
Translation of hardware description languages to
structured representation: a tool for digital system

analysis
Daniela C. Peixoto, Diógenes Silva Jr., José M. Mata, Claudionor N. Coelho Jr., Antônio O. Fernandes

Departamento de Ciência da Computação, Universidade Federal de Minas Gerais
Av. Antônio Carlos 6627, Belo Horizonte, Minas Gerais - Brasil

(cascini ,dgns,mata,coelho,otavio} @dcc.ufmg.br

Abstract-
SDS (System Data Structure), part of a digital synthesis

system, is an internai representation that captures
dataloperation and communicationlsynchronization aspects
from the behavioral specification of a digital system. SDS
divides design information into two graphs that describe the
data flow behavior and control timing behavior. This
representation is usefuJ for synthesis and
validationlverification.

Tbis paper presents the translation process from the
hardware description language VHDL to SDS, basically the
transformation of a behavioral specification to a structured
representation.

Keyword~ system and high-level synthesis, behavioral
design, control flow analysis, data flow analysis

I. INTRODUCTION

The design of a digital system involves specification,
validation/verification and synthesis. Usually the
specification is done at the behavioral levei in a hardware
description language like VHDL. The synthesis process
involves severa! steps, going from behavioral levei through
structurallevel up to hardware implementation.

Validation and veriftcation are techniques used to
determine whether a design is correct, consistent and
complete. Validation corresponds to checking static aspects
of lhe system, like data, interconnection, and
communication porls; checking is based on a set of design
rules. Verification is used to check dynamic aspects of a
system, such as timing, communication patterns, and
interconnection compatibility.

SDS (System Data Structure)
representation that captures
communication/synchronization
behavioral speciftcation of a
representation is useful
validation/veriftcation.

[SIL97] is an internai
dataloperation and

aspects from the
digital system. This

for synthesis and

SDS is used to represent a design at the system levei.
SDS divides design information into two graphs which
describe the data flow behavior and contrai timing

76

behavior. This representation allows a direct analysis of the
program structure, for example lhe levei of parallelism
among operations, and an analysis o f resource allocation.

This paper presents the trans lation process from the
hardware description language VHDL to SDS, basically the
transformation of a behavioral specification to a structured
representation. This transformation is done by data flow
analysis, contrai flow analysis, and graph optimization.
Scheduling, which is part of the synthesis process, is also
realized.

The behavioral specification of a digital system can be
described in a hardware description language like VHDL
(IEE87, LIP89], Verilog (TH091], and HardwareC [KU90,
DEM90]. In this work we use a subset of VHDL for
behavioral system specification.

li. SDS REPRESENTATION

SDS models digital circuits as a set of concurrent and
communicating processes. It has a higher abstraction levei
than algorithms or high-level representations, such as DDS
(Design Data Structure) [KNA85], SA W (System
Architect's Workbench) [W AL87] and BIF (Behavioral
Intermediate Formal) [DUT89].

SDS is a multi-levei design representation. This
representation divides design information into two
subspaces, without an implicit relation between the objects
of each subspace. The two subspaces represent respectively
lhe data flow behavior (DFG) and the contrai timing
behavior (CTG). The entities of the two subspaces can be
explicit related through bindings.

A. Data flow subspace

The data flow subspace is used to represent the behavior
of data transformation. lt is modeled using a data flow
graph (DFG) that resembles the flow graphs used in
compilers for data flow machines. This graph is a directed
acyclic bipartite graph which is constituted of a set of

operations, a set of values, and a set of directed edges that
connect operations and values.

Special operations are defined in DFG to represent
conditional data dependencies and loops. They are:
distribute and join operations, which are used to support
conditional data dependencies, and iterate operators, which
are used to support loop commands.

B. Control flow and timing subspace

The control timing flow graph consists of ranges and
points. A range represents a limit or a tirning duration, an
order relationship, or a casual relationship among points.
Points represent an infinitesimal events duration, which
separate the ranges.

Special points are defined in CTG to represent
conditional branches and loops. They are: or-fork and or­
join points.

