Yet Another Hardware Implementation of
Modular Multiplication

Nadia Nedjah and Luiza de Macedo Mourelle
Department of Systems Engineering and Computation, Faculty of Engineering,
State University of Rio de Janeiro.

E-mail: (nadia | ldmm)@eng.uerj.br

Abstract—

Modular multiplication is fundamental to several public-
key cryptography systems such as the RSA encryption system.
It is also the most dominant part of the computation
performed in such systems. The operation is time consuming
for large operands. This paper examines the characteristics of
yet another architecture to implement modular multiplication.
An experimental modular multiplier prototype is described
and some simulation results are presented.

Key Words—Modular Multiplication, Cryptosystems

I. INTRODUCTION

The modular exponentiation is a common operation for
scrambling and is used by several public-key
cryptosystems, such as the RSA encryption scheme
[RIV 78]. It consists of a repetition of modular
multiplications: C = 7° mod M, where T is the plain text
such that 0 £ T'< M and C is the cipher text or vice-versa, E
is either the public or the private key depending on whether
T is the plain or the cipher text, and M is called the
modulus. The decryption and encryption operations are
performed using the same procedure, i.e. using the modular
exponentiation.

The performance of such cryptosystems is primarily
determined by the implementation efficiency of the
modular multiplication and exponentiation. As the operands
(the plain text of a message or the cipher or possibly a
partially ciphered) text are usually large (i.e. 1024 bits or
more), and in order to improve time requirements of the
encryption/decryption operations, it is essential to attempt
to minimise the number of modular multiplications
performed and to reduce the time requirement of a single
modular multiplication.

An RSA cryptosystem consists of a set of three items: a
modulus M of around 1024 bits and two integers d and e
called private and public keys that satisfy the property 7° =
T mod M. Plain text T obeying 0 £ T' < M. Messages are
encrypted using the public key as C = 7° mod M and
decrypted as 7= C mod M. So the same operation is used
to perform both processes: encryption and decryption.
Hardware implementation of the RSA cryptosystem are
widely studied as in [BRI 89], [WAL 93], [ELD 93].

" This auther is a lecturer at University Veiga de Almeida, Rio de Janeiro, Brazil.

70

In the rest of this paper, we start off by describing the
algorithms used to implement the modular operation. Then
we present the architecture of the hardware modular
multiplier and explain in details how it éxecutes a single
multiplication. Then we comment the simulation results
obtained for such an architecture.

II. MULTIPLICATION ALGORITHM

Algorithms that formalise the operation of multiplication
generally consist of two steps: one generates a partial
product and the other accumulates it with the previous
partial products. The most basic algorithm for
multiplication is based on the add-and-shift method: the
shift operation generates the partial products while the add
step sums them up [RAB 95].

The straightforward way to implement a multiplication
is based on an iterative adder-accumulator for the generated
partial products as depicted in Figure 1. However, this
solution is quite slow as the final result is only available
after n clock cycles, n is the size of the operands.

Multiplicator Reg

L

*— clock —®

'y

L Partial Product Gererator

Multiplicand Reg

l

Adder

I?

right shift

clock—»  Accunmlator

Fig. 1: Iterative multiplier.



A faster version of the iterative multiplier should add
several partial product at once. This could be achieved by
unfolding the iterative multiplier and yielding a
combinatorial circuit that consists of several partial product
generators together with several adders that operate in
parallel. In this paper, we use such a parallel multiplier as
described in Figure 2. Now, we detail the algorithms used
to compute the partial products and to sum them up.

k-bits-Multiplicator k-bits-Multiplicand

| il
+ v

( 2%z Parhal Product Generator

IPpir-l o rpp!- = 'ppﬂ
[ k:1 Adder ]
Accurmlator

Fig. 2: Parallel multiplier.

Now, we concentrate on the algorithm used to compute
partial products as well as reducing the corresponding
number without deteriorating the space and time
requirement of the multiplier.

