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Abstract-
This work describes a proposal of reconfigurable computer, 

and their appl ication to hardware implementations of neural 
networks. Although lhe neural network funclions correspond lo 
the brain functions, our computer is based on the current 
technology, which is completely di fferent from the internai 
structure of the brain based on the neuronal cells. The proposed 
Reconfigurable Orthogonal Multiprocessor. REOMP, is based on 
processing units that are reconfigured to execute the algorithms by 
demanding driven rule. The performance analysis of the 
architecture is made with the implementation of an artificial neural 
network, neocognitron, which involves concurrent operations of a 
great number of arti fic ial neurons. The analysis of the architecture 
showed that its speed-up is linear in a wide range, where the 
implementation of REOMP is appropriate. We conclude that the 
proposed architecture is able to be used to neural network 
hardware implementation. To obtain the best performance of the 
architecture, the neural network model should make use of 
massively parallel neural processing of the previously processed 
data that is the case of feedforward neural networks. 

Keywords- Reconfigurable Computer, Neural Network, 
Hardware lmplementation, FPGA, MPI 

I. i NTRODUCflON 

This work proposes a reconfigurable hardware to 
the implementa tion of neural networks. Although the neural 
networks corresponds to the functions of the human brain, 
the proposed arch itecture is based on the current digita l 
technology, which is comple tely di fferent from the brain 
internai structure based on the neuronal cells. This is the 
same when we think about the airplane construction, based 
on the flying birds [MAT 98]. The airplane is designed 
based on the hydro dynamical physics, while the bird's 
contribution to the airplane construction is the fact that they 
actua lly fl y over the sky. The effort of creating the brain 
brings us ingeniously scientific product which eventually 
leads us to the profound understanding of the brain as well 
as to the advancement of compu ter engineering. 

The human brain is composed by more than 10 
billions of neurons, which are known as processing units, 
wh ich functions as an ana logy component that processes 
the weighted sum of their great number of input connection 
values, and produces a response that propagates to other 
neurons. 
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Bra in functions are spatia lly distributed . For 
example, it is known that the tempora l cortex region is 
responsible by the early vision . On the other hand, the Yon 
Neumann sequential computer is temporally distributed, 
where some general-purpose processing elements are used 
sequentially to process a sequence of instructions in 
memory. By this limitation, a lthough very fast to process 
arithmetic operations, the sequential computer is not 
suitable to specialized processing as human face 
recognition. Artificial neural network approaches have been 
proposed to overcome this shortcoming o f the sequential 
computers. 

If we are proposing to implement the brain 
func tions, the exploitation of the spatial distribution of the 
processing elements seems more suitable, as the neurons 
are spatially distributed in the brain . This is similar to the 
most of artificial neural nelwork models, where the 
threshold e lements, or neurons, are spatially distributed. In 
this case, if our purpose is to implement lhe whole human 
bra in functions, in a reconfigurable computer, we must 
have more than 10 billion processing elements spatially 
d istributed, that is obviously impracticable with the current 
technology. 

The construction of a Reconfigurable Orthogonal 
Multiprocessar Arch itecture REOMP is justi fied by the fact 
of the limitation o f sequent ia l computers and the 
impossibility of the implementation of too many processing 
elements. Furthermore, the realization of hardware 
implementation of neural networks, in lhe REOMP, is 
scalable, and reconfigurable, so that many neural network 
processing a lgorithms may be implemented using a suitable 
number of processing elements. 

li. RECONFIGURABLE COMPUTER 

A reconfigurable computer [GOL OO][DEH 00] 
provides the solution to the hardware implementa tion of 
neural networks using the current technology. This 
approach assumes that not a li the neural ne tworks functions 
are active ali the time. Only the aclive functions are 
configured in the compu ter during a snapshot of operation. 

The reconfigurable computer has a reconfiguration 
unit and fi xed units. It uses configurable components as 
Field Programmable Gates Arrays, FPGA's, which are 



configured after fabrication, to implement a special 
function in the reconfigurable unit. A FPGA is an array of 
bit levei processing elements whose functions and 
interconnections can be programmed after fabrication. Most 
traditional FPGA's use small lookup tables to serve as 
programmable elements. The lookup tables are wired 
together with a prograrnmable interconnect, which accounts 
for most of the area in each FPGA cell. Severa) commercial 
devices use four input lookup tables (4-LUT's) for the 
programmable elements. Commercial architectures have 
several special purpose features, as carry chains for adders, 
memory nodes, shared bus lines. 

