
Y et Another Hardware Implementation o f
Modular Multiplication

Nadia Nedjah· and Luiza de Macedo Mourelle
Department o f Systems Engineering and Computation, Faculty o f Engineering,

State University o f Rio de Janeiro.
E-mail : (nadia lldmm)@eng.uerj.br

Abstraci-
Modular multiplication is fundamental to several public­

key cryptography systems such as the RSA encryption system.
lt is also the most dominant part of the computation
performed in such systems. The operation is time consuming
for large operands. This paper examines the characteristics of
yet another architecture to implement modular multiplication.
An experimental modular multiplier prototype is described
and some simulation results are presented.

Key Words--Modular Multiplication, Cryptosystems

I. I NTRODUCTION

The modular exponentiation is a common operation for
scrambling and is used by several public-key
c ryptosystems, such as the RSA encryption scheme
[RIV 78] . It consists of a repetition of modular
multiplications: C = r mod M , where T is the plain text
such that O $ T < M and C is the c ipher text or vice-versa, E
is either the public or the private key depending on whether
T is the plain or the cipher text, and M is called the
modulus. The decryption and encryption operations are
performed using lhe same procedure, i.e. using·the modular
exponentiation.

The performance o f such cryptosystems is primarily
dete rmined by lhe implementation effic iency of lhe
modular multiplication and exponentiation. As the operands
(the plain text of a message or the c ipher or possibly a
partially ciphered) text are usually large (i. e. I 024 bits o r
more), and in order to improve time requirements of the
encryption/decryption operations, it is essential to attempt
to minimise lhe number of modular multiplications
performed and to reduce the time requirement of a single
modular multiplication .

An RSA cry ptosystem consists of a set of three items: a
modulus M o f around 1024 bits and two integers d and e
called private and public keys that satisfy the property T' =
T mod M. Plain text T obeying O $ T < M. Messages are
encrypted using lhe public key as C = T mod M and
decrypted as T = C mod M. So lhe same operation is used
to perform both processes: encryptio n and decryption.
Hardware implementation of the RSA cryptosystem are
widely studied as in [BRI 89], [WAL 93]. [ELO 93] .

· 1llis author is a lccturer at Univcrsity Veiga de Almeida. Rio de Janeiro. Brazil.

70

In lhe rest of this paper, we start off by describing the
a lgorithms used to implement the modular operation. Then
we present lhe architecture of the hardware modular
multiplier and explain in details how it executes a single
multiplication . Then we commenl lhe simulation resulls
obtained for such an architecture.

11. M ULTIPLICATION ALGORITHM

Algorithms that formalise the operation of multiplication
generally consist of two steps: one generates a partia!
product and lhe other accumulates it with the previous
partia! products. The most basic a lgorithm for
multiplication is based on the add-and-shift method: the
shift operation generates the partia l products while the add
step sums them up [RAB 95].

The straightforward way to implement a multiplication
is based on an iterative adder-accumulator for lhe generated
partial products as depicted in Figure I. However, this
solution is quite slow as the final result is only available
a fter n clock cycles, n is the size of the operands.

Parlial Ploduct Gere:tator

clock
rllf\1 shift

Fig. I: lterative multiplier.

A faster version of the iterative multiplier should add
severa! partia! product at once. This could be achieved by
unfolding the iterative multiplier and yielding a
combinatorial c ircuit that consists of severa! partia! product
generators together with severa! adders that operate in
parallel. In this paper, we use such a parallel multiplier as
described in Figure 2. Now, we detail the algorithms used
to compute the partia! products and to sum them up.

Fig. 2: Paralle l multiplier.

Now, we concentrate on the algorithm used to compute
partia! products as well as reducing the corresponding
number without deteriorating the space and time
requirement o f the multiplier.

