
A Technology-Scalable Multithreaded
Architecture

Clecio D. Lima1
, Kentaro Sano1

, Hiroaki Kobayashi 1
, Tadao Nakamura1 and Michael J. Flynn2

1 Graduate School o f Information Sciences, Tohoku University
Aramaki Aza A oba O I, Aoba-ku, Sendai, 980-8579, Japan

{decio, kentah, koba, nakamura} @archi.is.tohoku.ac.jp
2 Computer Systems Laboratory, Stanford University

Gates Hall 334, Stanford, California 94305
{ tlynn@umunhum.stanford.edu}

Abstract-
Advances in integrated circuit technology have offered an

increasing transistor density with a continuous performance
improvement. Soon, it will be possible to integrate a billion of
transistors on a chip running at very high speeds. At this levei
of integration, however, physical constraints related to wire
delay will become dominant, requiring microprocessors to be
more partitioned and use short wires for on-chip communica
tion. On the other hand, effective parallel processing by taking
advantage of the large number of transistors will be challeng
ing.

In this research, we propose the Shift Architecture, a mul
tithreaded paradigm that maps statically scheduled threads
onto multiple functional units. Communication is based on
shift register files and restricted to contiguous functional units,
requiring reduced wirc lcngths. Thrcads are dynamically in
terleavcd on a cycle-by-cycle basis, to maintain high processor
utilization. We describe the basic concepts of our approach. A
preliminary evaluation shows that this architecture has the
potential for achieving high instruction throughput for multi
threaded benchmarks.

Keywords- Wire Delay, Multithreading, lnterleaving.

I. I NTRODUCfiON

For the past decade, microprocessors ' performance im
proved continuously at a rate of more than fifty percent a
year. These improvements are basically dueto two factors.
First, clock speed has been increasing fast, both by scaling
CMOS technology and by deeper pipelining at higher clock
rates. Second, severa) techniques have been used to exploit
instruction-level parallelism (ILP) and effici ently utilize the
ever- increasing number of transistors on a chip. Within a
decade, it will be possible to integrate a billion of transis
tors on a chip, potentially running at speeds over 3GHz.

However, achieving high performance in future micro
processors will be challenging because wire delays wi ll
limit the ability of microprocessors to improve throughput.
As CMOS technology improves, wire delay become para
mount in comparison with logic delay, and therefore will
limit the fraction of chip reachable in a single clock cycle.
Thus, long wires can drastically affect the processar cycle

82

time i f it happens to be in the criticai path. Global structures
usually present in conventional architectures, such as regis
ter files, crossbars and issue windows, wi ll also be affect by
wire delays and circuit complexity and therefore are candi
dates to become a bottleneck. In order to avoid these physi
cal limitations, future microprocessors must be partitioned
into severa! small independent logic blocks. Communica
tion should be limited to local resources, instead of global
resource sharing. The architecture, as well as the compiler
and the OS must be aware of the on-chip communication
latencies.

Another major challenge to improve performance in fu
ture is re lated to extracting parallelism. Current microproc
essors mostly use the superscalar and the VLIW approaches
to exploit ILP from a single thread of control. In superscalar
architectures, the processor performs data dependence
checking at run-time. The amount of ILP, however, is lim
ited by the issue wi ndow, whose complexity is proportional
to the square of the number of entries [JOH 91]. In VLIW
architectures, data dependence analysis is performed at
compile-time and therefore requires a much simpler hard
ware. This approach, however, does not handle well dy
namic events, such as cache misses. A stall caused by any
one of the suboperations causes ali functional units to stall.
These approaches also suffer from the limi ted amount of
inherent ILP in single threads of control. Therefore, it is
natural to consider exploiting parallelism from multiple
threads o f control.

So far, designers have emphasized in eithe r increasing
clock speed or increasing instruction throughput by improv
ing ILP. However, future generation of microprocessors
will require both strategies to be considered.

