
An Architecture for Automatic Load Distribution
on Distributed Objects Computing Systems

Hermes Senger1, Liria Matsumoto Sato2

1 SENAC College of Computer Science and Technology
R. Galvào Bueno, 430 CEP 01505-000 São Paulo, SP • Brazil

{hermes.senger@cei .sp.senac.br}
2 Polytechnic School of the Univcrsity of Sao Paulo

Av. Prof. Luciano Gualberto, trav. 3, n. 180, São Paulo, SP • Brazil
{ liria.sato@poli.usp.br}

Abstract-

Jn this paper we propose an architecturc for load distribution in dis­
tributcd objcct computing systems. Our strategy implements load dis·
tribution both at request levei and at object levei. The load distribu­
tion mechanism is integrated at service levei, and is based on system
resourccs monitoring and application monitoring. Finally, we discuss
some implementation aspects and show that lhe architecture may be
used in DOC systems such as CORBA, DCOM and Java!RMI.

Keywords- Load manogement, load distribution, distributed object
computing systems

I. INTRODUCTION

Distributed middleware environments based on standard­
ized protocols and network computing has become an in­
teresting paradigm for parallel and distributed computing.
As Distributed Object Computing (DOC) Systems became
widely prevalent for building commercial, business and
Internet based applications, many research interests have
moved to improve such environments for general use, includ­
ing scientific computation.

While scientific applications have traditionally claimed for
high performance, commercial applications have recently ex­
perienced such demand, after large scale applications were
created and deployed. Such demand for performance, to­
gether with low prices high performance desktops have cre­
ated new challenges. New large applications, as well as
legacy applications can be built and integrated into a great
number of objects which can be placed in a single host, in a
set o f hosts o r even worldwide.

In a distributed processing environment, the workload gen­
erated by one or more applications must be fairly distributed
among the nodes for an efficient use of the available com­
puting resources. Many factors can be a challenge for load
distribution strategies. Processing nodes may present differ­
ent hardware platforms which difficult service time predic­
tion, different software platforms which may cause restric­
tions to load units distribution, and may be shared with lo­
cal users and other applications which may lead to frequent
load imbalance situations. Although earlier research on load

1 Supponed by FINEPIRECOPE, proccss number 3607/96.

120

distribution are based on mapping processes to processors
[CAS88, EAG86], in the context of DOC systems the pro­
cess is too coarse gained to be adopted as the basic load unit.
The load distribution strategy must be request and object ori­
ented, and must consider that objects may be shared by mul­
tiple client applications.

In this paper we present an architecture which implements
mechanisms for automatic load distribution for general appli­
cations at service levei, into a publishing component. Many
applications can benefit from automatic load distribution fa­
cilities, such as farms of web servers (proxies, caches), appli­
cation servers, large-scale simulation, movie rendering and
others.

Il. DISTRIBUTED 0BJECT COMPUTING SYSTEMS

In this section we describe some basic concepts related to
DOC systems and the project of load distribution strategies.
In the sequence, we discuss some challenges to load distri­
bution in DOC systems.

A. Basic Concepts

Load distribution has long been treated in the field of dis­
tributed operating systems [BAR93, SHI95]. In such ap­
proach, the process was frequently adopted as the basic load
unit, so that load distribution was carried out by mapping
processes to hosts [FER87]. In some situations a given run­
ning process could migrate to another host. Such operation
requires the process to be blocked, its state be collected, sent
to another host and resumed.

Some important requirements must be considered in the
project of a load management mechanism. The middleware
must provide access transparency to clients, regardless of
the language the objects are implemented. Location trans­
parency allows clients and servers to be completely unaware
o f the location o f each other.

The broker mechanism which is based on the broker de­
sign patter [BUS96], depicted in figure I must provide sup­
port for transparent local and remate invocation, parameters

ClientProxy

calls * uses API

Client

calls
O .. I

Bridge

uses API

Fig. I. The broker design pattem

ServerProxy

*

Server

passing and retum o f results. The broker usually implements
a mechanism through which every object can be identified
and found in the system, named globally unique remote ref­
erences. Proxies may be used both at client and server side,
to provide location transparency. Client side proxies are re­
sponsible for delivering method calls properly to server ob­
jects. Additionally, bridges may be used to provide commu­
nication over different middleware platforms using standard
protocols.

