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Abstract-
SDS (System Data Structure), part of a digital synthesis 

system, is an internai representation that captures 
dataloperation and communicationlsynchronization aspects 
from the behavioral specification of a digital system. SDS 
divides design information into two graphs that describe the 
data flow behavior and control timing behavior. This 
representation is usefuJ for synthesis and 
validationlverification. 

Tbis paper presents the translation process from the 
hardware description language VHDL to SDS, basically the 
transformation of a behavioral specification to a structured 
representation. 

Keyword~ system and high-level synthesis, behavioral 
design, control flow analysis, data flow analysis 

I. INTRODUCTION 

The design of a digital system involves specification, 
validation/verification and synthesis. Usually the 
specification is done at the behavioral levei in a hardware 
description language like VHDL. The synthesis process 
involves severa! steps, going from behavioral levei through 
structurallevel up to hardware implementation. 

Validation and veriftcation are techniques used to 
determine whether a design is correct, consistent and 
complete. Validation corresponds to checking static aspects 
of lhe system, like data, interconnection, and 
communication porls; checking is based on a set of design 
rules. Verification is used to check dynamic aspects of a 
system, such as timing, communication patterns, and 
interconnection compatibility. 

SDS (System Data Structure) 
representation that captures 
communication/synchronization 
behavioral speciftcation of a 
representation is useful 
validation/veriftcation. 

[SIL97] is an internai 
dataloperation and 

aspects from the 
digital system. This 

for synthesis and 

SDS is used to represent a design at the system levei. 
SDS divides design information into two graphs which 
describe the data flow behavior and contrai timing 
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behavior. This representation allows a direct analysis of the 
program structure, for example lhe levei of parallelism 
among operations, and an analysis o f resource allocation. 

This paper presents the trans lation process from the 
hardware description language VHDL to SDS, basically the 
transformation of a behavioral specification to a structured 
representation. This transformation is done by data flow 
analysis, contrai flow analysis, and graph optimization. 
Scheduling, which is part of the synthesis process, is also 
realized. 

The behavioral specification of a digital system can be 
described in a hardware description language like VHDL 
(IEE87, LIP89], Verilog (TH091 ], and HardwareC [KU90, 
DEM90]. In this work we use a subset of VHDL for 
behavioral system specification. 

li. SDS REPRESENTATION 

SDS models digital circuits as a set of concurrent and 
communicating processes. It has a higher abstraction levei 
than algorithms or high-level representations, such as DDS 
(Design Data Structure) [KNA85], SA W (System 
Architect's Workbench) [W AL87] and BIF (Behavioral 
Intermediate Formal) [DUT89]. 

SDS is a multi-levei design representation. This 
representation divides design information into two 
subspaces, without an implicit relation between the objects 
of each subspace. The two subspaces represent respectively 
lhe data flow behavior (DFG) and the contrai timing 
behavior (CTG). The entities of the two subspaces can be 
explicit related through bindings. 

A. Data flow subspace 

The data flow subspace is used to represent the behavior 
of data transformation. lt is modeled using a data flow 
graph (DFG) that resembles the flow graphs used in 
compilers for data flow machines. This graph is a directed 
acyclic bipartite graph which is constituted of a set of 



operations, a set of values, and a set of directed edges that 
connect operations and values. 

Special operations are defined in DFG to represent 
conditional data dependencies and loops. They are: 
distribute and join operations, which are used to support 
conditional data dependencies, and iterate operators, which 
are used to support loop commands. 

B. Control flow and timing subspace 

The control timing flow graph consists of ranges and 
points. A range represents a limit or a tirning duration, an 
order relationship, or a casual relationship among points. 
Points represent an infinitesimal events duration, which 
separate the ranges. 

Special points are defined in CTG to represent 
conditional branches and loops. They are: or-fork and or­
join points. 

In conditional branches, each outgoing range of an or­
fork point is associated with a condition. The flow of 
execution follows the range whose condition is satisfied. 

Loops begin at a first point, which is followed by the or­
fork point, and iterate until the end point, which is followed 
by the last point of a while loop which is the or-join, at 
which time the flow of execution returns to the first poinl. 
Each pair of loop begin and end points are uniquely 
identified. 

C. Bindings 

The explicit relation that describes the connection 
between the elements of the two subspaces are called 
bindings. The binding is a 2-tuple (pai r of values) that 
assigns data tlow operations to control timing ranges. 

Figure I illustrates the behavioral specification of a 
module in VHDL and figure 2 shows the corresponding 
graphs in SDS and one binding example. 

architecture behavior of COMPARE is 
begin process 

begin 
if (A=B) then 

N <= 0 
else 

N <= N + 1; 
end if; 
C <= N; 

end process; 
end hehavior : 

Fig.I A sample VHDL description 
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Fig.2 The DFG and CTG 

li. VHDL TO SDS TRANSFORMATION 

The task of VHDL to SDS translation can be described 
as following: 

I. Extract the control information from a VHDL 
description and construct a flow graph for later data 
tlow analysis. A flow graph is a directed graph of 
basic blocks. A basic block represents a sequence 
of computations that are bound through edges that 
represent the flow of control. 