In this paper, we present a new architectura l paradigm
called the Shift Architecture, which takes into consideration
the physical constraints of technology scaling and, at the
same time, efficiently exploits parallelism. The physical
constraints are minimized primari ly by partitioning a con
ventional global register file into severa! independent regis
ter files. Each functional unit has its private set of registers

Fig. I Functional units arrangement and instruction scheduling

to access and on-chip communication is done mainly by
shifting register contents to the consecutive functional unit.
This reduces the complexity of register files as well as
avoids long wires for communication.

In our approach, different threads are interleaved on a
cycle-by-cycle basis, allowing fast switching between
threads and fast pipelines to be built, s ince no data depend
ences have to be solved inside the pipeline. Parallelism is
exploited by executing severa(threads simultaneously.

Section 11 describes the basic concepts of the Shift Ar
chitecture. Section III presents our preliminary evaluation.
Section IV presents our simulation results. In Section V, we
present some of the related works. Finally, we summarize
and present our concluding remarks in Section VI.

li. THE BASIC CONCEPTS

In the Shift Architecture, functional units (FUs) are ar
ranged in a l-dimensional array. Each functional unit has a
dedicated register fi le (RF), as showed in Figure I.

To avoid the use of long wires and complex crossbars,
the communication between FUs is done only through con
secutive RFs. The contents of a RF as well as the results
from its corresponding FU are placed into the consecutive
register fi le every clock cycle. The compiler statically
schedules instructions and guarantees that operands will be
available at the correct place to be executed by the appro
priate instruction. In the example illustrated in Fig. I , for
example, instruction i 1 is assigned to FU 1• After operands
are fetched from registers, the whole content of RF1 is
shifted to RF2• The result from FU1 is also placed in RF2•

Thus, ali the operands wi ll be available for instruction i2 to
use in FU2, for i3 in FU3 and so on. For an individual thread,
the appearance of a single and static registe r file is main
tained. This simplifies scheduling since a thread accesses a
register file as if it was dedicated to that thread. Moreover,
threads do not need to compete for access.

The delay between the executions of two consecutive
instructions from the same thread is called initiation delay.

83

Jime(cycles) 1hread1+5 1hread1+o/ lltread1+J

{:"(... ...- {:"(.... ··· .. ······ .. 1hreadt+2

k+3 "V----~.~.~-- - - - .~.9---- -.~.9
: ... ··· : ... ···· : ... ··· :
~······ ~····· ~······· • ... lhread1+ J

k+2 \!::::/ -- -- ~.~·~- --- -.~.~---- -.~.9
! / ! ·········· ! ... ·········· ! .. 11tread1

k+ I 0 --- ~.~.~.G)- -- ~.~.~.9--- -.~.~.@
k Q·~·~~·-_ -GJ:·~·~~·-__ c;;·~·~·~·~ __ Q·· lhreatl

1

. J

FU1 FU2 FU3 FU4

Fig. 2 Thread lnterleaving

This initiation delay must be long enough to allow the data
to be shifted from one register file to the next, and short
enough to permit a fast execution of a thread. To avoid us
ing a pipe line stage devoted to data shifting, we can per
form the shift of data simultaneously with the execution of
an instruction in a FU.

The compiler statically partitions a program into threads.
Each thread performs a round of computatio n on a set of
data, which contains no data dependencies with the other
threads.

At run-time, the hardware scheduling mechanism inter
leaves several threads to exploit inter-thread paralle lism and
maintains high utilization of functional units. The arbitra
tion for functional unit usage is performed on a cycle-by
cycle interleaving basis. Every cycle, the processor dy
namically switches to a new thread and maps its instruc
tions to be executed onto the multi pie functional units.

Interleaving different threads on a cycle-by-cycle basis
has two main advantages. First, it allows a fas t switching
between threads, since no context switching determination
has to be performed. Second, since there are no dependen
cies between instructions of different threads, stalls due to
pipeline dependencies can be avoided i f enough threads are
available for fetching. This leads to a fast pipe line since
complex forwarding paths are nol necessary ([BOO 92],
[LAU 94]). Figure 2 demonstrates how multiple threads are
dynamically interleaved across the multiple FUs. Each node
in the grid represents an instruction been executed . Rows
show instructions that are executed al lhe same time
whereas columns show instructions that execute in the sam~
functional unit. In this example, an initiation delay of I
clock cycle is assumed.