Proxies may be static or dynamic. Static proxies always
forward client requests to the same remote object, while dy­
namic proxies can forward subsequent calls to different ob­
jects. Dynamic proxies may implement dynamic request as­
signment for load distribution purposes.

DOC systems usually support some persistence mecha­
nism, to collect and store an object state. lt can be useful
to implement migration and repllcation mechanisms. Addi­
tionally, mechanisms must be provided so that clients can dy­
narnically discover object references. Such mechanisms may
include the following publishing services: naming services
which allow servers to register object references associated
to names that can be queried by clients; directory services
which support objects advertisement and discovery, based on
entity attributes; and trading services [OMGOO] that are also
useful for objects advertising and discovery, based on their
functionalities.

B. Load distribution principies

Many design principies are concemed with the project of
a load management strategy for distributed object systems.

B. l The load unit

DOC systems implement the object-oriented paradigm
and client-server architecture which lead us to create strate­
gies based on objects and requests. The process, commonly
adopted as the basis for load management in earlier research,
is too coarse grained because a single process may contain
severa! objects in its address space. Migrating a process with

121

severa] objects could be expensive and cause load imbalance
situations.

Processes are too coarse grained to be adopted as the ba­
sic unit for load distribution because a single process may
contain severa! objects. In DOC systems, a rnix of load man­
agement at request levei and at object levei may lead to better
results.

A server is an application process which can create and
maintain service objects. In our architecture, servers can be
classified in two categories.

Ordinary servers create and publish service objects in the
distributed system in a very simple way. A server may
also drop service objects down so that clients cannot use
them anymore.

On demand servers do not create service objects previ­
ously. lnstead, an on demand server publishes a list of
supported services that can be started by creating ob­
jects on demand.

If more than a single server are registered for a given ser­
vice, the load distribution component (see lll.A.4), may
choose one server according to its load situation and request.

8 .2 Request levelload distribution

lf a service can be implemented by replicated objects, re­
quests may be forwarded to any replica according to load
distribution strategy. In order to implement replication, some
earlier systems defined special types of objects. An example
is the volatile object [GR186], which does not hold a consis­
tent state between calls. In our architecture, application levei
services may eventually be implemented by replication safe
objects, which hold a special property. Lindermeier [LINOO]
defines replication safe objects as: objects that can be repli­
cated so that, at replication time, both the replica and the
non-replicated object are equivalent.

Replication safe objects must not contain any references to
other local objects in its internai state, because the granular­
ity o f replication is only one object. Therefore, the program­
mer must declare which objects are replication safe. After
the replication, each replica has its own globally unique ob­
ject reference in the system.

Clients make service requests against local proxies, which
may forward such requests in two ways:

Static forwarding: chooses always the same object which
implements the service. It is implemented by static
proxies.

Dynamic forwarding: each request may be sent to a differ­
ent object. Such approach is more fine grained, and may
be implemented with dynarnic proxies.

Thus, the forwarding policy is deterrnined by the type of
proxy distributed by publishing services to clients, as we de­
scribe in section Ili.A.2 .

B.3 Object levelload distribution

Object levei distribution distributes workload by placing
objects in appropriate hosts, according to their capacity and
load conditions. It can be done in three ways:

Initial placement: the load distribution mechanism chooses
the location at which the object may be instantiated for
the first time. In general, initial placement is lirnited to a
set o f registered on demand servers for service hosting.

Replication: may be used when the service is implemented
by replication safe objects, and the existing replicas are
itself overloaded or placed in overloaded hosts. Addi­
tionally, replication increases the number of altematives
for dynamic request forwarding in the future.

Migration: may be adopted for those replication unsafe ob­
jects, placed in overloaded servers. In this case, the state
of the original instance must be captured and sent to a
suitable target location. Migration may be carried out
preemptively, calling the rnigration procedure immedi­
ately after the rnigration decision has been taken. A
less expensive altemative is non-preemptive migration,
in which the system lets the current calls finishing be­
fore proceeding with the rnigration and blocking only
new incoming requests from running.

ln general, replication is less expensive than rnigration be­
cause migration is a synchronous operation. The old instance
only can be destructed after the new instance has successfully
been created and the state has been transferred. ln the oppo­
site,replication can be carried out asynchronously by means
of some lightweighted protocol.