Let X and Y be the multiplicand and multiplicator
respectively and let n and m be their respective sizes. So,
we denote X and Y as follows:

X=ix'.x2" and Y=iy,.x2‘

i=0 i=0

= Xul = Y x¥uz!
i=0

Inspired by the above notation of X, Y and that of XxY,
the add-and-shift method [RAB 95] generates n partial
products: xx¥, 0 < i < n. Each partial product obtained is
shifted left or right depending on whether the starting bit
was the less or the most significant and added up. The
number of partial products generated is bound above by the
size (i.e. number of bits) of the multiplier operand. In
cryptosystems, operands are quite large as they represent
blocks of text (i.e. = 1024 bits).

Another notation of X and Y allows to halve the number
of partial products without much increase in space
requirements. Consider the following notation of X and XxY

71

[(n+1)/27]-1

- ] 2xi
X= ijxz , where X, =x,.  +X,,—2XX, .,
i=0
and ¥,=%,=%_=0
[(n+1)/27}-1
XxF= 3 ¥ x¥x2®

i=0

The possible values of X, with the respective values of
Xperps Xoxs and x,,, are =2 (100), -1 (101, 110), 0 (000,
111), 1 (001, 010) and 2(011). Using this recoding will
generate [(n+1)/27-1 partial products.

Inspired by the above notation, the modified Booth
algorithm [BOO 86], [MAC 61], [BEW 94] generates the

partial products X, xY. These partial products can be
computed very efficiently due to the digits of the new
representation X,. The hardware implementation will be
detailed in Section 3.

In the algorithm of Figure 3, the terms 4x2™' and 3x2""'
are supplied to avoid working with negative numbers. The
sum of these additional terms is congruent to zero modulo

2+ g6, once the sum of the partial products is
obtained, the rest of this sum in the division by is finally
the result of the multiplication XxY.

Algorithm Multiplier(Xaxi-1, Xaxi,
int product =0;

int pp[[(n+1)/2]-11;
ppl0]= (fuxy + ax2™l)yxa¥

Xoxivtr ¥) |

for i=0 to {

pplil = (3"‘.xY + 3x2™N) x2¥4

product =
}

return product mod 27 (A+1) /211,

product + ppl[il;

Fig. 3: Multiplication algorithm.

I1I. REDUCTION ALGORITHM

A modular reduction is simply the computation of the
remainder of an integer division. It can be denoted by:

X modM =X—\‘£JxM
M

However, a division is very expensive even compared
with a multiplication. Using Barrett’s method [BAR 86],
[SHI 97], we can estimate the remainder using two simple



multiplications. The approximation of the quotient is
calculated as follows:

[ 2 J= [zf—*"Jxlzn_ln)ftJ i {zileLxJ

2n+l 2n+|

The equation above can be calculated very efficiently as
division by a power of two 2" are simply a truncation of the

operand’ x-least significant digits. The term |22"/M |
depends only on the modulus M and is constant for a given

modulus, hence, can be pre-computed and saved in an extra
register. Hence the approximation of the remainder using
Barrett’s method [BAR 86], [SHI 97] is a positive integer
smaller than 2x(M-1). So, one or two subtractions of M
might be required to yield the exact remainder.

IV. MODULAR MULTIPLIER ARCHITECTURE

In this section, we outline the architecture of the multiplier,
which is depicted in Figure 4. Later on in this section and
for each of the main parts of this architecture, we give the
detailed circuitry, i.e. that of the partial product generator,
adder and reducer.

b
ooloy |10 e Jod By R
MUX 2 s l
Mux H My I 4
ll Ioad Reg register., [+ Load g registers load Acc
0o l ¥ 3 l
X Mg % (~
P IUE § reg-jsfgrl PPG ADDER L REDU CERJ'_' ace
e[ "=
ey

Fig. 4: The modular multiplier architecture.

The multiplier of Figure 4 performs the modular
multiplication XxY mod M in three main steps:

1. Computing the product P = XxY;

2. Computing the estimate quotient Q = PIM
=0 = P[2"'x[22*/M |;

3. Computing the final result P — QxM.

During the first step, the modular multiplier first loads
register, and register, with X and Y respectively; then waits
for PPG to yield the partial products and finally waits for
the ADDER to sum all of them. During the second step, the
modular multiplier loads register,, register, and register,
with the obtained product P, the pre-computed constant
LZZX"/MJand P respectively; then waits for PPG to yield

the partial products and finally waits for the ADDER to sum
all of them. During the third step, the modular multiplier
first loads register, and register, with the obtained product
Q and the modulus M respectively; then awaits for PPG to

generate the partial products, then waits for the ADDER to
provide the sum of these partial products and finally waits
for the REDUCER to calculate the final result P—QOxM,
which is subsequently loaded in the accumulator acc.

