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Abstraci-
Modular multiplication is fundamental to several public­

key cryptography systems such as the RSA encryption system. 
lt is also the most dominant part of the computation 
performed in such systems. The operation is time consuming 
for large operands. This paper examines the characteristics of 
yet another architecture to implement modular multiplication. 
An experimental modular multiplier prototype is described 
and some simulation results are presented. 
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I. I NTRODUCTION 

The modular exponentiation is a common operation for 
scrambling and is used by several public-key 
c ryptosystems, such as the RSA encryption scheme 
[RIV 78] . It consists of a repetition of modular 
multiplications: C = r mod M , where T is the plain text 
such that O $ T < M and C is the c ipher text or vice-versa, E 
is either the public or the private key depending on whether 
T is the plain or the cipher text, and M is called the 
modulus. The decryption and encryption operations are 
performed using lhe same procedure, i.e. using·the modular 
exponentiation. 

The performance o f such cryptosystems is primarily 
dete rmined by lhe implementation effic iency of lhe 
modular multiplication and exponentiation. As the operands 
(the plain text of a message or the c ipher or possibly a 
partially ciphered) text are usually large (i. e. I 024 bits o r 
more), and in order to improve time requirements of the 
encryption/decryption operations, it is essential to attempt 
to minimise lhe number of modular multiplications 
performed and to reduce the time requirement of a single 
modular multiplication . 

An RSA cry ptosystem consists of a set of three items: a 
modulus M o f around 1024 bits and two integers d and e 
called private and public keys that satisfy the property T' = 
T mod M. Plain text T obeying O $ T < M. Messages are 
encrypted using lhe public key as C = T mod M and 
decrypted as T = C mod M. So lhe same operation is used 
to perform both processes: encryptio n and decryption. 
Hardware implementation of the RSA cryptosystem are 
widely studied as in [BRI 89], [WAL 93]. [ELO 93] . 

· 1llis author is a lccturer at Univcrsity Veiga de Almeida. Rio de Janeiro. Brazil. 
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In lhe rest of this paper, we start off by describing the 
a lgorithms used to implement the modular operation. Then 
we present lhe architecture of the hardware modular 
multiplier and explain in details how it executes a single 
multiplication . Then we commenl lhe simulation resulls 
obtained for such an architecture. 

11. M ULTIPLICATION ALGORITHM 

Algorithms that formalise the operation of multiplication 
generally consist of two steps: one generates a partia! 
product and lhe other accumulates it with the previous 
partia! products. The most basic a lgorithm for 
multiplication is based on the add-and-shift method: the 
shift operation generates the partia l products while the add 
step sums them up [RAB 95]. 

The straightforward way to implement a multiplication 
is based on an iterative adder-accumulator for lhe generated 
partial products as depicted in Figure I. However, this 
solution is quite slow as the final result is only available 
a fter n clock cycles, n is the size of the operands. 

Parlial Ploduct Gere:tator 

clock 
rllf\1 shift 

Fig. I: lterative multiplier. 



A faster version of the iterative multiplier should add 
severa! partia! product at once. This could be achieved by 
unfolding the iterative multiplier and yielding a 
combinatorial c ircuit that consists of severa! partia! product 
generators together with severa! adders that operate in 
parallel. In this paper, we use such a parallel multiplier as 
described in Figure 2. Now, we detail the algorithms used 
to compute the partia! products and to sum them up. 

Fig. 2: Paralle l multiplier. 

Now, we concentrate on the algorithm used to compute 
partia! products as well as reducing the corresponding 
number without deteriorating the space and time 
requirement o f the multiplier. 

Let X and Y be the multiplicand and multiplicator 
respectively and let n and m be their respective sizes. So, 
we denote X and Y as follows: 

n m 

X= L,x1x21 and Y= _L, y1x21 

i=O i=O 
11 

=>XxY= L,x1x Yx 21 

i=O 

Inspired by the above notation of X, Y and that of Xx Y, 
the add-and-shift method [RAB 95] generates n partia! 
products: x,xY, O s; i < 11. Each partia! product obtained is 
shifted left or right depending on whether the starting bit 
was the less or the most significant and added up. The 
number o f partia! products generated is bound above by the 
size (i.e. number of bits) of the multiplier operand. In 
cryptosystems, operands are quite large as they represent 
blocks o f text (i. e. ;;?: I 024 bits). 

Another notation of X and Y allows to halve the number 
of partia! products without much increase in space 
requirements. Consider the following notation of X and Xx Y 
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f{t1+1)12l-1 
X= _L,x1x2 2xi , where x1 =x2x;_1+x2xi-2xx2xi+l 

i=O 

f{ll+l)/21-1 
X x Y = L,x1xYx22x1 

i=O 

The possible values of x
1 

with the respective values of 

X2x,+p X2x,. and X2x,- 1 are -2 (I 00), -I ( I O I, li 0), O (000, 
111), I (001 , 010) and 2(011). Using this recoding will 
generate f(n+l)/21-I partia! products. 