A. lnstruction Fetch

Once a thread starts execution in the first functional unit
ali the consecuti ve units should execute instructions of the
same thread in subsequent cycles. To simplify schedul ing
and the organization of the instruction memory system, a

block of instructions is fetched from a thread every clock
cycle. Each block should contain as many instructions as
the number of functional units available. These instructions
are primarily stored in the instruction buffer IB~o which cor
responds to the first functional unit in the arrangement. The
first instruction o f the block is fetched from JB 1.The re
maining instructions are shifted to consecutive !Bs in the
same fashion as the data shifting. Giving the small size re
quired for such buffers, we expect that fetching an instruc
tion from each o f them is fast and tri vial.

The fetch unit should be smart about which thread it
fetches, selecting from those which can offer the most im
mediate benefit. This selection is done by means of a thread
management unit (TMU), a table that contains severa! pro
gram counters, one for each thread context. The main re
sponsibility of the TMU is to maintain the control of thread
states and to provide a fast fetching. When a cache miss or
branch misprediction is detected, the state of a thread is
asserted to not-ready-to-fetch, and will not be eligible to be
fetched until it recovers from the penalty, and then becomes
ready-to-fetch. Threads are selected among ready contexts
in a round-robin fashion.

B. Multiple-cyc/e Instructions

So far, combining the data shifting and the interleaving
techniques in a cycle-by-cycle basis may look simple.
However, such execution model only works under the as
sumption that every instruction can be executed in a single
clock cycle. lnstructions that take multiple cycles to execute,
such as multiplication or division, would cause ali the func
tiona l units (to its right) to stall. To avoid these stalls, we
propose the inclusion of dedicated multiple-cycle units that
could be used in paralle l with single-cycle functional units.
A possible implementation for the Shift Architecture in
cluding these units is illustrated in Figure 3. The processar
is organized as a collection of processing elements (PEs),
each of which contains dedicated functiona l units for multi
plication, division, floating-point operations, severa! single
cycle units, as well as the corresponding register files.

Details of the scheduling o f multiple-cycle instructions
wi ll be discussed in a future paper.

C. Memory Access

Functional units mainly depend on the data stored in
register files. However, although less frequent, accesses to
data memory may become a bottleneck, due to the Jong
memory latencies usually implied. Therefore, the design of
an adequate memory access system becomes another key
issue in the implementation of our architecture. The sim
plest possible implementation would be to stall the whole
thread after a (shared) memory reference. This s talled
thread could not be fetched again until the memory access
is performed. ln fact, this model was implemented in the
Denelcor HEP ([SMI 8 1]) and MASA ([HAL 88]), which

84

lnsl ruclion Memory

Data Memory

Fig. 3 A possible implementation for the Shift Architecture

used a cycle-by-cycle context switching mechanism. How
ever, stalling at every memory access showed to severely
degrade performance, since it requires a very large number
o f threads to h ide the memory Jatency.

Techniques as the grouping of load instructions de
scribed in [800 92) could reduce the number of memory
accesses. However, to effective ly obtain high performance,
the alternative is preventing the processar from the long
latency of a shared memory by using caches. The Shift Ar
chitecture, however, imposes additional difficulties to cach
ing. Exploiting locality seems to be more difficul t given the
large number of threads that access a cache, potentially re
sulting in high cache miss rates. Providing efficient cache
coherence and exploiting data sharing among threads at
compiler levei will be necessary and are of high priority in
our future work.

D. Branch prediction

A thread may contain unconditional and conditional
jumps among its instructions. Unconditional jumps shall
cause functional units subsequent to the one containino the
. . . b
JUmp mstruct10n to stall. In the case of conditional j umps,
however, the branch to be taken can be predicted. When a
misprediction is detected, the consecutive functional units
must stall. At this time, however, the following instruction
of the same thread is already been fetched. Thus, the stall
ing should be done by locking the consecutive register file
and avoid any of the following instruction to perform a reg
ister write.

