
Pool o f Processors on the W eb
Denivaldo Lopes 1, Osvaldo Saavedra2

, Zair Abdelouahab3
1
•
2
•
3 Federal University o f Maranhão

Campus Bacanga, São Luís, MA, 65080-040, Brazil
{

1dlopes@dee.ufma.br, 2osvaldo@dee.ufma.br, 3zair@dee.ufma.br }

Abstract-
This paper prcsents ESOW (An Environment of Shared

Object for Web) to support parallel and distributed
programrning on Web or Intranet. The environment allows
that computers with low computational rcsources take
advantage of idlc computers prcsent on the Wcb. ESOW is a
Pool of available computers to share two basic resourccs:
proccssor and memory. The main entitics in this environment
are passive and active objects. Passive objccts are lists, stacks
and queues which store others objects defincd by users. While
active objccts are processes. The proposed environment
implements load balancing and tolerance to fault. Some tcsts
show the ESOW power.

Keywords - Web, Load Balancing, Distributed and
Shared Objccts, Tolerance to fault

I. INTRODUCT!ON

The invention of computer caused a deep impact in
human li fe. In the past years ali science areas have its
evolution dependent of computer progress and the
behaviour of people was modified. The next revolution will
not just be technological, but cultural. The Internet will
not bring only technological or behaviouraJ changes, but
will implicate in a coalition of the cultures. Perhaps this
takes some decades to happen. But with certainty, it is
already a reality the use of the Internet as the largest
multicomputer already invented by man.

In this context, it appeared the possibility of taking
advantage of available resources nodes of Internet and
Intranet. But it is not simple to program in distributed
systems.

This paper shows an environment with shared objects
for Web (ESOW) which is an evolution of other work
[ABD 00]. Objects may be passive or active entities
capable to control the complexity o f distributed and parallel
systems. Passive objects are stored in data structures such
as lists, queues and stacks which are shared among nodes of
the Web.

The paper is organised in five sections. The first section
introduces the paper. The second section presents an
overview on distributed systems. The third section shows
the developed environment, detaching its architecture,
operation and any results obtained. The fourth section
presents a comparison among ESOW and other
environments. Finally. the last section outlines a conclusion
on the work.

11 2

II.BACKGROUND

A. Distributed systems

In the last decades severa! powerful paraJlel
architectures and high-speed networks were invented
always looking for high performance. lt was invented two
architecture: multiprocessor and multicomputer.
Multiprocessar systems exhibit a semantics of predictable
performance, but possesses a very complex hardware; they
are difficult to construct, are inherently not scalable and
share a space of common address. Distributed systems
belong to the multicomputer systems, in that each processor
is associated to its own memory, and is connected to
another processor/memory through a high-speed network.
These systems are easy to built and are scaJable. The
combination multiprocessor and multicomputer system
resulted in DSM (Distributed Shared Memory) systems that
has the benefits of this two systems. A Software for
Distributed Shared Memory (SDSM) system is an evolution
of DSM that simplifies programming on homogeneous
platforrns by presenting the illusion of shared memory
[STE 99].

Another strategy is to use the concept of shared object
(SO), that supplies a common address space shared by ali
processes of the systems. The processes interact with the
objects through message passing. As an extension to SO,
DSO (distributed shared objects) has as foundation the
physical distribution of the objects [TAN 99]. Objects in
DSO are distributed physicaUy among the machines of the
network, but they are seen as one and indivisible entity.

The DOT (Distributed Object Technology) is formed by
three technologies: object technology, distribution
technology and Web technology. The important aspect of
DOT is the interconnection that is implemented though a
middleware. Among the most common, they stand out
Open Software Foundation's - Distributed Computing
Environment (OSF/DCE), Common Request Broker
Archi tecture (CORBA) [OMG 99] and Java Remote
Method Invocation (RMI) of Sun [MAS 99].

The language Java provide many benefits such as
simplicity, oriented to object, secure, neutra! and portable.
Its use with CORBA and integration of RMI over IIOP
(Internet lnter-ORB Protocol) with other technologies such
as CORBA, DCOM [RAP 00]. Many projects are using

Java as base to develop an extended language to address the
complexity of distributed/paraJiel environments, such as
Ninflet [T AK 98], Javalin [CHR 97] and Charllote [BAR
96] .