A The partial product generator

The partial product generator is composed of k Booth
recoders [BOO 86], [MAC 61], [BEW 94]. They
communicate directly with & partial product generators as
shown in Figure 5.

The required partial products, ie. X, XY are easy

multiple. They can be obtained by a simple shift. The
negative multiples in 2’s complement form, can be obtained
form the positive corresponding number using a bit by bit
complement with a 1 added at the least significant bit of the
partial product. The additional terms introduced in the
previous section can be included into the partial product



generated as three/two/one most significant bits computed
as follows, whereby, ++ is the bits concatenation operation,
(A) is the binary notation of integer A, 0' is a run of i zeros
and B, is the selection of the n less significant bits of the
binary representation B.

MULTIPLICAND
-}Im-l ym‘! SR J’l. A }'o
D___ [ | nrm
BR, || PP,GENERATOR |—F—
IT}'I 1 .P...qi J‘...-z| . -|}'.- .. |J'o
— nt
I; — BR; || PP,GENERATOR |— %
I - .
P
L |— -ym‘ll -Pm-!l LA -l}'iu T I.Po
: — nm
< —1 BReu [~ PP:,.‘GENERATOR e
A
T
O
R L...ym-l }.m-il"ll}';--.l}io
R — ntm
0— BR, || PRGENERATOR ——F—

Fig. 5: The partial product generator architecture.

(PP o )=505050++{|Fo Y @54 )5,
(PP 2xj>=(]§++(}ijlxy®s2xj>+32xj)++02Xj

for 1 £j < k-1 and for j = k-1 = ke, we have:

(PP 2 )= (e (B Y @550 W50 Jr 02

<PP 2xk )=<I:€2xk 'XY )1":014._‘_02::&-

The Booth selection logic circuitry used, denoted by BR,
for 0 < i < k in Figure 5, is very simple. The cell is
described in Figure 6. The inputs are the three bits forming
the Booth digit and outputs are three bits: the first one SY is
set when the partial product to be generated is Y are -Y, the
second one S2Y is set when the partial product to be
generated is 2xY are —2xY, the last bit is the simply the last
bit of the Booth digit given as input. It allows us to
complement the bits of the partial products when a negative
multiple is needed.

73

isb

(el
i3}

S s2Y 8

msh

Fig. 6: The Booth recoder selection logic.

The circuitry of the partial generator denoted by PP,
Generator, is given in Figure 7.

MULTIPLICAND
SM
h -y i_ o 1 B g S2M
‘, and_or_xor ,'

PR, frbm 22

Fig. 7: The partial product generator.

B The adder

In order to implement the adder of the generated partial
products, we use a hybrid new kind of adder. It consists
cascade of intercalated stages of carry save adders and
delayed carry adders.

The carry save adder (CSA) is simply a parallel
ensemble of f full adders without any horizontal connection.
Its function is to add three f-bit integers a, b and c to yield
two new integers Carry and Sum such that carry + sum = a
+ b + c. The pair (carry, sum) will be called a delayed carry
integer. The delayed carry adder (DCA) is a parallel
ensemble of fhalf adders. Its function is to add two delayed
carry integers (a,, b)) and (a,, b,) together with an integer ¢
to produce a single integer sum such that sum =a,+ b + a,+
b,+ ¢. The main cell of the proposed adder is depicted in
Figure 8, where the partial products PP, 0 < i < 6 are the
input operands. Using the carry save adder, the ith bit of



carry and sum are defined as sum, = a,®b ® ¢, and
carry=axb+ axc,+ bxc, respectively.

PR, PR, PP, PP, PP, PR PP,

G324, CSA,

carryq SUM 4 carry, sumy

CDA

SUM
Fig. 8: The main cell of the proposed adder.