Finally, the program counter of the thread incurring the
misprediction penalty must be updated in the thread man
agement unit.

III . PRELIMINARY EVALUATION

Using multiple threads has basically two objectives in
the Shift Architecture - to fill ali the processing elements
pipeline stages and to hide memory latency. In this evalua-

TF

FD

OF

EX

DF

WF

PEJ

JIJiftillg in.flfliCIÍOII.f

tlurinJ.: OP. EX

sllijiiiiK tlnw
<luring EX. DF

Fig. 4 Pipeline stages

tion, however, we examine only the aspects of program
behavior that affect the utilization of the processing ele
ments. We simulate a simplified impleme ntation of the
Shift Architecture, and examine the behavior of some mul
tithreaded benchmarks.

Severa(assumptions are made in order to simplify our
evaluation. A processing element contains only one func
tional unit and corresponding registe r files. This functional
unit is able to perform integer, single-clock cycle operations.
The TMU is assumed to be able to handle any number of
threads in a single clock cycle. lnstruction and data memory
are considered large enough to hold instructions and data of
the benchmark programs. Each register file is assumed to
contain three 16-register banks.

In addition, to avoid the influence of long memory la
tencies in our results, we assume a memory reference to
occur within a single clock cycle. This assumption allows
us to concentrate only on the processing util ization aspect.
Moreover, benchmarks were carefully wri tten to contain
none or very few memory access instructions.

A. Pipeline lmplementation

The simplified implementation used in our simulations is
described here. Figure 4 illustrates the pipeline stages in
two consecutive processing elements. Each processing e le
ment consists of five pipeline stages: instruction fetch and

85

decode (FD), operand fetch (OF), execution (EX), data
fetch (DF) and write forward (WF). A special pipel ine stage
- the thread fetch (TF) stage - is required in order to fetch a
block of instructions to the first processing e lement.

A. I Thread fetch (TF)

In this stage, a block of instructions is fetched from the
instruction memory. The block to be fetched is determined
by the TMU, which provides the current program counter
(PC) of an active thread. The instruction fetch unit fetches
enough instructions to keep a li the functional units busy.
For example, 11 instructions should be fetched in a configu
ration of n processing e lements, starting from that indicated
by the PC. These instruc tions are stored in the instruction
buffer.

A.2 lnstruction fe tch and decode (FD)

During this stage, an instruction is fetched from the in
struction buffer and then decoded. The remaining instruc
tions are shifted to consecutive units. Because instructions
are shi fted, the buffer will always contain the same number
of instructions, unless a thread contains blank instructions
or the TMU was not able to schedule any thread at that cy
cle. This simplicity makes its operation fas t, giving room to
perform both instruction fetch and decode in the same cycle .

A.3 Operand fetch (OF)

In this stage, the source operands required by the in
struction are read. Most of these operands will be available
since most of the data dependencies are satisfied during
scheduling. The only data dependences not solved by the
scheduling mechanism are those involving long memory
latencies. However, these dependences will not be consid
ered in this simulation.

A.4 Execution (EX)

In the execution stage, integer operations are performed.
We assume that any integer operation can be performed in a
single clock cycle.

A.5 Data fetch (DF)

During this stage, memory is accessed during this stage.
We assume a single clock cycle for local memory refer
ences.

A.6 Write forward (WF)

Finally, the results are written to the destination register.
Since this destination register is located in the register fi le
of the next PE, we call this stage write-forward stage, in
stead of the conventional write-back stage.

A.7 Instructions and Data Shift ing

The instruction shifting between instruction buffers o f
contiguous PEs is performed during the stages OF and EX.

lnstruction buffers have to keep their contents for three
s tages: FD, OF and EX stages, due to the initiation delay.
This beha~ior requires each instruction buffer to be imple
mented WJth three banks, as showed in Figure 4. These
banks are alternate ly used by different threads to avoid
pipeline stalls. '

The data shi fting between the register files of contigu
o us PEs is performed simultaneously with the stages EX
and DF. Three banks are also necessary per register file, for
the same reason as for the instructions buffers.