Ill. ENV!RONMENT OF SHARED 0BJECTS FOR WEB

A. Overview

ESOW is an environment for developing distributed and
parallel application based on the conception of shared
objects. The adopted computational model supplies users
with three collections of objects classes SOC, DSOC and
ASMOC:

SOC (Shared Object Classes): is a collection of classes
that allows the implementation of data structures as queue,
stacks and lists. These data structures store objects
centralized physically in one machine and logically shared
by ali the other machines of the environment. The objects
stored inside of the data structures are passive, in other
words, does not have processes inside in the object.
Therefore, it just possesses the inter-object concurrency.

DSOC (Distributed Shared Object Classes): is similar to
the soe, but there is a difference in that it allows lhe
objects to be distributed physically among the machines
that form the environment. Thus, the data structures such as
list, queue and stacks are physically distributed.

ASMOC (Active Shared Mobile and Object Classes): is
a collection of classes that uses the notion of active and
mobile objects. The objects possesses only one process and
can be migrated in agreement with the algorithm of load
balancing of ESOW. The migration of a active objects is
possible in ESOW, but the process is restarted from the
beginning or restarted from a predetermined point by
programmer. Active objects can be shared by any other
machines beyond the one in which it was originated.
Unlike traditional threads in Java, active objects of our
environment are not destroyed at the end of execution, they
stay alive until an explicit command is issued ordering their
destruction. That is important, because the results of
processing active objects are available for other processes.

ESOW was developed in the language Java in the form
of a library and a Kemel, because Java is a quite attractive
language for metacomputing applications [NIE 99) . The
library of ESOW should be used by an application or
applet. To give support to programming in the Web, the
notion of an architecture multi-tier is used. In the case of
programs for Web, the clients runs an applet that creates
and uses shared objects through a mediator (Broker). The
Broker is responsible for doing the creation, destruction,
location, reading and writing on object instanced from the
collections of classes SOC, DSOC and ASMOC. In the
case of an application, the library can communicate directly

113

with a local Kemel. The Figure I show one application of
ESOW.

Client 2

Client I
Client n

r---- ----,
I I
I I
I I
I I

1----------------------------~

~ WebServer

Fig. I Application o f ESOW on the Web

ESOW use an algorithm of hybrid load balancing (static
and dynamic) to improve the allocation of the objects in
order to increase the performance of the system. The
characteristic static because the load balancing occur when
an object is created and dynamic because in time of
execution is possible that the object migrates.

B. Kernel

There are two types of Kemels: With a manager and
without a manager. A kemel without a manager has the
functionality of controlling the life cycle of an object and to
monitor the computational resources in its node; Kernel
with a manager has more functionalities and should run on
a Web Server on the same node or on another dedicated
machine. 8oth Kernels are similar. We illustrate only a
Kernel with a manager in Figure 2.

The Kernel without a manager is formed by the
structure server, monitor of load, monitor of persistence and
fault , specialised server (passive and active objects) and
access to RMI. The structure server is responsible for the
creation and destruction of the specialised servers. The
monitor of load is a process responsible for obtaining the
parameters necessaries for load evaluation. The monitor of
persistence and fault (MPF) detect in the initialisation of
Kernel if occurred crash and restart objets from persistent
state.

.....__.'--"11--
I
I I
1 Stack P . Thread1
1 _______ ______ 1

Fig. 2 Kernel with a manag~r

The Kemel with a manager has the same functions of
the kernel without a manager and also has the task of
nominating the objects, indicating on 'which' nodes the
objects should be allocated and recuperating the defective
nodes.

An object in ESOW possesses two names, a logical that
is given by the user and another physical name that is given
by the system. With the logical name, the objects are
shared by the processes, while the physical name is used by
the Kemel to control its location, replication, persistence
and its Jife cycle.

The manager maintains information load of the
distributed environment. These information are enough for
the implementation of the load balancing. The monitor of
crash verifies the occurrence of any fault of a node, and
make arrangements to substitution of the objects that
faulted for its replicas. ln Case an object does not have
replicas, the clients await until the persistent state is
recovered. The migration monitor co-ordinates together
with the specialised servers the stages of the migration.