2. Data tlow analysis can be performed in two steps. 
First, we use a local data flow analysis procedure to 
collect intra-block data dependencies. Then, a 
global data flow analysis procedure is used to 
analyze the inter-block dependencies. After this 
phase, the annotated flow graph becomes a 
combination of a DFG anda CTG. 

3. The annotated flow graph may contain many 
redundant operations o f the form x = y which must 
be eliminated in order to produce an optirnized 
DFG. 

4. The CTG and DFG are produced separately. 
5. After setting the separated flow graphs up, the 

scheduling becomes straightforward. 

A. Parsing 

Ali entries in VHDL must first be analyzed and 
transformed in an intermediate representation: a syntax 
graph. The parser VAUL[VAU94] is used for this. 

V AUL (VHDL Analyzer and Utility Library) was 
developed at the University of Dortmund, with the aim to 
provide a front-end to tools that uses VHDL. It analyzes 
each VHDL program's design unit separately, resulting in a 



syntax graph, which is represented by a collection of C++ 
objects, connected by pointers. 

The VHDL2SDS translator generates a representation 
using as entry the syntax graph. The translating process is 
shown in figure 3. 

VAUL 

VHDL2SDS: 

I 
I 
I 

Fig.3 The translation steps 

B. Contrai Flow Analysis 

Control flow analysis is a procedure that part1t10ns a 
sequence of statements into basic blocks and constructs a 
flow graph that represents the flow of control. 

Each basic block is constituted by statements in a 
sequence from the last branch target to the next one altering 
the flow o f execution. 
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C. Data Flow Analysis 

Data flow analysis is performed in two steps: local data 
flow analysis and global data flow analysis. 

C. I Local Data Flow Analysis 

Each basic block B in the flow graph is a computation 
uni t. Sequential statements are the only forms of statements 
that will appear in a basic block. 

Here, we will analyze the inter-statement data 
dependency within each basic block. That is, we want to 
know which statements within a basic block define the 
values for each set of variables used in the statements and 
who will use the values of each set of update variables. 

In addition, we need to know the input set of a basic 
block and the output set. These two sets are important in 
the global data flow analysis and are determined for the 
following expressions [CHE90] : 

j k·l 
l (B) = I(Si) U { U ( I(Sk)- U O(S1))} 

K=i+l l=i 

j 

O(B) = U O(SJ 
K=i 

Where, 
B is a basic block 
B ={Si, ... ,Sj} 
sk is a statement and i ::;; k ::;; j 
I is the input set 

O is the output set 

C.2 Global Data Flow Analysis 

The inter-block data dependency is much more 
complex than the intra-block. 

Our approach for this global data flow analysis is 
explained in the following steps: 

I . Group basic blocks within the same structure 
called meta block. This can be done in if-then-else 
or while-Loop structures. An if-then-else meta 
block consists of three subblocks, a condition, a 
then body and an else body. A while-loop meta 
block consists of two subblocks, a condition and a 
loop body. 

2. Calculate the input and output sets of those meta 
blocks according to table I [CHE90]. 



TABLE I 

l NPUT AND OUTPUT SETS 

Ty e of meta block 

if C then T else E 

while C loop L 

l(IF) = l(C) U I(T) U I(E)U 
{ O(IF)- (O(T) n O(E)) } 

O(IF) = O(T) u O(E) 

I(WL) = I(C) U I(L) U O(L) 
O(WL) = O(L) 

3. Analyze the definition and use relationships 
among the meta block hierarchically 

3. 1 For the if-then-else meta block we have the 
fo llowing rules: 

• The use values of each variable in the input set 
is every subblock number whose input set 
contains it. 

• The definition value of each variable in the 
output set is a 2-tuple. The first value is the 
number of subblock then i f the variable is found 
in this structure; otherwise, it is defined outs ide 
the meta block. The second value is found in 
subblock e/se in similar way. 

3.2 For the while-loop meta block we have the 
following rules: 

• The use values of each variable in the input set 
is every subblock number whose input set 
contains it. 

• The definition value of each variable in the 
output set is a 2-tuple. The fi rst value is the 
loop body subblock number and the second 
value is the subblock number defined outside 
the meta block, which contain the initial value 
o f the variable. 

• If a variable is defined in the input set of the 
loop condition or in the loop body, and in the 
output set of the loop body subblock, its input 
definition becomes a 2-tuple. The firs t value is 
the loop body subblock number and the second 
is the subblock number defined outside the 
meta block, which contain the initial value of 
the variable. If one of the conditions is not 
satisfied, the value o f the tuple is set to zero. 