Let X and Y be the multiplicand and multiplicator
respectively and let n and m be their respective sizes. So,
we denote X and Y as follows:

n m

X= L,x1x21 and Y= _L, y1x21

i=O i=O
11

=>XxY= L,x1x Yx 21

i=O

Inspired by the above notation of X, Y and that of Xx Y,
the add-and-shift method [RAB 95] generates n partia!
products: x,xY, O s; i < 11. Each partia! product obtained is
shifted left or right depending on whether the starting bit
was the less or the most significant and added up. The
number o f partia! products generated is bound above by the
size (i.e. number of bits) of the multiplier operand. In
cryptosystems, operands are quite large as they represent
blocks o f text (i. e. ;;?: I 024 bits).

Another notation of X and Y allows to halve the number
of partia! products without much increase in space
requirements. Consider the following notation of X and Xx Y

71

f{t1+1)12l-1
X= _L,x1x2 2xi , where x1 =x2x;_1+x2xi-2xx2xi+l

i=O

f{ll+l)/21-1
X x Y = L,x1xYx22x1

i=O

The possible values of x
1

with the respective values of

X2x,+p X2x,. and X2x,- 1 are -2 (I 00), -I (I O I, li 0), O (000,
111), I (001 , 010) and 2(011). Using this recoding will
generate f(n+l)/21-I partia! products.

Inspired by the above notation, the modified Booth
algorithm [800 86], [MAC 6 1], [BEW 94] generates the

partia! products x
1
xY. These partia! products can be

computed very efficiently due to the digits of the new

representation x1 • The hardware implementation will be

detailed in Section 3.
In the algorithm of Figure 3, the terms 4x2 .. 1 and 3x2•••

are supplied to avoid working with negative numbers. The
sum of these additional terms is congruent to zero modulo

2"+f<t~+ l>l-1 . So, once the sum of the partia! products is

obtained, the rest of this sum in the division by is finally

the result of the multiplication Xx Y.

Algorithm Multiplier(X2xl-l • X2xl • X 2xld • Y) (
int product =O;
int pp [Í!n+1)/2l-1];

pp[O]= (X0 xY + 4x2"' 1)x22
"

1

for i=O to

pp[i] = (x1xY + 3x2"' 1) x22
"

1

product = product + pp[i];

return product mod 2n+r<n+l l I 21-1 ;

Fig. 3: Multiplication algorithm.

III. REDUCTION ALGORITHM

A modular reduction is simply the computation of the
remainder of an integer division. It can be denoted by:

X modM =X -l~ JxM

However, a division is very expensive even compared
with a multiplication. Using Barrett's method [BAR 86],
[SHI 97], we can estimate the remainder using two simple

multiplications. The approximation of the quotient is
calculated as follows:

l.!_J= 2"-
1

M :: 2"-1 M l l~Jxl 2"-
1

X2"+
1

J j ll~Jxl~Jj
M 2"+1 2"+1

The equation above can be calculated very efficiently as
division by a power of two 2x are simply a truncation of the

operand' x-least significant digits. The term L22x" / M J
depends only on the modulus M and is constant for a given

modulus, hence, can be pre-computed and saved in an extra
register. Hence the approximation of the remainder using
Barrett' s method [BAR 86], [SHl 97] is a positive integer
smaller than 2x(M- I). So, one or two subtractions of M
might be required to yield the exact remainder.

IV. M ODULAR MULTIPLIER ARCHITECTURE

In this section, we outline the architecture of the multiplier,
which is depicted in Figure 4 . Later on in this section and
for each of the main parts of this architecture, we g ive the
detailed circuitry, i.e. that of the partial product generator,
adder and reducer.

lcail_kg_4

REDUCER

Fig. 4: The modular multiplier architecture.

The multiplier of Figure 4 performs the modular
multipl ication Xx Y mod M in three main steps:

I. Computing the product P = XxY;
2. Computing the estimate quotient Q = PIM

=> Q = P/2"-1 x l22x"/M J;
3. Computing the final result P - QxM.