Object Space is implemented by the Java language
through RMI. Each machine with a Kemel has its
repository, and the sum of ali the repositories forms the
global repository of ESOW.

The specialised servers implement data structures (lists,
queues, stacks, etc.) that have its elements (passive objects)
in one node in case it is instantiated from the soe
collection or physically distributed among nodes in case it
is instantiated from DSOC. An active object (ASMOC)
possesses one internai process and can also be migrated.

ESOW implements security on objects. Each object has
a password. ESOW allows a state of an object to be read or
altered by applications or applets that know its password.
When the library makes the creation or sharing of an object,
should be inserted a password that is created by the

114

programmer. That is necessary, beca use the objects should
be shared among authorised processes.

Another important characteristic of ESOW is that it
restricts access to computer resources by active objects,
such as file, directory, socket, system information.

If a Specialised Server of a physically distributed type
needs more memory than its computer can offer, the
allocation is accomplished in another machine. This implies
that the List, Queue and Stack has its e1ements distributed
physically. A configuration of the environment is
illustrated in Figure 3 .

Fig. 3 DSOC Object

The physical distribution of a structure is limited to one
cell, but can be accessed by others computers.

C. Load Balancing and Fault Tolerance

Load balancing allows that ali resources presents on
ESOW to be utilised. A strategy of load balancing in volves
many characteristics such as: co-operation, control Jocation,
initialisation; and properties: static, dynamic, adaptive, etc.
The properties that have prominence are static and
dynamic load balancing. In static balancing, the distribution
of work load is made in the phase of initialisation of the
computation [W AT 95]. The dynamic load balancing
happens during the computation, implying that migration of
processes is done during the time of execution. The hybrid
load balancing is the junction o f the static and dynamic load
balancing.

In this work, the parameters suggested by [CHO 98),
[W AT 95), [THI 00) and [RAC 97), have been used to
accomplish the load balancing. Such parameters were
modified and added to others to implement 1oad balancing.
The parameters are:

• Time of creation and migration of an object in certain
machine (TC and TM, respectively);

• Object's execution rate (ER);

time of object' s execution x
100 ER = -----=------

~>
i•l

• Amount of available memory in the node (AM);
• Object's request concentration rate (Rreq);

Rreq number of request on this node x IOO

Í, number of request on i node
1•1

• Object's average request waiting time rate (Rwait);
waiting time on this node x

100 Rwait

f waiting time on i node
i=l

• Object's reply concentration rate (Rrep);
number of reply on this node x 100 Rrep = -.____.:. ___ ...!,_::...._ ____ _

L number of reply on i node

• Object's processing time (Rproc);
Reserved Time to an objects for execution (Time Slice -

TS).
where: n = total number o f node

m = number o f processes in this node
The algorithm is:

11 load balancing
11 TCM - TMM - AMM - ERM - RreqM - RrepM - RprocM 11- R waitM -
TSM are average values.

load_balance(...)
for i= I, to n 11 n: amount o f nodes

get and eakulate average o f TC, TM, AM, ER, Rreq, Rrep,
Rproc, Rwait. TS

end for
i f (task = ereate object)

best_am [1= nodes with AM > size of object
besu s [1= nodes of best_am [1 with TS > TSM
best_rproc [1= nodes of best_ts[1 with Rproc < RprocM
best_te[]= nodes of best_rproc[1 with TC < TCM
best_node = the node best of best_ te[1 with Rreq < RreqM
ereate object on best_node

end i f
i f (task = migrate)

bad_ts [1 = nodes with TS < TSM
bad_rproc [] = nodes o f bad_ts[1 with Rproc > RprocM
bad_node = bad_rproc[] with AM < AMM
objects[] = objeets on bad_node with ER > ERM
best_am[1= nodes with AM > size of objects[]
best_tm []= nodes of best_am [] with TM < TMM
best_ts [] = nodes of best_tm[1 with TS > TSM
best_rproc[]= nodes ofbest_ts[] with Rproc < RprocM
best_tc[]= nodes of best_rproc[1 with TC < TCM
best_node = the best node of best_ te[1 with Rreq < RreqM
move objects[] from bad_node to best_node

end if
end load_balanee

Severa! methodologies were created to guarantee a levei
of tolerance to fault. Among them, stands out replication of
the servers and servers with persistent state [KEL 99]. Our
proposed environment allows replicated and persistent
object model. The objects are distributed physically among
the nodes and each fragment of the object is replicated in

115

another machine (copy of the object fragment). In case of
both machines are broken (that is, the computer with
original object and computers with a copy), the system still
stay consistent because it has persistent objects. The
reliability levei can be configured such as Table I.