As rnigration destructs the original instance and creates
a new one, clients which have got references to the elirni­
nated object must update their references. ln our architec­
ture, references updating functionality is supported by the
trader component (see section Ill.A.2).

B.4 Load indexes

Severalload indexes are imaginable to be used, in order to
summarize the load situation of the system resources, such
as: the length ofCPU queue; the CPU utilization rate; the re­
sponse time for services; and also, some aggregatedfunction
composed as linear combination o f other elementary indexes.
Additionally, severalload indexes are imaginable to express
utilization of other resources such as memory and network
interface.

One ofthe most important results demonstrated in the bib­
liography [FER87, KUN9l] shows that complex indexes do
not necessary lead to significant performance improvements
in the load distribution strategy. Ferrari and Zhou [FER87]
demonstrated that load indexes based on a resource queue
length are more effective than those based on its utilization
rate.

122

(~~::n:)~~.;(~~E,~)- - - ----- --
'

clienr

(srvOb i) .. . (sn1Jb N)

Fig. 2. The load management system architecture

III. AN ARCHITECTURE FOR LOAD MANAGEMENT

ln this section, we describe a generic architecture for load
management in distributed object systems, which covers the
recommendations of the OMG High Peiformance Working
Group about the minimum required functionalities for load
management and aggregated computing [OMGOI]: system
monitoring, information dissemination, performance evalu­
ation, load distribution and load shading for overload pre­
vention.

A. The compommts of the architecture

This section describes the main components and function­
alities implemented in the architecture, depicted in figure 2.

A. I The load agent

The load agent is responsible for the system monitoring
functionality at the server side. It gathers information such
as the number o f CPUs, amount o f memory and swap space
from the operating system kernel , and information about
network resources from SNMP or RMON agents [STA97].
More than the static capacity parameters, it tracks the re­
sources utilization dynamically. Ali the information are sent
to the load manager component, described in III.A.4 .

A.2 The trader component

Some earlier works [SCH97b] have experienced the inte­
gration of load distribution strategies into a trader compo­
nent, following the service levei approach. The trader is an
object that supports object advertising and discovery services
within the system. Servers may advertise objects through the
export operation, providing a description such as the service

type name, and the objects reference. Clients can invoke the
import operation to discover objects which can match their
needs. After the trader has passed object references, clients
are able to make calls directly to remote objects.

A combination of both centraJized and decentralized ap­
proaches can be implemented. Because the trader maintains
load information received from the load agents, it can per­
form centralized load distribution procedures such as initial
placement, static request assignments, replication and mi­
gration in a centralized fashion.

Additionally, the trader may delegate some load distribu­
tion decisions to clients, by returning a set of references or
a dynamic reference (described in section ill.B) for objects
which implement the service. In this case, decentraJized load
distribution mechanisms require mechanisms to obtain load
information at the client side. Such mechanisms can obtain
Ioad information from the Ioad manager object (see section
III.A.4) or directly from the load agents.

In order to provide additional scalability, the trader must
support services and interfaces for other traders, so that
clients located in different trader domains can interact. Ad­
ditionally, i f a bridge to other platform is provided, e.g. the
General Inter-Orb Protocol (GIOP), traders may be impJe­
mented in different platforms.

A.3 The application monitor

System resources monitoring is a necessary but not suf­
ficient condition for efficient load management. Applica­
tion levei monitoring and profiling must also be carried out.
While system monitoring is concemed with the computing
capacity offer, application monitoring is concerned with the
demand for computing capacity, e.g. the total amount o f CPU
time used per request; the mean request rate for this server;
the mean processing time for a request; the total amount of
required memory; the size (in bytes) of a request, including
parameters and retumed results, and others.

Because application monitoring may consume computing
and communication resources, it can be activated only dur­
ing some initial period when a service is created or modi­
fied. As soon as the service requirements and behavior have
been profiled, the application monitoring mechanism can be
tumed off. Ali the information about the application is sent
to the trader and stored for load distribution decisions.

A.4 The load manager

The load manager implements part of the load distribution
policy. It stores information received from the load agents,
and provides summarized information to other components,
such as:

• Which is the best service object for a given service, or
a list of good service objects that can process requests
from a client.