The architecture of the delayed carry adder uses 5xn
half adders and n full adders as described in Figure 9. This
architecture ignores the overflows. However, these can be
easily estimated from the three top bits of the operands. The
proof concerning the soundness of the result delivered by
the adder can be found in [WAL 86].

C-'l lﬂl
cany; n-hit
b, Ha
a2 I | .suml
caATya n-bit
by HA

CG!?'J‘}"4 n-hit

carry

sum

Fig. 9: The structure of the carry delayed adder.

C The reducer

The main task of the reducer consists of subtracting OxM,
i.e. the product obtained in the third step of the modular
multiplier from P, i.e. the product yielded in the first step of
the modular multiplier. A subtraction of an p-bits integer K is
equivalent to the addition of 2" — x. Hence the reducer simply
performs the addition P + (2™ — OxM). The latter value is
simply the two’s complement of OxM.

The addition is performed using a carry look-ahead
adder. 1t is based on computing the carry bits C, prior to the
actual summation. The adder takes advantage of a
relationship between the carry bits C, and the input bits A, and
B.

C=G,_,HG_,+G, s+ A HGHG+CRXEXRA KE_)

whereby G, = A, x B and P, = A, + B, The general structure of
the used carry look-ahead adder is given in Figure 10.

4,5, 4, B, 4 B,

| I

Carry look-ahead logic

C,J— Cr A, f A G 4
-1 i 0
B, B, é#s
=] 0
'
5 0

S &

— 0

Fig. 10: The structure of the carry look-ahead adder.

V CONCLUSION

In this paper, an alternative architecture for computing
modular multiplication based on Booth algorithm and on
Barret’s relaxed residivum method is described. The Booth
algorithm is used to compute the product while Barret's
method is used to calculate the remainder. The architecture
was validated through behavioral simulation results using
the 0.6um CMOS-AMS standard cell library. The total
execution time is 3570 nanoseconds for 1024-bit operands.

One of the advantage of this modular multiplication
implementation resides in the fact that it is easily scalable
with respect to the multiplier and modulus lengths.



[BAR 86]

[BEW 94]

[BOO 51]

[BRI 89]

[ELD 93]

REFERENCES

Barrett, P., Implementating the Rivest, Shamir
and Aldham public-key encryption algorithm
on standard  digital  signal  processor,
Proceedings of CRYPTO'86, Lecture Notes in
Computer Science 263:311-323, Springer-
Verlag, 1986.

Bewick, G. W., Fast multiplication algorithms
and implementation, Ph. D. Thesis, Department
of Electrical Engineering, Stanford University,
United States of America, 1994.

Booth, A., A signed binary multiplication
technique, Quarterly Journal of Mechanics and
Applied Mathematics, pp. 236-240, 1951.

Brickell, E. F., A survey of hardware
implementation of RSA, In G. Brassard, ed.,
Advances in Crypltology, Proceedings of
CRYPTO'98, Lecture Notes in Computer
Science 435:368-370, Springer-Verlag, 1989.

Eldridge, S. E. and Walter, C. D., Hardware
implementation of Montgomery’s Modular
Multiplication Algorithm, 1EEE Transactions
on Computers, 42(6):619-624, 1993.

75

[MAC 61]

[RAB 95]

[RIV 78]

[SHI 97]

[WAL 93]

[WAL 86]

MacSorley, O., High-speed arithmetic in
binary computers, Proceedings of the IRE, pp.
67-91, 1961.

Rabaey, J., Digital integrated circuits: A
design perspective, Prentice-Hall, 1995.

Rivest, R., Shamir, A. and Aldham, L., A
method for obtaining digital signature and
public-key cryptosystems, Communications of
the ACM, 21:120-126, 1978.

Shindler, V., High-speed RSA hardware based
on low-power piplined logic, Ph. D. Thesis,
Institut ~ fiir ~ Angewandte  Informations-
verarbeitung und Kommunikationstechnologie,
Technishe Universitiit Graz, January 1997.

Walter, C. D., Systolic modular multiplication,
IEEE Transactions on Computers, 42(3):376-
378, 1993.

Walter, C. D., A verification of Brickell’s fast
modular multiplication algorithm, International
Journal of Computer Mathematics, 33:153:1609.