Inspired by the above notation, the modified Booth 
algorithm [800 86], [MAC 6 1], [BEW 94] generates the 

partia! products x
1 
xY. These partia! products can be 

computed very efficiently due to the digits of the new 

representation x1 • The hardware implementation will be 

detailed in Section 3. 
In the algorithm of Figure 3, the terms 4x2 .. 1 and 3x2••• 

are supplied to avoid working with negative numbers. The 
sum of these additional terms is congruent to zero modulo 

2"+f<t~+ l>l-1 . So, once the sum of the partia! products is 

obtained, the rest of this sum in the division by is finally 

the result of the multiplication Xx Y. 

Algorithm Multiplier(X2xl-l • X2xl • X 2xld • Y) ( 
int product =O; 
int pp [ Í!n+1)/2l-1 ]; 

pp[O]= (X0 xY + 4x2"' 1 )x22
"

1 

for i=O to 

pp[i] = ( x1xY + 3x2"' 1 ) x22
"

1 

product = product + pp[i]; 

return product mod 2n+r<n+l l I 21-1 ; 

Fig. 3: Multiplication algorithm. 

III. REDUCTION ALGORITHM 

A modular reduction is simply the computation of the 
remainder of an integer division. It can be denoted by: 

X modM =X -l~ JxM 

However, a division is very expensive even compared 
with a multiplication. Using Barrett's method [BAR 86], 
[SHI 97], we can estimate the remainder using two simple 



multiplications. The approximation of the quotient is 
calculated as follows: 

l.!_J= 2"-
1 

M :: 2"-1 M l l~Jxl 2"-
1

X2"+
1 

J j ll~Jxl~Jj 
M 2"+1 2"+1 

The equation above can be calculated very efficiently as 
division by a power of two 2x are simply a truncation of the 

operand' x-least significant digits. The term L22x" / M J 
depends only on the modulus M and is constant for a given 

modulus, hence, can be pre-computed and saved in an extra 
register. Hence the approximation of the remainder using 
Barrett' s method [BAR 86], [SHl 97] is a positive integer 
smaller than 2x(M- I). So, one or two subtractions of M 
might be required to yield the exact remainder. 

IV. M ODULAR MULTIPLIER ARCHITECTURE 

In this section, we outline the architecture of the multiplier, 
which is depicted in Figure 4 . Later on in this section and 
for each of the main parts of this architecture, we g ive the 
detailed circuitry, i.e. that of the partial product generator, 
adder and reducer. 

lcail_kg_4 

REDUCER 

Fig. 4: The modular multiplier architecture. 

The multiplier of Figure 4 performs the modular 
multipl ication Xx Y mod M in three main steps: 

I. Computing the product P = XxY; 
2. Computing the estimate quotient Q = PIM 

=> Q = P/2"-1 x l22x"/M J; 
3. Computing the final result P - QxM. 

During the fi rst step, the modular multiplier first Ioads 
register, and register

2 
with X and Y respecti vely; then waits 

for PPG to yield the partia) products and finally waits for 
the ADDER to sum ali o f them. During the second step, the 
modular multiplier loads register" register2 and register3 

with the obtained product P, the pre-computed constant 

L22x"/M j and P respectively; then waits for PPG to yield 

the partial products and finally waits for the ADDER to sum 
ali o f them. During the third step, the modular multiplier 
first loads register, and register2 with the obtained product 
Q and the modulus M respectively; then awaits for PPG to 
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generate the partia) products, then waits for the ADDER to 
provide the sum of these partia) products and fi nally waits 
for the REDUCER to calculate the final resu lt P-QxM, 
which is subsequently loaded in the accumulator acc. 

A The partia/ product generator 

The partia) product generator is composed of k Booth 
recoders [BOO 86], [MAC 61 ], [BEW 94]. They 
communicate d irectly with k partia) product generators as 
shown in Figure 5. 

The required parti ai products, i.e. 'i; x Y are easy 

multiple. They can be obtained by a simple shift. The 
negative multiples in 2 's complement form, can be obtained 
form the positive corresponding number using a bit by bit 
complement with a I added at the least significant bit of the 
partia[ product. The additional te rms introduced in the 
previous section can be included into the partial product 



generated as three/two/one most significant bits computed 
as follows, whereby, ++ is the bits concatenation operation, 
(A) is the binary notation of integer A, O' is a run of i zeros 

and 8 1"'01 is the selection of the n less significant bits of the 
binary representation B. 

M 
u 
L 
T 
I 
p 
L 
I 
c 
A 
T 
o 

·8~-· 
~--------------~ 

Fig. 5: The partia) product generator architecture. 