123

• Which is the best server or a list of good servers for
initial placement and replication.

• Which is the best server or a list of good servers to be
target of a rnigration.

• When a given server or the whole system can not receive
new load units. This situation is named shading condi­
tion [OMGOl], and prevents the system from overload­
ing.

Such information are provided to the trader and clients
(dynarnic proxies) when proceeding to load distribution ac­
tions.

B. Dynamic proxies

Dynarnic proxies can forward client requests to different
objects along in time, according to the load distribution strat­
egy. Dynarnic requests forwarding can be useful in some
situations, e.g. to discover new object references and pro­
vide transparent fault tolerance in case of server crash; for
load balancing purposes, when services are implemented as
replicated objects within the system; and to implement trans­
parent redirection and references updating after object rni­
gration.

Dynarnic proxies may work cooperativelly with reference
caches, which provide information updates on which objects
are still alive, information about load conditions and refer­
ences updating after object rnigration.

C. The architecture implementation

We are currently implementing the proposed strategy on
the top of the Java/RMI platform. Optionally, some agent
platform can be used to implement migration more effi­
ciently. Severa] refinements are involved in this project, such
as aJgorithms which implement the load distribution strategy,
policies for information dissernination such as polling or pe­
riodic dissernination, and general system tunning to assure
low consume of computing and network resources. Such fine
tunning process is strongly dependent o f the timing imposed
by the application, so that detailed monitoring and analysis
activities must be carried out. Additionally, interfaces and
policies for inter trader negotiation are under construction to
allow additional scalability.

The load management architecture proposed can be imple­
mented on the top any DOC platform that supports function­
alities such as the broker mechanism; globally unique object
references; and any kind of publishing service, e.g. a nam­
ing, directory or trading service where the load distribution
strategy can be integrated. Therefore, our architecture can
be implemented on the main middleware platforms such as
CORBA, DCOM and Java/RMI.

Dynarnic proxies are non trivial resource in DOC systems.
If not supported, dynamic proxies can be implemented as a
wrapper to the remote object, which implements the same

interface to the clients. In this case, tools for automatic gen­
eration o f wrappers may be convenient. Dynamic proxies are
being implemented with JINI resources.

IV. RELATED WORK

In the past, some works proposed load distribution mech-·
anisms integrated into programming languages [C0080,
JUL88]. Such approach does not deal with problems such
as object sharing, which affects load distribution decisions.
Furthermore it does not provide functionalities such as ac­
cess transparency and location transparency.

Load distribution have also been studied under specific
programming paradigms such as message passing [SCH97a],
and in the field of distributed operating systems [BAR93,
SHI95]. Although súch approach has lead to many impor­
tant results, most of them adopted the process as the load
distribution unit, which lead us to develop new strategies and
experiments in the context of DOC systems.

In the field of DOC systems, some works [BAR99] imple­
mented Ioad distribution mechanisms by extending the nam­
ing service. Despite of sirnilarities to this work, only initial
placement mechanism was used. Lindermeier [LlNOO] pro­
pose the implementation of load distribution mechanisms at
the system levei, extending the CORBA standard. In our ap­
proach, load distribution operations are implemented at ser­
vice levei. Although the service levei approach for load dis­
tribution does not facilitate the access to some system levei
information, it can lead to a less dependency of the resources
offered by the rniddleware, and thus, it can be more generic.

V. CONCLUSION

In this paper, we present an architecture for load distri­
bution in DOC systems. The service levei approach have
been chosen because it allows transparency to application
prograrnmers, and simplicity to the implementers because it
does not interfere in the existing system internais. Part o f the
components and functionalities can be integrated into an ex­
isting publishing service such as a trading service, a naming
service or directory service.

The architecture proposed implements load distribution at
request levei and at the object levei. Request levei load dis­
tribution tends to be less expensive because only requests are
distributed arnong the existing replicas of a service object.
Because it involves object creation, replication and migra­
tion, object levelload distribution is more expensive and con­
sequently must be used when request levelload management
is not possible. Additionally, request levei load distribution
can be carried out at the client side, leading to a more scalable
system. Besides supporting system monitoring, the architec­
ture must support application monitoring functionalities in
order to be effective.