In conditional branches, each outgoing range of an or­
fork point is associated with a condition. The flow of
execution follows the range whose condition is satisfied.

Loops begin at a first point, which is followed by the or­
fork point, and iterate until the end point, which is followed
by the last point of a while loop which is the or-join, at
which time the flow of execution returns to the first poinl.
Each pair of loop begin and end points are uniquely
identified.

C. Bindings

The explicit relation that describes the connection
between the elements of the two subspaces are called
bindings. The binding is a 2-tuple (pai r of values) that
assigns data tlow operations to control timing ranges.

Figure I illustrates the behavioral specification of a
module in VHDL and figure 2 shows the corresponding
graphs in SDS and one binding example.

architecture behavior of COMPARE is
begin process

begin
if (A=B) then

N <= 0
else

N <= N + 1;
end if;
C <= N;

end process;
end hehavior :

Fig.I A sample VHDL description

77

A\trB
= ····.............. 7t

:<-------- ········

o

Fig.2 The DFG and CTG

li. VHDL TO SDS TRANSFORMATION

The task of VHDL to SDS translation can be described
as following:

I. Extract the control information from a VHDL
description and construct a flow graph for later data
tlow analysis. A flow graph is a directed graph of
basic blocks. A basic block represents a sequence
of computations that are bound through edges that
represent the flow of control.

2. Data tlow analysis can be performed in two steps.
First, we use a local data flow analysis procedure to
collect intra-block data dependencies. Then, a
global data flow analysis procedure is used to
analyze the inter-block dependencies. After this
phase, the annotated flow graph becomes a
combination of a DFG anda CTG.

3. The annotated flow graph may contain many
redundant operations o f the form x = y which must
be eliminated in order to produce an optirnized
DFG.

4. The CTG and DFG are produced separately.
5. After setting the separated flow graphs up, the

scheduling becomes straightforward.

A. Parsing

Ali entries in VHDL must first be analyzed and
transformed in an intermediate representation: a syntax
graph. The parser VAUL[VAU94] is used for this.

V AUL (VHDL Analyzer and Utility Library) was
developed at the University of Dortmund, with the aim to
provide a front-end to tools that uses VHDL. It analyzes
each VHDL program's design unit separately, resulting in a

syntax graph, which is represented by a collection of C++
objects, connected by pointers.

The VHDL2SDS translator generates a representation
using as entry the syntax graph. The translating process is
shown in figure 3.

VAUL

VHDL2SDS:

I
I
I

Fig.3 The translation steps

B. Contrai Flow Analysis

Control flow analysis is a procedure that part1t10ns a
sequence of statements into basic blocks and constructs a
flow graph that represents the flow of control.

Each basic block is constituted by statements in a
sequence from the last branch target to the next one altering
the flow o f execution.

78

C. Data Flow Analysis

Data flow analysis is performed in two steps: local data
flow analysis and global data flow analysis.

C. I Local Data Flow Analysis

Each basic block B in the flow graph is a computation
uni t. Sequential statements are the only forms of statements
that will appear in a basic block.

Here, we will analyze the inter-statement data
dependency within each basic block. That is, we want to
know which statements within a basic block define the
values for each set of variables used in the statements and
who will use the values of each set of update variables.

In addition, we need to know the input set of a basic
block and the output set. These two sets are important in
the global data flow analysis and are determined for the
following expressions [CHE90] :

j k·l
l (B) = I(Si) U { U (I(Sk)- U O(S1))}

K=i+l l=i

j

O(B) = U O(SJ
K=i

Where,
B is a basic block
B ={Si, ... ,Sj}
sk is a statement and i ::;; k ::;; j
I is the input set

O is the output set

C.2 Global Data Flow Analysis

The inter-block data dependency is much more
complex than the intra-block.

Our approach for this global data flow analysis is
explained in the following steps:

I . Group basic blocks within the same structure
called meta block. This can be done in if-then-else
or while-Loop structures. An if-then-else meta
block consists of three subblocks, a condition, a
then body and an else body. A while-loop meta
block consists of two subblocks, a condition and a
loop body.