The configuration unit is effic ient i f it implements 
the spatially distributed processing elements to exploit the 
streaming of the data path, as in the neural network. 
Obviously, some functional systems of the neural networks 
are always active, that can be implemented at the fixed unit 
o f the compu ter. 

A reconfigurable computer partitions computations 
between two main groups: {I) reconfigurable units, or 
fabric; and (2) fixed units. Reconfigurable units exploit the 
reconfigurable computations, which is effic ient when the 
main computa tion is executed in a pipelined data path 
fashion. Fixed units exploit system computations that 
control the reconfigurable units. 

Reconfigurable units are reconfig ured to 
implement a customized circuit for a particular 
computa tion, which in a general-purpose computer is cost 
proh ibitive, to be implemented in hardware, because o f its 
reduced use. The compiler embeds computations in a sing le 
static configuration rather than an instruction sequence, 
reducing instruction bandwidth and control overhead. 
Because the circuit is customized for the computation at 
hand, function units are sized properly, and the system can 
realize ali statically detectable paralle lism. 

A reconfigurable unit can outperform a fixed unit 
processing in cases that: (a) operate on bit widths different 
from the processor's basic word size, (b) have data 
dependencies that enable multiple function units operate in 
parallel, (c) contain a series of opera tions that can combine 
into a specia lized operation, (d) enable pipelining, (e) 
enable constant propagation to reduce operation 
complexity, or (f) reuse the input values severa) times. 

Reconfigurable units give the computational data 
path more tlexibility. However, their utility and 
applicability depend on the interaction between 
reconfigurable and fixed computations, the interface 
between the units, and the way a configuration is loaded . 

It is possible to divide reconfigurable 
computations in to two categories: ( I) stream-based 
functions which corresponds to the processing of large, 
regular data input streams, producing a large data output 
stream, and having little control interaction with the rest of 
the computation; and (2) custom instruc tions which are 
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characterized with a few inputs, producing a few outputs, 
executed intermittently, and having tight control 
interactions with the other processes. Stream-based 
functions are suitable for a system where the reconfigurable 
unit is not directly coupled to the processor, whereas 
custom instructions are usually benefic iai only when the 
reconfigurable unit is closely coupled to the processor. 

The following session will be concem ed to expose 
some definitions about a reconfigurable card, HOT O PCI, 
and a parallel processing library, MPI, both used in the 
proposed architecture. 

III . HOT 11 PCI DEVELOPMENT PLATFORM 

a 
EJ 

FPGA 

HOTI..__. 

PO-

Fig. l - HOT 11 PC/ development board 

The development environment HOT 11 PCI, Fig.l , 
produced by VCC (Virtual Computer Company), is a 
standard PCI card, wi th Xi linx FPGA, XC401 3, and FPGA­
RT R, Virtex, and a software tool, HotWorks, with a basic 
set of routines to access and programming of the board 
FPGA's. The main component (FPGA) is configured as 
interface PCI32, which a llows the user communication wi th 
the computational resources of the HOT 11 PCI card, 
including two SRAM memory blocks, and a Config uration 
Cache Manager (CCM). CCM controls the Run Time 
Reconfiguration (RTR), which changes the system 
behavior. The FPGA may be configured, with the CCM 
content. In a flash memory there is an initia l configuration 
of the system, which includes the operation system of the 
hardware and the PCI interface. Furthermore, it may store 
three other configurations. The HOT 11 PCI card has two 
independent bars, each one with 32 data bits, and 24 
address bits. 