Our architecture covers ali the functionalities OMG rec-

124

ommends for a Joad balancing and aggregated processing
system. Additionally, it can be implemented on the top of
broker mechanism, remate object identifiers, and some pub­
lishing service. If dynarnic proxies are not supported, a simi­
lar solution can be implemented in order to support dynamic
request assignments.

REFERENCES

[BAR93] BARAK, A.; GUDAY, S.; WHEELER, R. G.; The MOSIX dis­
tributed operating system: load balancing for UNIX. LNCS,
v. 672. Berlin, Springer, 1993.

[BAR99] BARTH, T.; FLENDER, G.; FREISLEBEN, B.;THILO, B. Load
Distribution in a CORBA Environment. In: lntemational Sym­
posium on Distributed Objects and Applications (DOA'99). IN.
Proceedings lnternational Symposium on Distributed Ob­
jects and Applications, 1999.

[BUS96] BUSCHMANN, F;MEUNfER, R.; SOMMERLAND, P.; STAL,
M; Pattern-Oriented Software Architecture:A System ofPat­
terns. John Wiley & Sons, 1996.

[CAS88] CASAVANT, T. L.; KHUL, J.L. A Taxonomy of Scheduling in
Generai-Purpose Distributed Computing Systems. Transactions
on Software Engineering. v. l4, n.2, p.l41-154. Feb, 1988.

[C0080] COOK, R. P. *MOD: a language for distributed programming.
Transactions on Software Engineering. v.6, n.6, p.563-57 1.
Nov, 1980.

[EAG86) EAGER, D. L; LAZOWSKA, E. D; ZAHORJAN, J. A Com­
parision of Receiver-lnitiated and Sender-lniciated Adaptative
Load Sharing. Performance Evaluation, v.6, n.l , p. 53-68. Mar,
1986.

[FER87] FERRAR!, D.; ZHOU, S. An Empírica! lnvestigation of Load
lndices for Load Balancing Applications. In: 12th Annual Inter­
national Symposium on Computer Perfonnance Modeling, Me­
assurement and Evaluation. pp. 515-528. 1987.

[GRI86) GRIMSHAW A.S.; LIEP, J. W. S. Mentat: an object-oriented
macro data-flow system. ACM SIGPLAN Notices, p.35-47,
1986.

[JUL88) JUL, E. Fine-grain mobility in lhe Emerald system. ACM Trans­
actions on Computer Systems, v. 6, n. l, p.l09-133. Feb, 1988.

[KUN91) KUNTZ, T. The lntluence of Different Workload Descriptions on
a Heuristic Load Balancing Scheme. Transactions on Software
Engineering, v. l7, n.7, p.725-730. Jul, 1991.

[LINOO] LlNDERMEIER, M. Load Management for Distributed Object­
Oriented Environments. In: Distributed Objects and Applica­
tions Symposium. Antuerp, Belgium, 2000. IN. Proc. ofthe Dis­
tributed Objects and Applications. (DOA'OO), p.50-68. IEEE
Computer Society Press, 2000.

[OMGOO] Object Management Group. Trading Object Services Specifi­
cation. Object Management Group. Technical repon. May, 2000.

[OMGO I] Object Management Group. Load Balancing and Performance
Monitoring for CORBA-based Applications. OMG Request
for Proposal DRAFT (document ORBOSnOOI-02-04). 2001.

[SCH97a] SCHNEKENBURGER, T.; STELLNER, G.(eds.). Load Distri­
bution for Parallel Applications. Teubner, Genneany, 1997.

[SCH97b] SCHNEKENBURGER, T.; RACKL, G. lmplementing Dy­
namic Load Distribuúon Strategies with Orbix. In: lnLI. Conf.
on Parallel and Distributed Processing Techniques and Applica­
Lions (PDPTA'97). IN. Proc. of the lntl. Conf. on Parallel and
Distributcd Processing Tcchniques and Applications, 1997,
p.996-1006. Las Vegas, 1997.

[SHJ95] SHIRAZI, B. A.; HURSON, A. R. ; KAVI, K. M. Schedul­
ing and Load Balancing in Parallel and Distributed Systems.
Computer Society Press, Los Alamitos, CA, 1995.

[STA97] STALLINGS, W. Snmp, Snmpv2 and Rmon. Addison Wesley,
1997.

125