2. Calculate the input and output sets of those meta
blocks according to table I [CHE90].

TABLE I

l NPUT AND OUTPUT SETS

Ty e of meta block

if C then T else E

while C loop L

l(IF) = l(C) U I(T) U I(E)U
{ O(IF)- (O(T) n O(E)) }

O(IF) = O(T) u O(E)

I(WL) = I(C) U I(L) U O(L)
O(WL) = O(L)

3. Analyze the definition and use relationships
among the meta block hierarchically

3. 1 For the if-then-else meta block we have the
fo llowing rules:

• The use values of each variable in the input set
is every subblock number whose input set
contains it.

• The definition value of each variable in the
output set is a 2-tuple. The first value is the
number of subblock then i f the variable is found
in this structure; otherwise, it is defined outs ide
the meta block. The second value is found in
subblock e/se in similar way.

3.2 For the while-loop meta block we have the
following rules:

• The use values of each variable in the input set
is every subblock number whose input set
contains it.

• The definition value of each variable in the
output set is a 2-tuple. The fi rst value is the
loop body subblock number and the second
value is the subblock number defined outside
the meta block, which contain the initial value
o f the variable.

• If a variable is defined in the input set of the
loop condition or in the loop body, and in the
output set of the loop body subblock, its input
definition becomes a 2-tuple. The firs t value is
the loop body subblock number and the second
is the subblock number defined outside the
meta block, which contain the initial value of
the variable. If one of the conditions is not
satisfied, the value o f the tuple is set to zero.

D. Graph Generation

After the global data flow analysis, ali the inter-block
data dependencies are found and the global DFG and CTG
can be generated.

79

E. Graph Optimization

Li ke traditional compilers for programming languages,
there are plenty of opportunities to optimize the graphs
during the VHDL to SDS translation. Here, we focus on
those transformations that are guaranteed to improve the
final design. The flow graphs and the defi nition/use
information are particularly useful in performing these
transformations. We use lhe following rules:

• For any basic block Bk in a flow graph where k > I,
if Bk does not have any incoming edges, then it is
dead code.

• For any two operations performing the same
function, they should produce equivalent results
under the same input condition. Furthermore, if
there is a commutative property, the order of inputs
may not be important as long as their
correspondence can be established. Therefore, one
of them can be removed from the graph and the
definition and use information of its outputs can be
redirected to the other.

F. Scheduling

Scheduling is a very important problem in architeclural
synthesis. Whereas sequencing graph prescribes only
dependencies among the operations, the schedul ing of a
sequencing graph determines the precise start time of each
task.

The number of resources and timing may be bounded or
not. We use schedul ing without resource constraints, which
is applied when dedicated resources are used.

Practical cases leading to dedicated resources are those
when operations differ in their types or when their cost is
marg inal, when compared to that of steering logic, register,
wiring and control. Eventually, unconstrained scheduling
can be used to derive bounds on latency for constrained
problems. The two algorithms used are ASAP (as soon as
possible) and ALAP (as late as possible). The ASAP
scheduling algorithm yields the minimum values of the start
times. A complementary algorithm, ALAP, provides the
corresponding maximum values.

III. T RANSLATION EXAMPLE

Figure 4 shows a sample VHDL description that
consists of one process. This program counts the number o f
elements grater than " I O" in the vector.

In this description, there are nine basic blocks in lhe
archilecture body. Since each basic block consists of single
statements only inter-statement data dependencies are
necessary. After collecting the input and oulput sets of each
block, we have the use/definition table shown in table 11.

-- An example VHDL description
package VTYPE is

type VECTOR is array(O to 7) of
INTEGER;
end VTYPE;

use work . VTYPE.all;

entity dct is
port(V: in VECTOR; 0 : out INTEGER);

end dct;

arch itecture behavior of dct is
begin process
variable I, A: INTEGER;
begin

I : = O;
A : = O;

while I < 8 loop
if V(I) > 10 t hen

A . - A + 1;
end if;

end loop;
O <= A;

end process;
end behavior;

I . - I + 1;