B. Simulation

We developed a simulator in order to evaluate the be
havior of the implementation described above. Our simula
tor is execution-driven and models the pipelines stages as
well as the instruction and data shifting. Basically, it takes
the assembly code of a multithreaded benchmark as input,
executes the program and counts the number of instructions
executed per clock cycle. The experiment was performed
for three architectural configurations with four, s ix and
eight processing elements, respectively.

8 .1 Benchmarks

We selected two simple algorithms as benchmarks: the
Fast Fourier Transform (FFT) and MMT, for the large
amount of thread-level paralleli sm available. These bench
marks were written in assembly language using the MIPS
instruction set. The partitioning into threads was done
manually by following the natural flow o f the algorithms.

The FFT algorithm performs the butterfly computation
~escribed in [BRI 97]. At each s tage of the algorithm, mul
llple threads may perform a number of computation inde
pendently. However, because the result of a stage serves as
mpu~ for the subsequent one, threads of different stages are
reqUired to communicate with each other. This communica
tion is done through the memory. We executed lhis bench
mark for 16 and 32 e lements as inputs.

The MMT algori thm performs the multiplication of two
matric~s . Each thread consists basically of a row by column
operat10n. and therefore no inte r-thread communication is
required. We pe rformed this algorilhm for matrixes of
I Ox I O and 20x20.

PE1 TF

initiation
delay

time(cycles)

instl

Fig. 5 lnteraction between two successive instructions

86

C. Mathematical analysis

Figure 5 demonstrates two successive instructions of the
same thread, mapped respectively to PEI and PE2. The
content of the register file of PEI is shi fted to the register
file of PE2 during the execution stage. lnstruction I writes
~ts resu~ts direc~ly to the register file of PE2, to be used by
mslructJon 2. Smce instruction 2 cannot read operands be
fore receiving the results from the previous inslruclion an
initiation delay of three clock cycles is necessary. w e' as
sumed that a register write occurs in the first half of a clock
cycle and the operand fetch occurs in lhe second half.

It is important to nolice that once a lhread is fetched it
cannot be fetched again unlil its last instruction leaves ;he
last stage of the lasl processing element. Therefore, a single
threaded program is expected to perform poorly. The mini
mum number of threads (nt) required to fully utilize ali the
processors is, in this implemenlation, given by (1).

nt = (id x np) + id (1)

where np is the number of processing e lements and id is the
iniliation delay.

However, having enough threads does not guarantee hioh
utili zation. Another factor that influences in the utili zati~n
of the processing e lements is the number of instructions in a
thread. Threads in which the number of instructions is a
mulliple of the number of processing elements will be able
to fill ali the pipeline slages, while other threads not. We
define completeness (c) of a thread as ils ability to fill lhe
processing elements. lt can be represenled mathematically
as a function of np and the number of instructions (ni) of a
thread .

For ni = k·np, where k is an integer, the completeness is
given by (2).

c = I (2)

For the case where ni :t:: k ·np, the thread completeness
should be less than I, indicating that the thread will not be
abl~ to fi li some of the PEs with instructions during its exe
cutJOn. For example, consider a th read with 3 instructions,
to be executed on a configuration with 4 PEs. In this case,
the thread completeness would be c=3/4=0.75.

Now consider a thread with 7 instructions in the same
configuration. In lhis case, the thread would be fetched in 2
~ifferent blocks, containing 4 and 3 inslructions, respec
tJ vely. The first block has completeness c=l . The second
block has completeness c=0.75, as in the previous example.
Therefore, the thread completeness would be
c=(I +0. 75)/2=0.875.

For ni :t:: k·np, in a general form, the completeness is
given by (3).

ni
c=--------

ni +np -nimodnp
(3)

IV. RESULTS

A factor of primary importance to effectively utilize the
processing elements is the number of threads ready to be
fetched every clock cycle.