During the fi rst step, the modular multiplier first Ioads
register, and register

2
with X and Y respecti vely; then waits

for PPG to yield the partia) products and finally waits for
the ADDER to sum ali o f them. During the second step, the
modular multiplier loads register" register2 and register3

with the obtained product P, the pre-computed constant

L22x"/M j and P respectively; then waits for PPG to yield

the partial products and finally waits for the ADDER to sum
ali o f them. During the third step, the modular multiplier
first loads register, and register2 with the obtained product
Q and the modulus M respectively; then awaits for PPG to

72

generate the partia) products, then waits for the ADDER to
provide the sum of these partia) products and fi nally waits
for the REDUCER to calculate the final resu lt P-QxM,
which is subsequently loaded in the accumulator acc.

A The partia/ product generator

The partia) product generator is composed of k Booth
recoders [BOO 86], [MAC 61], [BEW 94]. They
communicate d irectly with k partia) product generators as
shown in Figure 5.

The required parti ai products, i.e. 'i; x Y are easy

multiple. They can be obtained by a simple shift. The
negative multiples in 2 's complement form, can be obtained
form the positive corresponding number using a bit by bit
complement with a I added at the least significant bit of the
partia[product. The additional te rms introduced in the
previous section can be included into the partial product

generated as three/two/one most significant bits computed
as follows, whereby, ++ is the bits concatenation operation,
(A) is the binary notation of integer A, O' is a run of i zeros

and 8 1"'01 is the selection of the n less significant bits of the
binary representation B.

M
u
L
T
I
p
L
I
c
A
T
o

·8~-·
~--------------~

Fig. 5: The partia) product generator architecture.

(PP o)=s os os o ++(lxo ~Y Ee s o)+so

(PP 2xj)=6 s 2xj ++(lx 2xj r r Ee s 2xj)+s 2xj fr+O 2xj

for I ~j < k-1 and for j = k -I = k•, we have:

(PP 2xk')=(s 2xk' ++ (lx 2xk' ~y $ s 2xk')+s 2xk' fr+O 2xk'

(PP 2xk)=(lx2xk ~y)(n:OJ++0 2xk

The Booth selection logic circuitry used, denoted by BR,
for O ~ i $ k in Figure 5, is very simple. The cell is
described in Figure 6. The inputs are the three bits forming
the Booth digit and outputs are three bits: the first one SY is
set when the partia! product to be generated is Y are - Y, the
second one S2Y is set when the partia] product to be
generated is 2xY are -2xY, the last bit is the simply the last
bit of the Booth digit given as input. It allows us to
complement lhe bits of the partia! products when a negative
multiple is needed.

73

l.sb m.sb

SY S2Y .S

Fig. 6: The Booth recoder selection logic.

The circuitry of the partia! generator denoted by PP,
Generator, is given in Figure 7.

MU LTI PLIC AN D

r-----1ffi~~--~-----+r---SM

r--r~+.--1ffi~~--~-+.--+~--~M

n-3

and_or_xor

cells

Fig. 7: The partia! product generator.

B The adder

In order to implement the adder of the generated partia!
products, we use a hybrid new kind of adder. lt consists
cascade of intercalated stages of carry save adders and
delayed carry adders.

The carry save adder (CSA) is simply a parallel
ensemble of Jfull adders without any horizontal connection.
lts function is to add three f-bit integers a, b and c to yield
two new integers Carry and Sum such that carry + sum = a
+h + c. The pair (carry, sum) will be called a delayed carry
integer. The delayed carry adder (DCA) is a parallel
ensemble of fhalf adders. Its function is to add two delayed
carry integers (a" h1) and (a2, h2) together with an integer c
to produce a single integer sum such that sum = a

1
+ h

1
+ a2 +

h2 + c. The main cell of the proposed adder is depicted in
Figure 8, where the partia! products PP,, O ~ i ~ 6 are the
input operands. Using the carry save adder, the ith bit of

carry and sum are defined as sum, = a,$ b, $c, and
carry,=a,Xb1+ a,xc,+ b,Xc1 respectively.

.sum 1

CDA

WM

Fig. 8: The ma in cell o f the proposed adder.