TABLEI
R r bT I e ta 1 tty eve s

Replication Persistence Levei Extremes
o o I without reliability
o I li
1 o 11
I I IV maximum reliability

It is important to observe that our environment without
reliability has a maximum performance but with maximum
reliability it has a minimum performance. This occur
because the implementation of replication and persistence
consumes computational resources. The user is responsible
for determining the reliability levei that satisfies his needs.

The kemel is configured by users through the ESOW's
Console (implemented with JFC). It is possible define and
analyse: levei of reliability, security, statistical
information, search for others kernels in others intranets or
internet, etc.

D. Programming with ESOW Library

Programming with shared object in the proposed
environment is very simple. The first step consists of
instantiating objects (the library SOC, DSOC or ASMOC).
If objects are instanced of SOC, DSOC, the user is required
to supply the logical name of the object, URL of Web
Server in case of applet, should have a clone, should have
state persistent. The following code shows the syntax for
creation and usage an object of SOC:
import java.applet. *; import java.awt. *; import struets.applet. *;
import structs. Kemel.*; importjava.net.*; import struets.broker.*;
publie elass Teste extends Applet implements Runnable {

publie void init() {
URL from= getCodeBaseO;

List_soc Lis t = new List_soc("list4" ,from.getHost(),true,false);
Stock st= new Stock O;
Lis t.insert_front(st) ;

Stock nst= (Stock) List.remove_baek();
}

}

And the following code utilise active objects to do
multiplication of two arrays:
11 This eode extend Thread_remote belonging ASMOC
import struets. Kemel_asmoc.*;
publie class Matrix extends Thread_remote{

publie void init_re mote() { 11 user put the code here
for(int i=O; i< a_rows; i++)

for(int j=O; j < b_eols; j++)
{

float sum=O;
for(int k=O; k < a.cols; k++) sum=sum+a.value[i][k) * b.value[k)[j);

}
c. value[i)[j)=sum;

set_output(c); 11 retum result

import structs.Kemel. *; import structs.Kemel_asmoc. *;
import structs.applet. *;
public class Client_mat {

public static void main(String[] args) {
11 read matri, after broke matrix in sub-matrix and put in Thread_remote
Matrix mat I = new Matrix ("A • ,line_a/2,row_a,line_b,row_b/2,a_l ,b_ l);
Matrix mat2 = new Matrix("B" ,line_al2,row_a,line_b,row_b!2,a_l,b_2);
Matrix mat3 = new Matrix("C" ,line_a/2,row_a,line_b,row_b/2,a_2,b_ l);
Matrix mat4 = new Matrix("D" ,line_a/2,row_a,line_b,row_b/2,a_2.b_2);
Pool thr_env_l = new Pool(false,mat_l);
Pool thr_env_2 = new Pool(false,mat_2);
Pool thr_env_3 = new Pool(false,mat_3);
Pool thr_env_4 = new Pool(false,mat_4);
thr_env_l.start(); thr_env_2.start(); thr_env_3.start(); thr_env_ 4.start();
thr_env _ l .join(); thr_env _2.join(); thr_env _3.join(); thr_env_ 4.join();
float [)[] resl= thr_env_l.get_output();
float [)[) res2= thr_env_2.get_output();
float (][] res3= thr_env_3.get_output();
float [)[] res4= thr_env _ 4.get_output();

}
This code is the same used in section 3.5 in order to test

our environment. The use of ASMOC has two main steps.
First, it consists of a creating an object instance from
Thread_remote that is a process. The Second step consists
of creating an environment into the Pool of processors. The
instanced object has two parameters. The first is a boolean
flag to indicate whether to start or not start the process
when the object is created and the second is the process
itself. There are other methods and parameter that are not
mentioned in this paper, due to space.