Table I compares the total number of generated threads
with the average number of ready-to-fetch threads for al i
benchmarks and architectural configurations. In ali bench
marks, the number of threads that can be fetched every cy
cle is smaller than the total number of threads generated,
and decreases as the number of processing elements in
creases. This is basically because the number of threads
currently occupying a pipeline (and therefore is not eligible
for fetching) increases with the number of processing units.

For the two types of MMT, the number of threads avail
able for fetching is superior to the minimum number of re
quired threads. This is due to the threads in MMT being
independent of each other. Except for those threads cur
rently in execution, allthe remaining threads can be fetched
at any time.

For FFT, however, the number of threads that can be
fetched is usually smaller than the required. This is because
threads performing a stage of the FFT algorithm depend on
the results of the previous stage. This dependence causes
many threads to wait, even i f these threads are not occupy
ing the processing e lements.

Using the average number of ready-for-fe tch threads to
est imate the utilization of processing elements fails when
there is a large variation in the distribution of threads in a
program. Some port ions of a program can contain a Jarge
number of threads, while other portions can be mostly serial.
The benchmarks, used in our experiments, however, pre
sented a constant distribution of threads due to the nature of
the algorithms.

The other factor that can influence in the utilization of
the processing units is the completeness of threads. Table 2
shows the average size of a thread and the completeness in
each benchmark. In general, thread completeness tends to
increase as thread size increases, as can be observed in the

TABLE I
AVERAGE NUMBER OF REAOY THREAOS ANO THREAO SIZE. T HE

NUMBERS IN PARENTHESIS SHOWTHE NUMBER OFTHREAOS RE·

QUIREO FOR FULL UTILIZATION

Average number of
Total number of

Benchmark ready·lo·fetch threads
threads

4 PEs(15) 6PEs(21) 8 PEs(27)

FFT-16 14.6 13.4 12.4 60

FFT-32 26.8 25.4 24.2 150

MMT-10x10 67.5 62.5 56.5 100

MMT-20x20 285 265.5 242.5 400

87

800

700 1
~ 6oo I

~
~ soo

~ I 400 I

·~ 300 f

j 200

100

000

MMT-10X10

.MMT-20>120

4PEs 6PEs 8PEs

Fig. 6 lnstructions executed per cycle

table. However, varying the number of processing elements
also causes thread completeness to oscillate, suggesting that
the size of a thread be adjusted to the number of processing
elements. In particular, this effect is stronger for threads of
short size, as can be observed for the FFT benchmarks.

Figure 6 shows the number of instructions executed per ·
clock cycle (!PC) for each benchmark. FFT- 16 presents the
poorest performance among the benchmarks in ali experi
ments. This is due to the small size of the benchmark and
consequently the small number of threads that could be ex
tracted and kept ready-to-fetch.

FFT- 16 and FFT-32 perform better on a 4 PEs configura
tion than on a configuration of 6 PEs. This can be explained
by the lower thread completeness of these benchmarks for
6-PEs. The effect of low thread completeness can also be
observed for MMT- 10 and MMT-20. Although these
benchmarks offer a large amount o f thread-level parallelism,
increasing in !PC is not proportional to the number of PEs
because of their unbalanced thread completeness. In par
ticular, they perform poorer than expected for a configura
tion o f 6-PEs.

As expected, the highest utilization for ali benchmarks
was obtained for a configuration of 4-PEs, due to the small
number o f threads required. For this case, IPC ranges from

TABLE li
A VERAGE THREAD SIZE ANO THREAD COMPLETENESS

Average Thread Average
Benchmark Completeness (c) thread size

4PEs 6PEs 8PEs (ins1ruc1ions)

FFT-16 0.96 0.86 0.96 15.4

FFT-32 0.96 0.86 0.96 15.4

MMT-10x10 1.00 0 .93 0 .87 28

MMT-20x20 0.98 0.98 0.92 59

3.25 to 3.92, indicating that threads are able to fi ll nearly
every stage of the pipeline.

