane construction, based
on the flying birds [MAT 98]. The airplane is designed
based on the hydro dynamical physics, while the bird's
contribution to the airplane construction is the fact that they
actua lly fl y over the sky. The effort of creating the brain
brings us ingeniously scientific product which eventually
leads us to the profound understanding of the brain as well
as to the advancement of compu ter engineering.

The human brain is composed by more than 10
billions of neurons, which are known as processing units,
wh ich functions as an ana logy component that processes
the weighted sum of their great number of input connection
values, and produces a response that propagates to other
neurons.

62

Bra in functions are spatia lly distributed . For
example, it is known that the tempora l cortex region is
responsible by the early vision . On the other hand, the Yon
Neumann sequential computer is temporally distributed,
where some general-purpose processing elements are used
sequentially to process a sequence of instructions in
memory. By this limitation, a lthough very fast to process
arithmetic operations, the sequential computer is not
suitable to specialized processing as human face
recognition. Artificial neural network approaches have been
proposed to overcome this shortcoming o f the sequential
computers.

If we are proposing to implement the brain
func tions, the exploitation of the spatial distribution of the
processing elements seems more suitable, as the neurons
are spatially distributed in the brain . This is similar to the
most of artificial neural nelwork models, where the
threshold e lements, or neurons, are spatially distributed. In
this case, if our purpose is to implement lhe whole human
bra in functions, in a reconfigurable computer, we must
have more than 10 billion processing elements spatially
d istributed, that is obviously impracticable with the current
technology.

The construction of a Reconfigurable Orthogonal
Multiprocessar Arch itecture REOMP is justi fied by the fact
of the limitation o f sequent ia l computers and the
impossibility of the implementation of too many processing
elements. Furthermore, the realization of hardware
implementation of neural networks, in lhe REOMP, is
scalable, and reconfigurable, so that many neural network
processing a lgorithms may be implemented using a suitable
number of processing elements.

li. RECONFIGURABLE COMPUTER

A reconfigurable computer [GOL OO][DEH 00]
provides the solution to the hardware implementa tion of
neural networks using the current technology. This
approach assumes that not a li the neural ne tworks functions
are active ali the time. Only the aclive functions are
configured in the compu ter during a snapshot of operation.

The reconfigurable computer has a reconfiguration
unit and fi xed units. It uses configurable components as
Field Programmable Gates Arrays, FPGA's, which are

configured after fabrication, to implement a special
function in the reconfigurable unit. A FPGA is an array of
bit levei processing elements whose functions and
interconnections can be programmed after fabrication. Most
traditional FPGA's use small lookup tables to serve as
programmable elements. The lookup tables are wired
together with a prograrnmable interconnect, which accounts
for most of the area in each FPGA cell. Severa) commercial
devices use four input lookup tables (4-LUT's) for the
programmable elements. Commercial architectures have
several special purpose features, as carry chains for adders,
memory nodes, shared bus lines.

The configuration unit is effic ient i f it implements
the spatially distributed processing elements to exploit the
streaming of the data path, as in the neural network.
Obviously, some functional systems of the neural networks
are always active, that can be implemented at the fixed unit
o f the compu ter.

A reconfigurable computer partitions computations
between two main groups: {I) reconfigurable units, or
fabric; and (2) fixed units. Reconfigurable units exploit the
reconfigurable computations, which is effic ient when the
main computa tion is executed in a pipelined data path
fashion. Fixed units exploit system computations that
control the reconfigurable units.

Reconfigurable units are reconfig ured to
implement a customized circuit for a particular
computa tion, which in a general-purpose computer is cost
proh ibitive, to be implemented in hardware, because o f its
reduced use. The compiler embeds computations in a sing le
static configuration rather than an instruction sequence,
reducing instruction bandwidth and control overhead.
Because the circuit is customized for the computation at
hand, function units are sized properly, and the system can
realize ali statically detectable paralle lism.

A reconfigurable unit can outperform a fixed unit
processing in cases that: (a) operate on bit widths different
from the processor's basic word size, (b) have data
dependencies that enable multiple function units operate in
parallel, (c) contain a series of opera tions that can combine
into a specia lized operation, (d) enable pipelining, (e)
enable constant propagation to reduce operation
complexity, or (f) reuse the input values severa) times.