IV. MESSAGE PASSING INTERFACE 

Message Passing Interface [MPI 95] was 
developed in 1993- 1994, by an industria l, governmental, 
and academic researchers group, called MPI Forum . MPI 
was one of the first standards accepted to the message 
passing in parallel processing. It's a library of functions and 



macros, which may be used to program in C, FORTRAN 
77, and C++. which allows the process communication 
through messages to write parallel application programs, 
establi shing a practical, portable, efficient , and tlexible 
standard for message-passing. It provides a reliable 
communication interface (i. e., user don ' t need to deal with 
communication failure). It is supposed to deliver high 
performance on high-performance-systems. It should be 
modular, to accelerate the development of portable parallel 
libraries. The resource allocation detail is totally left to the 
implementer, turning the system flexible and efficient. The 
C, FORTRAN 77, and C++ programs, which must use 
MPI. may include mpi.h , mpif.h, and mpi++.h, files, 
respectively. The main ad vantages of establishing a 
message-passing communication are its portability and 
facilit y of use. We can notice it in multiprocessors systems 
with distributed memory, where the MPI routines are built 
using the conceptions of process, communications, and data 
types. MPI Iibrary may be used by a di versity o f users, and 
heterogeneous platforms. MPI provides two ways o f 
communication: point-to-point and collective 
communication. Point-to-point communication involves a 
pair or process that establishes the communication among 
them using the primitives: send (source) and receive 
(destin ati on). On the other hand. collective communication 
in volves a group of process that uses a set of MPI 
functions. The main collecti ve functions are: barrier 
(responsible by the synchronization) and the broadcast 
(responsible for passing the same message for ali members 
of the group). MPI is recommended for para lle l machine, 
tools, environment , and software, developers. 

V. PROPOSED ARCHITECTURE 

The proposed recontigurable computer REOMP, is 
composed by: ( I) recontigurable units, responsible by the 
implementation of neural network functions, partially, not 
a li the functions at the same time; (2) fixed units, 
responsible by the implementation of the control of 
recontigurable units, and the tixed neural network 
functions: and (3) the memory un it, responsible by data 
st01·age. 

A PC followed by a HOT 11 PCI card, connected 
by a PCI bar, composes a Reconfigurable Processor (RP) of 
the REOMP. Each RP is connected to other RP's through 
an interconnection network, to syncronize the 
reconligurations, and exchange data and information 
through the orthogonal memory modules. Ali the RP's 
constitute a parallel environment, by the MPI library, 
responsible to organize the "threads" or processes of the 
spatial computations [DEH 99]. Fig.2 shows the 
i mplementation. 
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Thc REOMP, implemented through the HOT 11 
PCI card, may emulate the NEOMP (Neural Orthogonal 
Multiprocessar) architecture rsAI 99], which is composed 
by severa! reconfigurable processors, making access of the 
orthogonal memory [HW A 89]lHWA 93], where the data 
to be processed are stored. 

The overall system is an orthogonal 
multiprocessar, OMP, which is characterized by the parallel 
processing units, each one accessing their memory modules 
in two ways: column and row. Each row, and each column, 
are attributed to an exclusive processar. The row access and 
column access are perfonn ed exclusively, wi thout time­
sharing of the buses by the multiple processors, reducing 
the memory access conflic ts. 

Fig. 3 shows a typical data spreading operation 
using the REOMP memory modules. At the left side we can 
see the diagonal memory modules that correspond to local 
memory of the processors, with their respective data. Row 
access allows the processors connected to the exclusive 
rows spread the data to a li row modules, simultaneously. At 
the right side, we see the result of parallel data spreading 
operation, with a li columns containing the same data. 
distributed in severa! memory modules. During the 
foll owing column access, ali processors may access their 
own column memory modules, which contain the spread 
data. 

B D DD BBGG 
D GDD 
DDGD 
DO DEl 
Coatents of data In tbe dtaeoaal 

memorr modules 

B G BG 
G BGG 
GEJGEJ 

Parallel wrlte operatlon to 
allllne modulet 

Fig. 3- A typical parai/e/ data spreading atthe REOMP mem01y 
modules 



VI. REOMP RECONFIGURATION 

The orthogonal memory is considered as 
containing severa) cell planes, each one corresponding to 
neural network array of cells, or their corresponding 
temporary data (such as input values, intermediate values 
and output values). Fig. 4 shows the data flow diagram of 
the REOMP processing, where the cell planes, which 
constitutes the orthogonal memory contents are read and 
processed by an ALU (Arithmetic and Logic Unit) and the 
result is written back. Each word of the orthogonal memory 
is been manipulated as a register, so that in a binary 
operation two different registers may be addressed to 
provide operands of the ALU. The result can be addressed 
to be written on another register. At the Fig. 4, it is shown 
severa I cell planes ( I, 2, ... , n), each one corresponding to 
an orthogonal memory module. 