The architecture of the delayed carry adder uses 5xn
half adders and n full adders as described in Figure 9. This
architecture ignores the overtlows. However, these can be
easily estimated from lhe three top bits o f the operands. The
proof concerning lhe soundness of the result delivered by
the adder can be found in [WAL 86).

c

carry1
b l

a:l

carry2

b2

carry4

carry5

11-bit
HA

11-bit
HA

11-bit
HA

11-bit
HA

11-bit
FA

al

.sum1

.sum2

.sum3

.sum4

.sum

Fig. 9: The structure of lhe carry delayed adder.

74

C The reducer

The main task of the reducer consists of subtracting QxM,
i.e. the product obtained in lhe third step of lhe modular
multiplier from P, i.e. the product yielded in lhe first step of
the modular multiplier. A subtraction of an p-bits integer K is
equivalent to the addition of 2"- x. Hence the reducer simply
performs the addition P + (2"+m - QxM). The latter value is
simply the two's complement of QxM.

The addition is performed using a carry look-ahead
adder. lt is based on computing lhe carry bits cl prior to the
actual summation. The adder takes advantage of a
relationship between the carry bits C1 and the input bits A1 and
B,.

Ci=Gi-I+(G;_2+(G;_J+ A +(G,+(Go+Co-PakMA)><P;)

whereby G, =A, x 81 and P1 =A,+ B, The general structure o f
lhe used carry look-ahead adder is given in Figure I O.

A, B.

l
Carry look-ahead logic o

cn c"lt-
~

c
A

-1

Bn Bl
- 1 o

; s;
-I

Fig. I 0: The structure o f the carry look-ahead adder.

V CONCLUSJON

In this paper, an alternative architecture for computing
modular multiplication based on Booth algorithm and on
Barret's relaxed residiuum method is described. The Booth
algorithm is used to compute the product while Barret's
method is used to calculate the remainder. The architecture
was validated through behavioral simulation results using
the 0.6J..Lm CMOS-AMS standard cell library. The total
execution time is 3570 nanoseconds for I 024-bit operands.

One of the advantage of this modular multiplication
implementation resides in the fact that it is easily scalable
with respect to the multiplier and modulus lengths.

I
\

REFERENCES

[BAR 86] Barren, P., lmplementating the Rivest, Shamir
and Aldham public-key encryption algorithm
on standard digital signal processor,
Proceedings of CRYPT0'86, Lecture Notes in
Computer Science 263:311 -323, Springer­
Verlag, 1986.

[BEW 94] Bewick, G. W., Fast multiplication algorithms
and imp/ementation, Ph. D. Thesis, Department
of Electrical Engineering, Stanford University,
United States of America, 1994.

[BOO 51] Booth, A., A signed binary multiplication
technique, Quarterly Journal of Mechanics and
Applied Mathematics, pp. 236-240, 1951.

[BRI 89] Brickell, E. F., A survey of hardware
implementation of RSA, In G. Brassard, ed.,
Advances in Crypltology, Proceedings of
CRYPT0'98, Lecture Notes in Computer
Science 435:368-370, Springer-Verlag, 1989.

[ELO 93] Eldridge, S. E. and Walter, C. D., Hardware
implementation of Montgomery's Modular
Multiplication Algorithm, IEEE Transactions
on Computers, 42(6):619-624, 1993.

75

[MAC 61] MacSorley, 0., High-speed arithmetic in
binary computers, Proceedings of the IRE, pp.
67-9 1, 1961.

[RAB 95] Rabaey, J., Digital integrated circuits: A
design perspective, Prentice-Hall , 1995.

[RIV 78] Rivest, R., Shamir, A. and Aldham, L., A
method f or obtaining digital signature and
public-key cryptosystems, Communications of
the ACM, 21: 120-126, 1978.

[SHI 97] Shindler, V., High-speed RSA hardware based
on low-power piplined logic, Ph. D. Thesis,
Institut für Angewandte Informations­
verarbeitung und Kommunikationstechnologie,
Technishe Universitat Graz, January 1997.

[WAL 93] Walter, C. D., Systolic modular multiplication,
IEEE Transactions on Computers, 42(3):376-
378, 1993.

[WAL 86] Walter, C. D., A verification of Brickell's fast
modular multiplication algorithm, International
Journal of Computer Mathematics, 33: !53: 169.