For the configuration of 8-PEs, FFf-32, MMT-10 and
MMT-20 shows IPC ranging from 5.98 to 7.42, indicating
up to 92% pipeline utilization. lnterestingly, FFf-32 per
forms better than MMT-10, although the number of threads
is much larger in the second. This again shows the impor
lance of completeness in threads, in order to effectively
utilize the Shift Architecture.

V. RELATED WORK

Severa! researchers have proposed partitioned architec
tures and a range of mechanisms to provide communication
between partitioned regions. Franklin and Sohi ([FRA 92],
[SOH 95]) proposed the Multiscalar, a collection of proc
essing units with a sequencer that assigns threads to be exe
cuted in parallel. In this architecture, the processing units
are connected by a unidirectional ring, which is used to
forward information from one unit to the next. Special tag
bits containing information of forwarding are determined at
compile-time.

In [KEC 92], Kecker and Dally proposed a technique
called Processar Coupling, where threads are dynamically
scheduled to be executed in different processing units. In
ter-thread communication is done by explicit instructions,
which allows threads to allocate results directly in each
other's register files. This technique was implemented as an
experimental multicomputer, the M-Machine ([FIL 95]).

Waingold ([W AI 97]) proposed the RA W architecture, a
distributed execution model with extensive software sup
port. In the RA W architecture, severa! simplified ALUs
work on multiple compiler generated instruction streams
and communicate through a point-to-point interconnect.

Rotenberg ([ROT 97]) proposed the Trace Processar,
an architecture where multiple processing elements execute
different traces of a program, passing data across a common

register bus.
Hammond ([HAM 97]) described a chip multiprocessor

(CMP), in which each single processar is assigned to a s~n
gle thread, generated at compile time ~nd .sch~duled. wtth
ruo-time support. Inter-thread commumcatton ts bastcally
performed through a shared memory.

Finally, in [TSA 97] Tsai and Yew proposed the Super
threaded architecture. By implementing a dedicated com
munication unit in each processing unit, this approach al
lows recurrence data and memory address reservations to
be forwarded to consecutive units, and then execute data-
dependeo! threads in parallel. . .

The maio difference between these and the Shtft Arch•
tecture approach is the way a thread is scheduled. While in
conventional multithreaded architectures a single thread is
assigned to a specific processing element, our approach
executes a thread along ali the available units.

VI. CONCLUSIONS

In this paper, we have proposed the Shift Architecture, a
technology-driven multithreaded architecture that uses a
new scheduling mechanism based on shift register fi les. We
have described the basics of this mechanism and evaluated
some of the conditions required for achieving high per
formance.

The physical characteristics of this mechanism permit
two evident conclusions. First, since communication is re
stricted to contiguous functional units, no global wires will
be necessary. Second, each register file is small and re
quires only a single read anda single write ports, in.contrast
with the huge multi-ported register file of convent10nal ar
chitectures. Because of these two features, we believe our
proposal to be tess passive to the negative effect of long
wires in future generations of transistor technology. In our
model , a timiting factor could be the large number of regis
ters is required. However, this fact will not pose a problem,
because of the large number of transistors expected in fu-

ture generations. . .
A primary difficulty for this architecture, mdeed, tS

achieving high utilization. To keep functional units busy,
we have provided a dynamic thread interleaving ~e~hani.sm.
Our preliminary evaluation results show t~at achtevm~ htgh
instruction throughput in the Shift Archttecture reqUires a
large number of threads available for fetching every clock
cycle. The number of ready-to-fetch threads depends o.n the
structure of a program. Our simulations showed that mter
thread data dependence can degrade the performance of
some of the simulated benchmarks. This effected, however,
could be hidden if more threads were available. Moreover,
our architecture could execute independent programs or
processes in parallel. In this case inter-thread dependences
would be minimized.