PlANE 1 

PI.ANE2 

PlANE n 

CELL REGISTER 

o--

REGISTER ARRAY 

OPERATION 
SELECTION 

Fig. 4- Datajlow ofthe REOMP processing. 

OPERATION TEMPLATE 

Fig 5 - Operation template 

REOMP processing is based on operation 
templates, which indicates the two operands (A, and 8) of 
the ALU, the ALU operation, and the result storage 
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address, Fig.S. These templates are queued in the 
reconfigurable unit, Fig.6, and executed in pipeline. Fig.7 
shows the template operation during its execution. 

PRESENT 

o~ L---~-----L----~--~ 

Fig 6- Operation template queue. 

DO n==--1 
DO Ol==t--1 

DO 
· D D 01=='--
· D O Ol==f-- 1 

Fig 7- Tlle operation template GIUI tlleir execution. 

Fig.8 shows the data flow to the spread operation. 
After data processing, the resulting data are spread out to 
the suitable cell planes to the next stage operation. This 
operation is performed with a buffer register, connecting ali 
the cell planes of the register array. This data spread 
operation is possible changing the access mode of the 
orthogonal memory, from column to row, or vice-versa, 
depending on what access mode is been used. A special 
operation template, indicating the spread element address, 
and a mask containing the information about the cell planes 
to be written, may execute a data spread operation. Fig.9 
shows the spread operation template, composed by the 
spread element address and a set of mask planes, 
responsible to enable memory module access. 



Fig 8. Data flow of REOMP during memol)' data spread 
operation. 

Fig 9. Operation templatefor the data spread operation. 

-r----;"':' 

r----;::= 

Fig 10. The data spread operation inthe REOMP. 
Fig. I O shows one example of the data spread 

operation during execution. The spread element address 
marks the cell plane position where the spread element is 
located. The data is spread to the enabled cell planes, 
according to the template, using an intermediate register 
buffer. The spread element is copied at the same position of 
the corresponding cell planes. 

The spread operation provides an interesting 
solution to the neuronal data exchange after one layer 

66 

processing, in a feedforward network implemented in 
parallel architecture. 

To the validation of the proposal, it is used the 
parallel processing of a feedforward neural network, known 
as neocognitron, and its performance analysis, as follows. 

VIL REOMP RECONFIGURATION: A C ASE STUDY 

A. Neocognitron, a Feedforward Neural Network 

As an example it is used the configuration of 
REOMP to the implementation of a neural network model 
simulating the human vision function, known as 
neocognitron. 

Neocognitron is a massively parallel neural 
network, composed by severa! layers of neuron cells, 
proposed by Fukushima [FUK 79] [FUK 82] [FUK 92] 
[FUK 96] [SAI 98] inspired by Hubel and Wiesel's model 
of biological vision. As other neural network models, 
neocognitron has its self-organized training phase and the 
recognition phase, when used in pattern recognition. 

The lowest stage of the network is the input layer 
U0 . Each of the succeeding i-th stages has a layer Us; 
consisting of S-cells followed by a layer Uc; of C-cells. 
Each layer of S-cells or C-cells is composed by a number of 
two-dimensional arrays of cells, cal led ce/1-p/anes. Each 
cell-plane is associated to a single feature extracted from 
the training patterns, during the learning phase. The S-cells 
are responsible by the feature extraction, and the input 
connection weights of the S-cells are adjusted during the 
training phase. C-cells are responsible by the distorted 
features correction. Each cell inside a cell-plane receives 
input connections from the preceding layer cell-planes. 

The recogn1t10n phase computation of 
neocognitron, follows the sequence showed at the following 
algorithm, Fig.ll , from layer I to L, where L is the number 
of stages. 