(PP o )=s os os o ++(lxo ~Y Ee s o )+so 

( PP 2xj )=6 s 2xj ++(lx 2xj r r Ee s 2xj )+s 2xj fr+O 2xj 

for I ~j < k-1 and for j = k -I = k•, we have: 

( PP 2xk' )=(s 2xk' ++ (lx 2xk' ~y $ s 2xk' )+s 2xk' fr+O 2xk' 

(PP 2xk )=(lx2xk ~y )(n:OJ++0 2xk 

The Booth selection logic circuitry used, denoted by BR, 
for O ~ i $ k in Figure 5, is very simple. The cell is 
described in Figure 6. The inputs are the three bits forming 
the Booth digit and outputs are three bits: the first one SY is 
set when the partia! product to be generated is Y are - Y, the 
second one S2Y is set when the partia] product to be 
generated is 2xY are -2xY, the last bit is the simply the last 
bit of the Booth digit given as input. It allows us to 
complement lhe bits of the partia! products when a negative 
multiple is needed. 

73 

l.sb m.sb 

SY S2Y .S 

Fig. 6: The Booth recoder selection logic. 

The circuitry of the partia! generator denoted by PP, 
Generator, is given in Figure 7. 

MU LTI PLIC AN D 

r-----1ffi~~--~-----+r---SM 

r--r~+.--1ffi~~--~-+.--+~--~M 

n-3 

and_or_xor 

cells 

Fig. 7: The partia! product generator. 

B The adder 

In order to implement the adder of the generated partia! 
products, we use a hybrid new kind of adder. lt consists 
cascade of intercalated stages of carry save adders and 
delayed carry adders. 

The carry save adder (CSA) is simply a parallel 
ensemble of Jfull adders without any horizontal connection. 
lts function is to add three f-bit integers a, b and c to yield 
two new integers Carry and Sum such that carry + sum = a 
+h + c. The pair (carry, sum) will be called a delayed carry 
integer. The delayed carry adder (DCA) is a parallel 
ensemble of fhalf adders. Its function is to add two delayed 
carry integers (a" h1) and (a2, h2) together with an integer c 
to produce a single integer sum such that sum = a

1 
+ h

1 
+ a2 + 

h2 + c. The main cell of the proposed adder is depicted in 
Figure 8, where the partia! products PP,, O ~ i ~ 6 are the 
input operands. Using the carry save adder, the ith bit of 



carry and sum are defined as sum, = a,$ b, $c, and 
carry,=a,Xb1+ a,xc,+ b,Xc1 respectively. 

.sum 1 

CDA 

WM 

Fig. 8: The ma in cell o f the proposed adder. 

The architecture of the delayed carry adder uses 5xn 
half adders and n full adders as described in Figure 9. This 
architecture ignores the overtlows. However, these can be 
easily estimated from lhe three top bits o f the operands. The 
proof concerning lhe soundness of the result delivered by 
the adder can be found in [WAL 86). 

c 

carry1 
b l 

a:l 

carry2 

b2 

carry4 

carry5 

11-bit 
HA 

11-bit 
HA 

11-bit 
HA 

11-bit 
HA 

11-bit 
FA 

al 

.sum1 

.sum2 

.sum3 

.sum4 

.sum 

Fig. 9: The structure of lhe carry delayed adder. 
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C The reducer 

The main task of the reducer consists of subtracting QxM, 
i.e. the product obtained in lhe third step of lhe modular 
multiplier from P, i.e. the product yielded in lhe first step of 
the modular multiplier. A subtraction of an p-bits integer K is 
equivalent to the addition of 2"- x. Hence the reducer simply 
performs the addition P + (2"+m - QxM). The latter value is 
simply the two's complement of QxM. 

The addition is performed using a carry look-ahead 
adder. lt is based on computing lhe carry bits cl prior to the 
actual summation. The adder takes advantage of a 
relationship between the carry bits C1 and the input bits A1 and 
B,. 

Ci=Gi-I+(G;_2+(G;_J+ A +(G,+(Go+Co-PakMA )><P;) 

whereby G, =A, x 81 and P1 =A,+ B, The general structure o f 
lhe used carry look-ahead adder is given in Figure I O. 

A, B. 

l 
Carry look-ahead logic o 

cn c"lt-
~ 

c 
A 

-1 

Bn Bl 
- 1 o 

; s; 
-I 

Fig. I 0: The structure o f the carry look-ahead adder. 

V CONCLUSJON 

In this paper, an alternative architecture for computing 
modular multiplication based on Booth algorithm and on 
Barret's relaxed residiuum method is described. The Booth 
algorithm is used to compute the product while Barret's 
method is used to calculate the remainder. The architecture 
was validated through behavioral simulation results using 
the 0.6J..Lm CMOS-AMS standard cell library. The total 
execution time is 3570 nanoseconds for I 024-bit operands. 

One of the advantage of this modular multiplication 
implementation resides in the fact that it is easily scalable 
with respect to the multiplier and modulus lengths. 
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