Reconfigurable units give the computational data
path more tlexibility. However, their utility and
applicability depend on the interaction between
reconfigurable and fixed computations, the interface
between the units, and the way a configuration is loaded .

It is possible to divide reconfigurable
computations in to two categories: (I) stream-based
functions which corresponds to the processing of large,
regular data input streams, producing a large data output
stream, and having little control interaction with the rest of
the computation; and (2) custom instruc tions which are

63

characterized with a few inputs, producing a few outputs,
executed intermittently, and having tight control
interactions with the other processes. Stream-based
functions are suitable for a system where the reconfigurable
unit is not directly coupled to the processor, whereas
custom instructions are usually benefic iai only when the
reconfigurable unit is closely coupled to the processor.

The following session will be concem ed to expose
some definitions about a reconfigurable card, HOT O PCI,
and a parallel processing library, MPI, both used in the
proposed architecture.

III . HOT 11 PCI DEVELOPMENT PLATFORM

a
EJ

FPGA

HOTI..__.

PO-

Fig. l - HOT 11 PC/ development board

The development environment HOT 11 PCI, Fig.l ,
produced by VCC (Virtual Computer Company), is a
standard PCI card, wi th Xi linx FPGA, XC401 3, and FPGA­
RT R, Virtex, and a software tool, HotWorks, with a basic
set of routines to access and programming of the board
FPGA's. The main component (FPGA) is configured as
interface PCI32, which a llows the user communication wi th
the computational resources of the HOT 11 PCI card,
including two SRAM memory blocks, and a Config uration
Cache Manager (CCM). CCM controls the Run Time
Reconfiguration (RTR), which changes the system
behavior. The FPGA may be configured, with the CCM
content. In a flash memory there is an initia l configuration
of the system, which includes the operation system of the
hardware and the PCI interface. Furthermore, it may store
three other configurations. The HOT 11 PCI card has two
independent bars, each one with 32 data bits, and 24
address bits.

IV. MESSAGE PASSING INTERFACE

Message Passing Interface [MPI 95] was
developed in 1993- 1994, by an industria l, governmental,
and academic researchers group, called MPI Forum . MPI
was one of the first standards accepted to the message
passing in parallel processing. It's a library of functions and

macros, which may be used to program in C, FORTRAN
77, and C++. which allows the process communication
through messages to write parallel application programs,
establi shing a practical, portable, efficient , and tlexible
standard for message-passing. It provides a reliable
communication interface (i. e., user don ' t need to deal with
communication failure). It is supposed to deliver high
performance on high-performance-systems. It should be
modular, to accelerate the development of portable parallel
libraries. The resource allocation detail is totally left to the
implementer, turning the system flexible and efficient. The
C, FORTRAN 77, and C++ programs, which must use
MPI. may include mpi.h , mpif.h, and mpi++.h, files,
respectively. The main ad vantages of establishing a
message-passing communication are its portability and
facilit y of use. We can notice it in multiprocessors systems
with distributed memory, where the MPI routines are built
using the conceptions of process, communications, and data
types. MPI Iibrary may be used by a di versity o f users, and
heterogeneous platforms. MPI provides two ways o f
communication: point-to-point and collective
communication. Point-to-point communication involves a
pair or process that establishes the communication among
them using the primitives: send (source) and receive
(destin ati on). On the other hand. collective communication
in volves a group of process that uses a set of MPI
functions. The main collecti ve functions are: barrier
(responsible by the synchronization) and the broadcast
(responsible for passing the same message for ali members
of the group). MPI is recommended for para lle l machine,
tools, environment , and software, developers.

V. PROPOSED ARCHITECTURE

The proposed recontigurable computer REOMP, is
composed by: (I) recontigurable units, responsible by the
implementation of neural network functions, partially, not
a li the functions at the same time; (2) fixed units,
responsible by the implementation of the control of
recontigurable units, and the tixed neural network
functions: and (3) the memory un it, responsible by data
st01·age.

A PC followed by a HOT 11 PCI card, connected
by a PCI bar, composes a Reconfigurable Processor (RP) of
the REOMP. Each RP is connected to other RP's through
an interconnection network, to syncronize the
reconligurations, and exchange data and information
through the orthogonal memory modules. Ali the RP's
constitute a parallel environment, by the MPI library,
responsible to organize the "threads" or processes of the
spatial computations [DEH 99]. Fig.2 shows the
i mplementation.