Program neocognitron (); 
begin 

For I = I to L do compute_stage (/); 
end; 

Fig 11 . Neocognitron computation sequence. 
Procedure compute_stage (/) ; 
Begin 
for k = I to K1 do begin 

for n = I to N do begin 
for IC= I to K1•1 do 

for ali vê Sv do begin 
e(n,k ):=e(n,k)+a(v,K,k). uc1.dn + v,IC); 
h(n,k):= h(n,k)+c(v).fuc1.JfK,n+ v) l ; 

end; 
u5/.n,k):=(91(1-8)). 

q>(( I+ e(n,k))l( I +9.b(k).sqrt(h(n,k)))-l ) ; 



for ali v e Sv do 
ucdn,k):=ucln,k+ d(v).ust n+ v, k); 

ucln,k):= 'P ( uct(n,k)); 
end 

end; 
end· 
Fig 12. Algorithm to compute the S-cells and C-cells of the 1-th 

stage. 

Fig. l2 shows the algorithm to compute the output 
value u51 (n, k) of a S-cell, and the output value uc1 (11, k) o f a 
C-cell, from the stage l. It is computed the output values to 
ali K1 cell-planes and ali N cell-positions inside the cell­
plane. 

To obtain the u51 (n, k) value, it is computed the 
weighted sum, e(n,k) and h(n,k), of ali inputs coming from 
ali K1•1 cell-planes of the preceding layer, in a given 
connection area S. , which surrounds the posi tion 11, of the 
preceding layer C-cell, or input layer, by the following 
commands ( I ) and (2) 

e(n,k):= e(n,k)+a(V,K, k ).uCf.d 11+ V,K) , ( I ) 
and 
h(n,k): =h(n,k)+ c(v). { uc1.t(K,n+ v)/ (2) 
Then the u5t(11, k) value is obtained by the assignment: 

u5t(n,k):=(8!( J-8)).<p(( 1 + e(n,k))l 
(I +8.b(k).sqrt(h(n,k))-l), (3) 

where 
q> ( x) = x , when x > O , and q> ( x ) =O, elsewhere. The 
variable 8 represents the threshold of the function , whose 
value is behind O, and I , and b(k) represents the inhibition 
coefficient. 

To obtain the uc1 (n, k) value, it is at first computed 
the weighted sum of ali inputs corresponding to the 
previously obtained u5t(n, k), in a given connection area S., 
which surrounds the position n, of the preceding S-cell 
layer, by the following assignment: 

uet(n,k):=uct(ll,k)+d(v ). u5t(n+v,k) (4) 

followed by calculation of transfer function 
lfJ(x)= <p(xY( I +<p(x)) which limits C-cell output to the range 
{0,1] 
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}RP 1 

}RP 2 

yp3 

}RPp 
U SJ Uc3 

U SI Uct output 
'-----y---1 '---y----1 '---y-----J la y c r 

stage I stage 2 stage 3 
p cell plones 

Fig / 3. Neocognitron structure with 3 stages of S·cel/s ( Us; ) 
wu/ C-cells ( U c;). 

Fig. 13 shows a neocognitron structure with 3 
stages of S-cells and C-cells. Ali k cell planes from stagel 
takes the input values from the input layer. After the 
parallel processing of the k cell planes in layer I by the 
corresponding Reconfigurable Processar (RP;), ali results 
are used by ali cell planes of the layer L+ I , as shown by the 
interconnections between Jayers. These interconnections 
refer to the orthogonal memory data spreading operation, 
which occurs after the layer processing. After the data 
spreading operation, each processar can access ali the 
preceding layer data, directly in the orthogonal memory 
without contlict. The last stage is connected to the output 
layer, which corresponds to network result layer. 

B. Concurrent Computing M odules 

By the analysis of the neocognitron model 
described at previous section it was extracted a set of 
concurrent computation modules, which corresponds to 
compound vector function s [HW A 93]. Four modules E, H, 
S, and C, correspond to the neocogni tron computing 
algorithm. 

E-module computes to ali N positions of the cell­
plane, the weighted sum o f the input uc1.J(n+ v, K), with the 
weight a(v,K,k), within the connection region Sv, which 
results in a partia! value of e(n,k) , corresponding to the 
plane K. Each E-module issue repeats the flow graph N 
times to compute ali positions of the E matrix. Its result is 
added to the E matrix that will accumulate the weighted 
sum of ali K cell-planes, after K issues of the E-module 
function . 

H-module is similar to the E-module but the 
weight values are c(v) and the input values are squared 
before the computation of the weighted sum. It results in 
the H matrix, which will contain the weighted sum of all 



preceding layer cell-planes, after K issues of the H-module 
function. 