Fig.4 A sample VHDL description

TABLE li

GLOBAL DATA FLOW ANALYSIS

Block Input set Output set
vai de f use vai de f

I I
A

2 I 8
3 v 5

I 5
4 A 5 A
5 v 7 3 A 4,7

I 7 3
A 7 4

6 I 7 I
7 v 8 5 I 6

I 8 5,6 A 5
A 8 5

8 v o 7 I 7, 1
I 1,7 2,7 A 7, 1
A 1,7 7

9 A 8 o

use
8
8

5
7

7
8
8

9

o

Since there are conditional and loop statements, the
CTG generated by VHDL2SDS is nota simple sequence of
ranges. The DFG graphs are shown in figures 5 and 6, and
the CTG graph is shown in figure 7.

Fig.5 The DFG o f variable I

Fig.6 The DFG o f variable A

Fig.7 The CTG

80

Assuming the restnctJOn that each operation take
exactly one control step to execute, we have the following
ASAP scheduling for the program, shown in figure 8.

Fig.8 ASAP schedule

Given a final schedule, we can easily compute the
number of functional units that are required to implement
the design.

IV. CONCLUSION

The main objective of the translator VHDL2SDS is to
obtain an optimized structured representation of a digital
system, captured from a behavioral specification, and
suitable for validation/verification and synthesis. The
translator program is implemented and under tests. The
examples submitted so far indicate that the approach taken
is feasible. The structured representation of SDS is suitable
for validation/verification, circuit optimization, and
synthesis.

Future work includes integration of VHDL2SDS to a
synthesis system, incorporation of circuit optimization
techniques, and implementation of validation/verification

81

tools using the SDS representation. A much larger subset of
VHDL may be used, at least incorporating structural
constructs, to provide better expressive power for design
specification. Other hardware description languages could
also be used for the behavioral specification of a digital
system.

A CKNOWLEDGMENTS

We would like to thank the financiai support of Lab.
Engenharia de Computadores - LECOM/DCC/UFMG and
CNPq under the grant PIBIC/CNPq.

REFERENCES

[LIP89] LIPSETT, R.; SCHAEFER, C.; USSERY, C. VHDL:
Hardware Description Language. Kluwer Academic
Press, 1989.

[SIL97] SILVA Jr. , Diógenes; PARKER, Alice C. SDS: a
System Leve/ Data Stmcture for Design
Representation. IWLAS 97 - Intl. Workshop on Logic
and Architecture Synthesis, Grenob1e, France,
December 1997.

[V AU94] V AUL. A VHDL Ana/yzer atul Utility Library.
http://www-dt.e-technick.uin-dortmund.de/-mvo/ vau1/
University of Dortmund - Department of Electrical
Engineering, AG SIV, 1994.

[KNA85] KNAPP, David; PARKER, Alice C. A Unijied
Representation for Design lnformation. Proc. of the
LFIP Conf. on Hardware Description Languages, Aug.
1985.

[WAL87] W ALKER, R. A.; THOMAS, Don E. Design
Representation and Tramformation in tire System
Architect 's Workbench, Proc. ICCAD-87, 1987.

[DUT89] DUTT, Nikil D.; HADLEY, T.; GAJSKI, D .. D. An
lntermediate Representation for Behavioral Syntlresis,
Proc. o f DAC, 1990.

[CHE90] CHEN, Chi-Tung. A VHDL Language to DDS Data
Structure Translator. Technical Report, Department
of Electrical Engineering - System, University of
Southern California, 1990.

[KU90] KU, David; DE MICHELJ, Giovanni. HardwareC- a
Language for Hardware design (version 2.0).
Technica1 Report CSL-TR-90-41 9, Sranford
University, April 1990.

[DEM90] DE MICHELI, Giovanni ; KU, David; MAILHOT, F. ;
TRUONG, T. The Olympus Synthesis System for
Digital Design. IEEE Design and Test of Complller,
October 1990.

[TH091] THOMAS, D. E. ; MOORBY, P. The VERILOG
Hardware Description Language. K1uwer Academic
Publishers, l991.

[IEE87] IEEE. IEEE Standard VHDL Language Reference
Manual. IEEE Computer Society Press, March 1997.