IV. TESTS WITH ESOW

The implementation of ESOW has been done using
Visua!Agel 3.0 and 3.5 of ffiM. The system is developed
as a Iibrary to be Iinked by Java environment. In our case,
we used JDK 1.2.2 for Windows and Linux of Sun
Microsystems. The results showed in this paper are better
than other results presented in last work [ABD 00], because
many modification were made with intention ·to optimise
the system performance. We have done severa) tests with
ESOW and the results were satisfactory. The configuration
of our environment is shown in Table li. These machines
wasn't dedicated.

A
Pentium III
650 MHz
lO Mbs *
Win. 98

• network card

B

TABLE li
Platforms

c
Pentium III Pentium li
650MHz 266MHz
10 Mbs * lO Mbs *

Linux Win.95

D
Pentium li
266MHz
lO Mbs *
Win.98

11 6

In order to test the proposed environment, we have
instanced two Iists of the class SOC. The fust list was
created through an application and the other in an applet
downloaded through the browser Netscape Communicator
4.76. The configuration for the tests were similar to Figure
I. So much the application as the applet implemented a
program o f stock that needed to be distributed. The inserted
and removed objects of the lists were instanced from the
following class:
public class Stock implements Scrializable {

Code codc_product; String name_product;
C_date date_input, datc_output ;
Float value_input, tax, gain, final_ value, int_rate; }

The class also possesses some methods that were
intentionally omitted.

840 elements are inserted in each list and distributed
among the four machines (in order to force the physical
distribution, we restrict the maximum number of objects
that a list could have in one machine - 200 objects).

The values presented in the tables were calculated
though the formulas:

n n
I,Ti L,ti

- . i=l T max1mum = -­
n
Li

i=l

and T minimum i = I
n

where: Ti - is the maximum value of each test
t i - is the minimum value of each test
n - is the number of tests

Li
i = l

The creation, insertion and remova! on list have brought
the results presented in Table III .

TABLE III
Evaluation of the Structure List

Parameter o f Measure· T - time (ms)
Type Task Tminimum

Creation o f a list 110
Application lnsert << I

Remove << I
Creation of a list 853

Applet Insert << I
Remove << I

Tmaximum
660
50
56

1430
241
263

The values obtained with the applet were greater than
those obtained with the application because the applet
invokes the Broker and executes in the browser.

It was observed that the migration is an excellent
methodology to optimise the use of the network resources
(network, Intranet and Internet). In order to test the
migration, the performance of each machine was varied
through the execution of severa! processes. Table IV
displays the results obtained with an object (SOC and
DSOC) that migrated from the machine of origin to another
destination machine. Other parameters were also analysed,
but in this paper we just show TS (Time Slice). The
process o f migration is designed in six steps: I) The

monitor of migration detects one node that has the smaller
performance; 2) The monitor of migration queries struct
server on this node which objects need to migrate; 3) the
monitor asks the manager what is the better node and put
the object in state of migration; 4) Then it is created
another object instanced from classes SOC, DSOC or
ASMOC on a better node; 5) A copy of object is then
done ; 6) The original object is destroyed and the table in
the manager is updated (the object is placed in state of
normality). While one object is in state of migration this
object is unavailable for access.

TABLEIV
M " tgrallon

Parameter of Measure: T- time (ms)
From To T (migration)
Plat. TS Plat. TS
c 5650 8 18630 262
B 3676 D 6744 648
D 5392 A 19048 328
A 4934 c 6528 73 1

The reltability of the system was evaluated simulating
the break of three machines, see table V. Machines B, A
and D have objects whose clones were in machines A, D
and C, respectively. So much the detection as the recovery
of the objects through the clones were transparent for the
applications and applets, although it has occurred an
overhead.

TABLEV
R f ecuperat10n to au t

Change -
From To Tminimum(ms) Tmaximum(ms)

B A 492 788
A D 513 936
D c 471 894

To evaluate the tolerance to fault with persistent state,
we simulated the crash of machines A and D. The computer
A has an object and computer D stored its clone. When
ESOW perceived the fault, first it tried to recoup clone, but
computer D also had failed. However, the system still could
be restored, through the persistent state. Then the system
wait to get in operation the machine A. The load time o f the
OS (Operational System) and the Kernel of ESOW take
some minutes to start (2-5 minutes was the observed time).
The advantages of ESOW with persistence is reliability
and transparency of fault.