D. Graph Generation 

After the global data flow analysis, ali the inter-block 
data dependencies are found and the global DFG and CTG 
can be generated. 
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E. Graph Optimization 

Li ke traditional compilers for programming languages, 
there are plenty of opportunities to optimize the graphs 
during the VHDL to SDS translation. Here, we focus on 
those transformations that are guaranteed to improve the 
final design. The flow graphs and the defi nition/use 
information are particularly useful in performing these 
transformations. We use lhe following rules: 

• For any basic block Bk in a flow graph where k > I, 
if Bk does not have any incoming edges, then it is 
dead code. 

• For any two operations performing the same 
function, they should produce equivalent results 
under the same input condition. Furthermore, if 
there is a commutative property, the order of inputs 
may not be important as long as their 
correspondence can be established. Therefore, one 
of them can be removed from the graph and the 
definition and use information of its outputs can be 
redirected to the other. 

F. Scheduling 

Scheduling is a very important problem in architeclural 
synthesis. Whereas sequencing graph prescribes only 
dependencies among the operations, the schedul ing of a 
sequencing graph determines the precise start time of each 
task. 

The number of resources and timing may be bounded or 
not. We use schedul ing without resource constraints, which 
is applied when dedicated resources are used. 

Practical cases leading to dedicated resources are those 
when operations differ in their types or when their cost is 
marg inal, when compared to that of steering logic, register, 
wiring and control. Eventually, unconstrained scheduling 
can be used to derive bounds on latency for constrained 
problems. The two algorithms used are ASAP (as soon as 
possible) and ALAP (as late as possible). The ASAP 
scheduling algorithm yields the minimum values of the start 
times. A complementary algorithm, ALAP, provides the 
corresponding maximum values. 

III. T RANSLATION EXAMPLE 

Figure 4 shows a sample VHDL description that 
consists of one process. This program counts the number o f 
elements grater than " I O" in the vector. 

In this description, there are nine basic blocks in lhe 
archilecture body. Since each basic block consists of single 
statements only inter-statement data dependencies are 
necessary. After collecting the input and oulput sets of each 
block, we have the use/definition table shown in table 11. 



-- An example VHDL description 
package VTYPE is 

type VECTOR is array(O to 7) of 
INTEGER; 
end VTYPE; 

use work . VTYPE.all; 

entity dct is 
port( V: in VECTOR; 0 : out INTEGER); 

end dct; 

arch itecture behavior of dct is 
begin process 
variable I, A: INTEGER; 
begin 

I : = O; 
A : = O; 

while I < 8 loop 
if V(I) > 10 t hen 

A . - A + 1; 
end if; 

end loop; 
O <= A; 

end process; 
end behavior; 

I . - I + 1; 

Fig.4 A sample VHDL description 

TABLE li 

GLOBAL DATA FLOW ANALYSIS 

Block Input set Output set 
vai de f use vai de f 

I I 
A 

2 I 8 
3 v 5 

I 5 
4 A 5 A 
5 v 7 3 A 4,7 

I 7 3 
A 7 4 

6 I 7 I 
7 v 8 5 I 6 

I 8 5,6 A 5 
A 8 5 

8 v o 7 I 7, 1 
I 1,7 2,7 A 7, 1 
A 1,7 7 

9 A 8 o 

use 
8 
8 

5 
7 

7 
8 
8 

9 

o 

Since there are conditional and loop statements, the 
CTG generated by VHDL2SDS is nota simple sequence of 
ranges. The DFG graphs are shown in figures 5 and 6, and 
the CTG graph is shown in figure 7. 

Fig.5 The DFG o f variable I 

Fig.6 The DFG o f variable A 

Fig.7 The CTG 
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Assuming the restnctJOn that each operation take 
exactly one control step to execute, we have the following 
ASAP scheduling for the program, shown in figure 8. 

Fig.8 ASAP schedule 

Given a final schedule, we can easily compute the 
number of functional units that are required to implement 
the design. 

IV. CONCLUSION 

The main objective of the translator VHDL2SDS is to 
obtain an optimized structured representation of a digital 
system, captured from a behavioral specification, and 
suitable for validation/verification and synthesis. The 
translator program is implemented and under tests. The 
examples submitted so far indicate that the approach taken 
is feasible. The structured representation of SDS is suitable 
for validation/verification, circuit optimization, and 
synthesis. 

Future work includes integration of VHDL2SDS to a 
synthesis system, incorporation of circuit optimization 
techniques, and implementation of validation/verification 
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tools using the SDS representation. A much larger subset of 
VHDL may be used, at least incorporating structural 
constructs, to provide better expressive power for design 
specification. Other hardware description languages could 
also be used for the behavioral specification of a digital 
system. 
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