64

Thc REOMP, implemented through the HOT 11
PCI card, may emulate the NEOMP (Neural Orthogonal
Multiprocessar) architecture rsAI 99], which is composed
by severa! reconfigurable processors, making access of the
orthogonal memory [HW A 89]lHWA 93], where the data
to be processed are stored.

The overall system is an orthogonal
multiprocessar, OMP, which is characterized by the parallel
processing units, each one accessing their memory modules
in two ways: column and row. Each row, and each column,
are attributed to an exclusive processar. The row access and
column access are perfonn ed exclusively, wi thout time­
sharing of the buses by the multiple processors, reducing
the memory access conflic ts.

Fig. 3 shows a typical data spreading operation
using the REOMP memory modules. At the left side we can
see the diagonal memory modules that correspond to local
memory of the processors, with their respective data. Row
access allows the processors connected to the exclusive
rows spread the data to a li row modules, simultaneously. At
the right side, we see the result of parallel data spreading
operation, with a li columns containing the same data.
distributed in severa! memory modules. During the
foll owing column access, ali processors may access their
own column memory modules, which contain the spread
data.

B D DD BBGG
D GDD
DDGD
DO DEl
Coatents of data In tbe dtaeoaal

memorr modules

B G BG
G BGG
GEJGEJ

Parallel wrlte operatlon to
allllne modulet

Fig. 3- A typical parai/e/ data spreading atthe REOMP mem01y
modules

VI. REOMP RECONFIGURATION

The orthogonal memory is considered as
containing severa) cell planes, each one corresponding to
neural network array of cells, or their corresponding
temporary data (such as input values, intermediate values
and output values). Fig. 4 shows the data flow diagram of
the REOMP processing, where the cell planes, which
constitutes the orthogonal memory contents are read and
processed by an ALU (Arithmetic and Logic Unit) and the
result is written back. Each word of the orthogonal memory
is been manipulated as a register, so that in a binary
operation two different registers may be addressed to
provide operands of the ALU. The result can be addressed
to be written on another register. At the Fig. 4, it is shown
severa I cell planes (I, 2, ... , n), each one corresponding to
an orthogonal memory module.

PlANE 1

PI.ANE2

PlANE n

CELL REGISTER

o--

REGISTER ARRAY

OPERATION
SELECTION

Fig. 4- Datajlow ofthe REOMP processing.

OPERATION TEMPLATE

Fig 5 - Operation template

REOMP processing is based on operation
templates, which indicates the two operands (A, and 8) of
the ALU, the ALU operation, and the result storage

65

address, Fig.S. These templates are queued in the
reconfigurable unit, Fig.6, and executed in pipeline. Fig.7
shows the template operation during its execution.

PRESENT

o~ L---~-----L----~--~

Fig 6- Operation template queue.

DO n==--1
DO Ol==t--1

DO
· D D 01=='--
· D O Ol==f-- 1

Fig 7- Tlle operation template GIUI tlleir execution.

Fig.8 shows the data flow to the spread operation.
After data processing, the resulting data are spread out to
the suitable cell planes to the next stage operation. This
operation is performed with a buffer register, connecting ali
the cell planes of the register array. This data spread
operation is possible changing the access mode of the
orthogonal memory, from column to row, or vice-versa,
depending on what access mode is been used. A special
operation template, indicating the spread element address,
and a mask containing the information about the cell planes
to be written, may execute a data spread operation. Fig.9
shows the spread operation template, composed by the
spread element address and a set of mask planes,
responsible to enable memory module access.

Fig 8. Data flow of REOMP during memol)' data spread
operation.

Fig 9. Operation templatefor the data spread operation.

-r----;"':'

r----;::=

Fig 10. The data spread operation inthe REOMP.
Fig. I O shows one example of the data spread

operation during execution. The spread element address
marks the cell plane position where the spread element is
located. The data is spread to the enabled cell planes,
according to the template, using an intermediate register
buffer. The spread element is copied at the same position of
the corresponding cell planes.

The spread operation provides an interesting
solution to the neuronal data exchange after one layer

66

processing, in a feedforward network implemented in
parallel architecture.