The use of active object through ESOW is simple. A
test program implemented the multiplication of arrays of
parallel/distributed form.

The program made the multiplication of two arrays.
Each array was divided in four sub-arrays for
multiplication.

11 7

The results are shown in Figure 4, where the value
obtained with sequential program on PC-266 and PC-650
and parallel program on ESOW.

time (s)
700T---------------------------~

~+-----------------------~~~

800 900 1000 1100 1200(1300)1400 1500 1600 dimens1on n x n

--+- PC-266 - PC-650 ---A- Paralle1 I
Fig. 4 Execution time

Four computers are used (see table 2). The speedup of
the tests was determined with formulas:

S(n) = Execution time using one processor (bad processor)
Execuiton time using n processor with ESOW

S'(n) = Execution time using one processor (best processor)
Execuiton time using n processor with ESOW

In this case, the speedup is shown maintaining me
number of processors invariable and the dimension of array
variable. This choice was done because we are interested in
measuring the behaviour of our environment with much
communication. Figure 5 presents the results.

SpeedUp
5

4

3

2

o

.... ~
~ ~

~

-

800 900 1000 1100 1200 1300 1400 1500 1600
dimension nxn)

-+-S(4)- 266 ----6--5'(4)- 650

Fig. 5 Speed-up
We observe that the speed-up is done taking as a

reference the bad and best machine. This is necessary
because our environment is heterogeneous. The values
disclose that ESOW with four machines have more
potential than one machine only.

lt was done a test using objects instanced of soe and
ASMOC classes. It was implemented a parallel evolution
strategy program. The evolution strategies are a class of
general optimisation algorithms which are applicable to
functions that are multimodal, even discontinuous or non

differentiable [YAO 99]. A global minimisation problem
can be formalised as a pair (S,t), where S ç;;; Rn is a
bounded set on Rn and f: S ~ R is a o-dimensional real­
valued function.

Our strategy belongs to model (j.!+Â.)-ES with I! parents
to generate À offspring though recombination and mutation
in each generation. Each individual is a pair of real­
valueted vectors v=(x,cr). The recombination was done with
equations:
x/ =0.5*(x:+xt) a/ =0.5*(a:+at)

And the mutation was done with equations:
o";'= a ; *exp(r'*N(O,l)+-r *N;(O,l)) X; '=x; ±ia;'*N(O,I)i

where:
i=1 , ... , Ã.;j=1, ... ,n; a=l, ... , j.l.; b=1, ... , I!
N(O, l) is one-dimension random number though a

Cauchy density function. It is the same for ali elements of
individuais. Ni(0,1) is a new number for each element i.

The number 't and 't ' was used by [Y AO 99]:

-r = (.J2 * n)' and -r = (V 4 * n J'
The signal ±denotes a random choose between + and - .
Observe that a mutation of offspring the variance will

be different to each generation (self-adaptation).
Yao and Liu [YAO 99] presents 23 well-know functions

denoted of benchmarks functions in study of evolution
strategies. We implement two functions to test our program
based in ESOW. The functions are:

f, (x) = I x/ f 2(x) = f [a; x~ (b/ +b;xJ]2
i=l ;- 1 h; + b;x3 + x4

where:
a;= {0.1957, 0.1947, 0.1735, 0.1600, 0.0844,

0.0627, 0.0456, 0.0342, 0 .0323, 0.0235, 0.0246};

b ;.1 = {0.25, 0.5, I , 2, 4, 6, 8, 10, 12, 14, 16};

The characteristics of this functions are showed in table
VI.

TABLEVI
Characteristics o f functions fi and f2

Function n s fmin(x)
fi 30 [-100,1 OO]n o
f2 4 [-5,5]" 0.0003075

where:
n: a dimension; S: a domain; fmin: a global minimum

The results are showed in table VII and table VIII, the
values obtained for Yao are shown too (except time,
because Yao was concentrated in optimal values and not in
performance of computers). In our work, we are interested
in performance and better result then the sequential
program. The number of generations is fixed and is equa1 to
NG for each active process. This is different of traditional
treatment in which data are divided by processar number

11 8

and each data slice is processed by one processar. The
symbol ESOW-n denotes the Pool of computers utilised in
this test, where n is the number of processors. In arder to
realise this experiment, we used four computers Pentium-II
266 MHz and three Pentium ill- 650 MHz, running
Windows and Linux. The parallel program was done using
ESOW with 2, 3, 4 , 5, 6 and 7 computers.