S-module computes u5,(n,k), to ali N positions of 
the cell-plane, using the results of the previously described 
E-module and H-module functions. 

C-module corresponds to the computation of the 
uo(n,k) , to ali N cells. It computes the weighted sum of 
u5,(n+ v, k), by d(v) , and then the function 'f/. 

TABLEI 

Processing Modules 

Module Operations Complexity Typical Execution 
Numberof 

Per issue O() Operations Time(ms) 

E 2.N.Sv+ N N.Sv 20,400 2.04 

H N.Sv.3 +N N.Sv 30,400 3.04 

s N.4 N 1,600 0. 16 

c N.S ... 2 N.Sv 20,000 2.00 

We classilied the module size as the T ABLE I, 
which shows at the first column the identified modules; at 
the second column, the number of arithmetic operations per 
issue of the processing module; followed by the complexity 
of the processing, in O function; at next column it is 
showed the typical number of arithmetic operations, using 
N = 400, S.,= 25, and K = 50; and finally, the processing 
time, using a processar cycle of "C=/00 ns. 

lt is considered that the arithmetic operations are 
executed in sequence within the module, disregarding the 
instruction and operands memory access overheads. We are 
not considering here the parallel execution, or vector 
processing, which may improve the processing time of the 
majority of the modules. 

VIII. PERFORMANCE A NAL YSIS 

As an example, the mapping of the neocognitron to 
the proposed architecture may be resumed, as follows. The 
modules E, H, S, and C, are processed at the vector 
processors, and the other functions at the scalar processar, 
or at the host processors. 

In a general version of REOMP we propose a 
special use of the orthogonal memory, as follows. When the 
processors are writing their results in the orthogonal 
memory, to the next phase of orthogonal access, they write 
simultaneously on ali accessible memory modules, in 
congruent addresses. After that, the processors wait for the 
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next orthogonal access, which occurs automatically, after 
the Jast processar finishes the processing. At the next 
orthogonal access, the access mode is changed, to row or 
column, depending on the last access. When the mode is 
changed, ali Lhe processors have the preceding processing 
results of ali the processors, because of the simultaneous 
writing on ali accessible modules, in the preceding phase. 
In this way, no times are lost to memory spreading 
operation, so that the speed-up is linear, as the ideal case. 

Fig 14. Speed-up ofthe proposed architecture compared to 
the ideal speed-up. 

Fig.l4 shows the speed-up diagram of a typical 
implementation of REOMP. It can be noted that the speed­
up is dose to linear along the range of I to 16 
reconfigurable processors, and after that, degrades slowly, 
until 32 processors. A good implementation of the proposed 
REOMP may vary from 2 to 8 processors, where the 
number of memory modules varies, not excessively, from 4 
to 64. Note that in this range we can use the zero spreading 
time implementation, to reach the ideal speed-up. We note 
that if it is used the parallel operation inside a 
reconfigurable processar unit (HOT 11 PC), implementing 
severa! template queues, we have the speed-up improved at 
the area above the one operation speed-up line. 

IX. CONCLUSIONS 

This work proposes a reconfigurable computer to 
the hardware implementation of neural networks. Although 
the neural networks functions corresponds to the brain 
functions, the proposed architecture is completely different 
from the brain internai structure based on the neuronal 
cells. The proposed reconfigurable processors (RP's) are 
based on commercially available FPGA's (Field 
Programmable Gate Arrays) and a development 
environment card, HOT 11 PCI. The algorithms are 
processed in the RP's that are connected by a parallel 
environment, MPI library. It was chosen due to its 
flexibility, facility of use and portability. If the processing 
is finished ali the RP's of the REOMP architecture is 
reconfigured to another algorithm. As the brain, some 



algorithms or functions are constantly in operation, and 
others may be altemated. The proposed architecture 
comports hardware implementation of algorithms that 
simulates the brain functions, occupying physically 
restricted space. This is possible by the almost sequential 
behavior of the brain functioning. The proposed 
architecture is able to be used as a brainway computer, as 
the dynamical configuration is executed adequately. The 
future works are concemed to the development of the other 
algorithms to the proposed computer, which may result in 
other reconfiguration design of REOMP. Another work is 
concerned to the development of software tool to the 
generation of operation templates to the algorithm. 
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