To the validation of the proposal, it is used the
parallel processing of a feedforward neural network, known
as neocognitron, and its performance analysis, as follows.

VIL REOMP RECONFIGURATION: A C ASE STUDY

A. Neocognitron, a Feedforward Neural Network

As an example it is used the configuration of
REOMP to the implementation of a neural network model
simulating the human vision function, known as
neocognitron.

Neocognitron is a massively parallel neural
network, composed by severa! layers of neuron cells,
proposed by Fukushima [FUK 79] [FUK 82] [FUK 92]
[FUK 96] [SAI 98] inspired by Hubel and Wiesel's model
of biological vision. As other neural network models,
neocognitron has its self-organized training phase and the
recognition phase, when used in pattern recognition.

The lowest stage of the network is the input layer
U0 . Each of the succeeding i-th stages has a layer Us;
consisting of S-cells followed by a layer Uc; of C-cells.
Each layer of S-cells or C-cells is composed by a number of
two-dimensional arrays of cells, cal led ce/1-p/anes. Each
cell-plane is associated to a single feature extracted from
the training patterns, during the learning phase. The S-cells
are responsible by the feature extraction, and the input
connection weights of the S-cells are adjusted during the
training phase. C-cells are responsible by the distorted
features correction. Each cell inside a cell-plane receives
input connections from the preceding layer cell-planes.

The recogn1t10n phase computation of
neocognitron, follows the sequence showed at the following
algorithm, Fig.ll , from layer I to L, where L is the number
of stages.

Program neocognitron ();
begin

For I = I to L do compute_stage (/);
end;

Fig 11 . Neocognitron computation sequence.
Procedure compute_stage (/) ;
Begin
for k = I to K1 do begin

for n = I to N do begin
for IC= I to K1•1 do

for ali vê Sv do begin
e(n,k):=e(n,k)+a(v,K,k). uc1.dn + v,IC);
h(n,k):= h(n,k)+c(v).fuc1.JfK,n+ v) l ;

end;
u5/.n,k):=(91(1-8)).

q>((I+ e(n,k))l(I +9.b(k).sqrt(h(n,k)))-l) ;

for ali v e Sv do
ucdn,k):=ucln,k+ d(v).ust n+ v, k);

ucln,k):= 'P (uct(n,k));
end

end;
end·
Fig 12. Algorithm to compute the S-cells and C-cells of the 1-th

stage.

Fig. l2 shows the algorithm to compute the output
value u51 (n, k) of a S-cell, and the output value uc1 (11, k) o f a
C-cell, from the stage l. It is computed the output values to
ali K1 cell-planes and ali N cell-positions inside the cell­
plane.

To obtain the u51 (n, k) value, it is computed the
weighted sum, e(n,k) and h(n,k), of ali inputs coming from
ali K1•1 cell-planes of the preceding layer, in a given
connection area S. , which surrounds the posi tion 11, of the
preceding layer C-cell, or input layer, by the following
commands (I) and (2)

e(n,k):= e(n,k)+a(V,K, k).uCf.d 11+ V,K) , (I)
and
h(n,k): =h(n,k)+ c(v). { uc1.t(K,n+ v)/ (2)
Then the u5t(11, k) value is obtained by the assignment:

u5t(n,k):=(8!(J-8)).<p((1 + e(n,k))l
(I +8.b(k).sqrt(h(n,k))-l), (3)

where
q> (x) = x , when x > O , and q> (x) =O, elsewhere. The
variable 8 represents the threshold of the function , whose
value is behind O, and I , and b(k) represents the inhibition
coefficient.

To obtain the uc1 (n, k) value, it is at first computed
the weighted sum of ali inputs corresponding to the
previously obtained u5t(n, k), in a given connection area S.,
which surrounds the position n, of the preceding S-cell
layer, by the following assignment:

uet(n,k):=uct(ll,k)+d(v). u5t(n+v,k) (4)

followed by calculation of transfer function
lfJ(x)= <p(xY(I +<p(x)) which limits C-cell output to the range
{0,1]

67

}RP 1

}RP 2

yp3

}RPp
U SJ Uc3

U SI Uct output
'-----y---1 '---y----1 '---y-----J la y c r

stage I stage 2 stage 3
p cell plones

Fig / 3. Neocognitron structure with 3 stages of S·cel/s (Us;)
wu/ C-cells (U c;).