TABLE VII
Results with fl (x)

Method N.G. fl(x) Std Dev
Yao & Liu 750 2.5 X 10"4 6.8 X IO·J
Lopes&Zair 750 2.32 x 10·11 1.7xl0·11

Lopes&Zair 300 42.91 X 104 17.2 X 104

ESOW -2 * 300 10.08 x 104 2.33 X 10·5

ESOW -3 * 300 5.54 X 10·5 2.55 X 10·S
ESOW -4 * 300 1.86 X JO-S 5.96 x w·6

ESOW -5 * 300 1.75 x 10·6 7.99 x 10·7

ESOW -6* 300 1.095 x 10·8 5.01 x w-9

ESOW -7 * 300 2.25 x 10·8 2. 15 x 10·8

* the test was done w1th 40 m1grauons of parents
N.G.- Number of Generation

time (ms)
-

125632.13
43028.78
58880.14
67 120.56
81595.23
85870.02
94420.45

100015.36

The values in table VII and table VIII show that the
parallel algorithm running on ESOW is faster than the
sequential solution. The parallel solutions is compatible or
better than the sequential solution.

TABLE VIII
Results with f2(x)

I Method N.G. fl(x) Std Dev
Yao & Liu 2000 9.7 X 104 4.2 X 10""
Lopes&Zair 2000 3.07485 x 104 4 x 10·19

Lopes&Zair 500 3.085 X 104 7 x 10·7

ESOW - 2 * 500 3.07486 x 10·4 5.54 x 10·11

ESOW -3 * 500 3.07486 x 10·4 5.60 x 10·11

ESOW - 4 * 500 3.07485 x 10·4 3.93 x w · ll

ESOW - 5 * 500 3.07485 X 104 4.87 X 10-IS
ESOW-6* 500 3.07485 X 104 1.21 x 10· '7

ESOW - 7 * 500 3.07485 X 104 2.03 x 10·19

* the test was done w1th 50 m1grauons of parents
N.G. - number of generation

time (ms) I
-

96247.00
14224.15
34856.83
27930.72
31665.00
45480.03
45860.36
46905.42

It is important to say that migration of parents denotes
the transference of information among active objects
(objects which has the process with evolution algorithm),
that is, the best parent of each active object is transported to
others actives objects in determined number of generations
using passive objects (List_soc and Stack_soc).

These tests show the power of object-oriented in
distributed/parallel programming, in special our
environment.

V. COMPARJSON WJTH OTHERS ENVIRONMENTS

Just as Charlotte, ESOW provides distributed shared
memory without relying on operating system or compiler
support. Both are implemented using only Java, this
provide the same levei of security, heterogeneity, and
portability of Java. Charlotte and ESOW are unlike in

schematic of load balancing. Charlotte use eager
scheduling to provide load balancing and tolerance to fault,
this implies that worker processes running on slow
machines ask for jobs less frequency, this result in load
balancing, while ESOW needs know some parameters to do
load balancing with migration. ESOW is reliable because it
has replication and persistence.

Javalin and ESOW utilise an intermediary component
for process communication between clients and hosts.
Clients in Javalin are responsible to do load balancing and
tolerance to fault while ESOW utilise its Kernel. Because
this, ESOW is more transparent than Javalin. The
communication in Javalin is done to rnirnic the native Java
UDP classes in java.net, while ESOW uses Java RMI.

Ninflet and ESOW are developed using RMI as
mechanisms of communication. Both systems can be used
not only to construct a global computing environment, but
also could be used for implementing a virtual paraJJel
computer on a cluster of workstations. Ninflet requires
explicit checkpointing by Ninflet programmer and allow
RMI connection to hosts other than the one where applet
was loaded. This is bad, because allow arbitrary intrusion
of other RMI applications. While ESOW has same
security police of applets.