Thread completeness also showed to have influence in
performance, suggesting that compilers not only need to
generate threads, but to adjust the size of threads to the
number of functional units. These adjustments, however,
become more complicate when branch decisions and mem
ory references are present. These effects are being exam
ined in our current studies.

88

Our current work also includes analyzing the effect of
multiple-cycle instructions in scheduling, as well as provid
ing an efficient mechanism for memory access and inter
thread communication. As a future work, we intend to de
velop compiler techniques to suppo~ our model. A~ot~er
research direction is to evaluate the unpact of the dtstnb
uted register communication in terms of clock speed im
provement and power consumption.

REFERENCES

[BOO 97) BOOTHE, B.; RANADE, A. lmproved Multithreding
Techniques for Hiding Communication Latency in
Multiprocessors. In Proceedings of the 19th Interna-

tional Symposium on Computer Architec/1/re, pages
2 14-223, Queens1and, Austra1ia, May 1992.

[BRI 97] BRIGHAM, Oran E. Fast Fourier Tramform and lts
Applications. New Jersey: Prentice-Hall , 1997. 416p.

[FIL 92] FILLO Marco; KECKLER, Stephen W.; DALL Y
William J.; CARTER Nicholas P.; CHANG Andrew;
GUREVJCH Yevgeny, LEE, Whay S. The M
Machine Multicomputer. In Proceedings of the 28th
Annual lmemational Symposium on Microarchitec
lllre, pages 146- 156, November 1995.

[FRA 92] FRANKLIN M. The Multiscalar Architecture.
[HAL 94] HALSTEAD, R. H. Jr.; FUflTA, Tetsuya. MASA: A

Multithreaded Processor Architecture for Parallel
Symbolic Computing. In Proceedings of the 15th ln
temational Symposium on Computer Architeclllre,
pages 443-451 , 1992.Madison: UWM, 1995 (PhD.
Thesis).

[HAM 97) HAMMOND, L. ; NA YFEH, B. A. ; OLUKOTUN, K.
A Single-Chip Multiprocessor. IEEE Compurer, pages
79-85, September 1997.

[JOH 9 1] JOHNSON, Mike. Superscalar Microprocessor De
sign. New Jersey: Prenticc-Hall, 199 1. 288p.

[KEC 92] KECKLER, Stephen W.; DALL Y William. Processor
Coupling: Integrating Compile Time and Runtime
Scheduling for Parallelism. Ln Proceedings of the 19th
lntemational Symposium 011 Compwer Architeclllre,
pages 202-213, Queensland, Australia, May 1992.

ILAU 94) LAUDON, J et ai: Interleaving: A Multithreading
Technique Targeting Multiprocessors and Worksta
tions In Proceedings of lhe llllernational Conference
on ASPLOS, October 1994.

[ROT 97] ROTENBERG, E.; JACOBSON, Q.; SAZElDS, Y.;
SMITH, J. Trace Processors. In Proceedings of the
30th Amwal lntemational Symposium 011 Microarchi
tecture, pages 138-148, December 1997.

[SMI 8 1) SMITH, B. J. Architecture and Applications of the
HEP Multiprocessor Computer System. SPIE, 288,
pages 24 1-248, 198 1.

[SOH 95] SOHI, G. S.; BREACH, S. E.; VIJA YKUMAR, T. N.
Multiscalar Processors. In Proceedings of the 22"d 111-

ternational Symposium on Computer Architecture,
pages 414-425,June 1995.

[TSA 97] TSAI, J-Y. ; HUANG, J .; AMLO, C.; YEW, P-C. The
Superthreaded Processor Architecture. IEEE Transac
tions 011 Computers, pages 88 1-902, September 1999.

(WAI97] WAINGOLD, E. ; TAYLOR M.; SRJKRISHNA, D.;
SARKAR, V. ; LEE W.; LEE, V.; KlM , J; FRANK,
M.; FINCH, P.; BARUA, R.; BABB J. ;
AMARSINGHE, S.; AGARWAL, A. Baring it ali to
software: RAW Machines. IEEE Compllter, pages 86-
93, September 1997.

89