Fig. 13 shows a neocognitron structure with 3
stages of S-cells and C-cells. Ali k cell planes from stagel
takes the input values from the input layer. After the
parallel processing of the k cell planes in layer I by the
corresponding Reconfigurable Processar (RP;), ali results
are used by ali cell planes of the layer L+ I , as shown by the
interconnections between Jayers. These interconnections
refer to the orthogonal memory data spreading operation,
which occurs after the layer processing. After the data
spreading operation, each processar can access ali the
preceding layer data, directly in the orthogonal memory
without contlict. The last stage is connected to the output
layer, which corresponds to network result layer.

B. Concurrent Computing M odules

By the analysis of the neocognitron model
described at previous section it was extracted a set of
concurrent computation modules, which corresponds to
compound vector function s [HW A 93]. Four modules E, H,
S, and C, correspond to the neocogni tron computing
algorithm.

E-module computes to ali N positions of the cell­
plane, the weighted sum o f the input uc1.J(n+ v, K), with the
weight a(v,K,k), within the connection region Sv, which
results in a partia! value of e(n,k) , corresponding to the
plane K. Each E-module issue repeats the flow graph N
times to compute ali positions of the E matrix. Its result is
added to the E matrix that will accumulate the weighted
sum of ali K cell-planes, after K issues of the E-module
function .

H-module is similar to the E-module but the
weight values are c(v) and the input values are squared
before the computation of the weighted sum. It results in
the H matrix, which will contain the weighted sum of all

preceding layer cell-planes, after K issues of the H-module
function.

S-module computes u5,(n,k), to ali N positions of
the cell-plane, using the results of the previously described
E-module and H-module functions.

C-module corresponds to the computation of the
uo(n,k) , to ali N cells. It computes the weighted sum of
u5,(n+ v, k), by d(v) , and then the function 'f/.

TABLEI

Processing Modules

Module Operations Complexity Typical Execution
Numberof

Per issue O() Operations Time(ms)

E 2.N.Sv+ N N.Sv 20,400 2.04

H N.Sv.3 +N N.Sv 30,400 3.04

s N.4 N 1,600 0. 16

c N.S ... 2 N.Sv 20,000 2.00

We classilied the module size as the T ABLE I,
which shows at the first column the identified modules; at
the second column, the number of arithmetic operations per
issue of the processing module; followed by the complexity
of the processing, in O function; at next column it is
showed the typical number of arithmetic operations, using
N = 400, S.,= 25, and K = 50; and finally, the processing
time, using a processar cycle of "C=/00 ns.

lt is considered that the arithmetic operations are
executed in sequence within the module, disregarding the
instruction and operands memory access overheads. We are
not considering here the parallel execution, or vector
processing, which may improve the processing time of the
majority of the modules.

VIII. PERFORMANCE A NAL YSIS

As an example, the mapping of the neocognitron to
the proposed architecture may be resumed, as follows. The
modules E, H, S, and C, are processed at the vector
processors, and the other functions at the scalar processar,
or at the host processors.

In a general version of REOMP we propose a
special use of the orthogonal memory, as follows. When the
processors are writing their results in the orthogonal
memory, to the next phase of orthogonal access, they write
simultaneously on ali accessible memory modules, in
congruent addresses. After that, the processors wait for the

68

next orthogonal access, which occurs automatically, after
the Jast processar finishes the processing. At the next
orthogonal access, the access mode is changed, to row or
column, depending on the last access. When the mode is
changed, ali Lhe processors have the preceding processing
results of ali the processors, because of the simultaneous
writing on ali accessible modules, in the preceding phase.
In this way, no times are lost to memory spreading
operation, so that the speed-up is linear, as the ideal case.

Fig 14. Speed-up ofthe proposed architecture compared to
the ideal speed-up.

Fig.l4 shows the speed-up diagram of a typical
implementation of REOMP. It can be noted that the speed­
up is dose to linear along the range of I to 16
reconfigurable processors, and after that, degrades slowly,
until 32 processors. A good implementation of the proposed
REOMP may vary from 2 to 8 processors, where the
number of memory modules varies, not excessively, from 4
to 64. Note that in this range we can use the zero spreading
time implementation, to reach the ideal speed-up. We note
that if it is used the parallel operation inside a
reconfigurable processar unit (HOT 11 PC), implementing
severa! template queues, we have the speed-up improved at
the area above the one operation speed-up line.