VI. CONCLUSION

This paper presents an environment for distributed and
parallel programrning called ESOW. lt is designed to allow
programmers and developers of applications on the Internet
and Intranet doing distributed/parallel programs without
knowing details about network, schedule of task, load
balancing and fault tolerance. The ESOW potential is on
using networks of computers as a pool o f processors.

With our proposed environment, it is possible to take
advantage of the computational resources of idle computers
on Internet or Intranet. The most of the tied computers the
internet does not have half of its used potential.

ESOW is a parallel virtual machine which allow
computers share process and data, utilising load balancing,
tolerance to fault and transform Internet in one Pool of
processors.

REFERENCES

[ABD 00] ABDELOUAHAB, Zair; LOPES, Denivaldo.
Development of an Environrnent for Supporting
Parallel and Distributed Application with Java.
Proceedings of the Software Engineering and
Applications (SEA 2000), IASTED, Las Vegas, USA.
November 2000, p. 343-348.

[CHO 98] CHOI, Chang Ho et ai. CSMonitor: A visual
Client/Server Monitor for Corba-based Distributed
Applications. Proceedings of the Asia-Pacific
Software Engeneering Conference (APSEC'98),
Taipei, Taiwan, Dec. 1-4, 1998, p. 338-345.

11 9

[KEL 99] KELEHER, Peter. Decentralized Replicated-Object
Protocols. In the 18th Annual ACM SIGACT­
SIGOPS Symposium on Principies of Distributed
Computing (PODC '99), Aprill999.

[MAS 99] MASSEN, Jason, et ai. An Efficient Implementation
of Java's Remate Method Invocation. PpoPP'99,
ACM Symposium on Principies and Practice of
Parallel Programming, Atlanta, GA. May 1999.

[TAN 99] TANENBAUM, Andrew S. et ai. From Remote to
Physically Distributed Objects. Proc. 7th IEEE
Workshop on Future Trends o f Distributed Computing
Systems, Cape Town, South Africa, December 1999,
pp. 47-52.

[THI 00] THITIKAMOL, Kritchalach; KELEHER, Peter.
Thread Migration and Load Balancing in Non­
Dedicated Environments. In The 2000 lntemational
Parallel and Distributed Processing Symposium, May
2000.

[OMG 99] OMG. The Commom Object Resquest Broker:
Architecture and Specification. Object Management.
Minor revision 2.3.1. October, 1999.

[NIE 99] NIEUWPOORT, Rob, et ai. Wide-Area Parallel
Computing in Java. To appear in JavaGrande 99,
ACM 1999 Java Grande Conference, Paio Alto,
Califomia, USA. June 1999.

[RAP 00] RAPTIS, Konstantinos, SPINELLIS, Diomidis and
KATSIKAS, Sokratis. Java as Distributed Object
Glue. In World Computer Congress 2000. Beijing,
China. August, 2000.

[STE 99] STETS, Robert J. Leveraging Symetric
Multiprocessors and System Area Networks in
Software Distributed Shared Memory. Thesis of
Doctor of Philosophy. University of Rochester, New
York. 1999.

[WAT95] WATTS, Jerrel. A Practical Approach to Dynamic
Load Balancing. Califomia lnstitute of Tecnhology.
Dissertation ofMaster Science. 1995.

[RAC 97] RACKL, Günther. Load Distribution for Corba
Environments. Technische Universitat München.
Diplomarbeit. 1997.

[TAK 98] TAKAGI, H. et ai. Ninflet: a Migratabel Parallel
Objects Framework using Java. In ACM 1998
workshop on Java for High-Performance Network
Computing, 1998.

[CHR 97] CHRISTIANSEN, O. and CAPELLO, P. Javalin:
Intemet-Based Parallel Computing Using Java.
Concurrency: Practice and Experience, Vol. 9(11):
11 39-1160, November 1997.

[BAR 96] BARATLOO, Arash, KARAUL, M. Charlotte:
Metacomputing on the Web. Proc. of the 9 th
lntemational Conference on Parallel and Distributed
Computing Systems, 1996.

[YAO 99] YAO, Xin, LIU, Yong, LlN, Guangming. Evolution
Programming Made Faster. IEEE transactions on
Evolutionary Computing, 3(2):82- 102, July 1999.