IX. CONCLUSIONS

This work proposes a reconfigurable computer to
the hardware implementation of neural networks. Although
the neural networks functions corresponds to the brain
functions, the proposed architecture is completely different
from the brain internai structure based on the neuronal
cells. The proposed reconfigurable processors (RP's) are
based on commercially available FPGA's (Field
Programmable Gate Arrays) and a development
environment card, HOT 11 PCI. The algorithms are
processed in the RP's that are connected by a parallel
environment, MPI library. It was chosen due to its
flexibility, facility of use and portability. If the processing
is finished ali the RP's of the REOMP architecture is
reconfigured to another algorithm. As the brain, some

algorithms or functions are constantly in operation, and
others may be altemated. The proposed architecture
comports hardware implementation of algorithms that
simulates the brain functions, occupying physically
restricted space. This is possible by the almost sequential
behavior of the brain functioning. The proposed
architecture is able to be used as a brainway computer, as
the dynamical configuration is executed adequately. The
future works are concemed to the development of the other
algorithms to the proposed computer, which may result in
other reconfiguration design of REOMP. Another work is
concerned to the development of software tool to the
generation of operation templates to the algorithm.

REFERENCES

[DEH 99] DEHON, A. & WAWRZYNEK J.
Reconfigurable Computing: What Why, and
Design Automation Requirements ?
Proceedings of the 1999 Design Automation
Conference, pp 61 O- 6 15 , June 1999.

[DEH 00] DEHON, A. - The Density Advantage of
Configurable Computing, IEEE Computer,
Vol. 33, N. 4, 2000.

[FUK 79] FUKUSHIMA, K. - Neural-network model
for a mechanism of pattem recognition
unaffected by shift in position - neocognitron
, Trans. IECE Japan, vol.62-A, no. I O, 1979.

[FUK 82] FUKUSHIMA, K.& Miyake, S.
Neocognitron: A New Algorithm for Pattem
Recognition Tolerant of Deformation s and
Shift in Position, Pauern Recognition, vol.
15, no.6, 1982.

[FUK 92] FUKUSHIMA,.K. & WAKE, N. - lmproved
Neocognitron wi th Bend-Detecting Cells,
IEEE - lnternational Joilll Conference on
Neural Ne!IVorks, Baltimore, Maryland,
1992.

[FUK 96] FUKUSHIMA,K.& TANIGAWA, M. - Use
of Different Thresholds in Learning and
Recognition, Neurocomputing, 11 , 1996.

[GOL 00] GOLDSTEIN, S. C.; SCHMIT, H.; BUDIU,
M.; CADAMBI, S. Moe, M. & TAYLOR,
R.R. PipeRench: A Reconfigurable
Architecture and Compiler, IEEE Computer,
Vol. 33, n. 4 , 2000.

[HW A 89] HW ANG, K. ; TSENG, P & KlM, D.- An
Orthogonal Multiprocessor for Parall"el
Scientific Computations, IEEE Trans. On
Computers, Vol.38, N.l , 1989.

[HW A 93] HW ANG, K. Advanced Compute r
Architecture - Parallelism, Scalability,
Programmability. McGrawHill, 1993.

[MA T 98] MA TSUMOTO, G. - The Brain and
Brainway Computer - Proceedings of The

[MPI 95]

[SAI 98]

[SAI 99]

69

Fifth Intemalional Conference on Neural
Information Processing, Kitakysushu, Japan,
1998.
MPI FORUM - MPI: A Message-Passing
lnte!face Standard University of
Tennessee, Knoxvi lle, Tennessee, June 1995.
SAlTO, J.H. & FUKUSHlMA, K. - Modular
Structure of Neocognitron to Pattern
Recognition, Proc. ICONIP'98, Fifth 1111.
Conf On Neural lnformation Processing,
Kitakyushu, Japan, 1998.
SAlTO, J.H. - A Vector Orthogonal
Multiprocessor NEOMP and its Use in
Neural Network Mapping, Proceedings of the
SBAC-PAD'99 1 I'" Symposium on
Computer Architecture and High
Pe!formance Computing, Natal, RN, Brazil,
1999.

