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Abstract-
Processor scheduling in its general formulation is a NP­

Complete problem. In the Dynamic Load Balancing problem 
the scheduler has to redistribute processes during their 
running lifetime trying to improve the performance according 
some optimization criterion. To tackle such a difficult 
problem is worth use heuristics to seek for better results. 
Among various heuristics, genetic algorithms are often used to 
handle problems with high complexity. In this paper we try to 
optimize the decisions taken by a dynamic load balancer with 
pree~ptive migration in a distributed environment using a 
Classlfier System (CS). CS is an adaptive program that 
evolves decision rules applying genetic algorithms over a 
population of rules and selecting the best of them. CS has the 
ability of adapt to environment changes. The rules are 
rewarded or punished depending on their performance. This 
performance-driven behavior allows them to perform well 
even with few information. The results have been impressive 
and the classifier system was able to surpass, without previous 
knowledge of the properties of workload, the performance of 
a well designed analytic criterion. 

Keywords-- Load Balancing, Processor Scheduling, 
Genetic Algorithms, Classifier Systems 

I. INTRODUCTION 

There are severa] ways to improve the performance of a 
cluster of computers when doing Distributed Processing. A 
successful way is to perform a better process scheduling. 
Process scheduling is a NP-Complete problem [PAP98] 
where a scheduling algorithm has to decide which 
processes must execute on which processors. This 
decision is taken observing a particular optirnization 
criterion. Load balancing is one of the most widely used 
optimization criteria since it is assumed that, if the total 
load of the system is divided more evenly between its 
processors, the performance of the whole system can be 
improved [CAS88].There are, basically, two classes of 
scheduling algorithms to perform load balancing : static and 
dynamic schedulers. Static load balancing works generally 
on problems that have a predictable structure and balances 
the work before execution time [WU97]. On the other hand, 
dynamic load balancers perform scheduling activities at 
execution time, using runtime system load information to 
adjust load distribution. Dynarnic load balancing is suitable 
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for a wide set of applications and requires process 
rnigration [WU97]. 

As we saw in [COROO], several attempts were made to 
apply the power of GAs to the static processar scheduling 
problem [DUS98], [GRA99], [SUN97], [COR99] and 
[SAN97] In this kind of problem, the scheduling algorithm 
generally has ali information and time enough to do ali 
computations needed. Despite the good results achieved in 
this field, very few attempts were made to apply GAs also 
to the dynamic scheduling problem. One reason for this is 
that it is difficult to evaluate the individuais of GA in a 
dynarnic changing environment of the dynamic load 
balancing. It happens because the dynarnic changing 
environment is very sensitive to the actions performed on it. 
Thus, it is nearly impossible to test the decisions about 
load balancing advocated for aJI individual of the 
population without disrupt the environment[CORO J a]. 

A possible solution to avoid this problem and apply the 
power of GAs to perform dynarnic Ioad balancing could 
be to use a Classifier System (CS). A CS can evolve 
decision rules concerning load baJancing with genetic 
algorithms in order to achieve better decision rules 
[BAU95] . A classifier system is composed by rules and 
relationships among these rules, enforced by a reward 
system. To find better relationships among rules, genetic 
operations of mutation and crossing-over can be applied 
[GOL89]. One type of classifier system is XCS (SpeciaJ 
Classifier System) [WlL95] that was recently developed to 
generate more accurate and general decision rules than a 
ordinary classifier system. 

In this paper, we extend the work presented in 
[COROlb]. We show that our modified XCS can achieve 
better results than other methods when achieving 
dynarnic load balancing with process preemption on a 
cluster of computers. We investigated what is the impact of 
the network bandwidth over the methods and explained 
how our modified XCS take some scheduling decisions. We 
also show that the standard deviation of the memory size 
distribution can interfere with the system performance, 
subject that were not taken in account by the Methusela 
simulator developers [HAR96]. 



Our approach uses a function that is dynamically 
modified in order to adapt to the changing characteristics of 
the distributed environment. We claim that such a property 
is fundamental to achieve dynamic load balancing. 
Although XCS has been applied to some computational 
intensive problems such as Data Mining [SAX99] and 
Robotics [TOM99], as far as we know, this is the first time 
it is adapted to solve the dynamic load balancing problem. 

Our results on the Methusela simulator [HAR96] show 
that our modified XCS based on Barry's [BAROO] 
implementation can reduce the average slowdown of a 
collection of 500 processes in a wide range of conditions, 
when compared with the native Methusela load balancing 
algorithm. This reduction in the slowdown represents more 
accurate migration decisions. The remainder o f this paper is 
organized as follows. Section li presents the genetic 
algorithms and classifier systems. The modifications made 
to XCS are described in section m. Experiments and results 
are provided in section IV. Finally, section V concludes the 
pape r. 

li. GENETIC ALGORITHMS AND CLASSIFIER SYSTEMS 

Genetic Algorithm (GA) is an heuristic search method 
that is based upon the principies of evolution and natural 
genetics [GOL89]. In a basic GA, a set of possible solutions 
is coded as chromosomes or individuais. Genetic operations 
such as mutation and crossing-ovêr are applied over the 
population of chromosomes thus generating new 
chromosomes. An evaluation function is used to 
characterize a chromosome's performance to the problem. 
Such a function is applied to ali existing chromosomes and 
generally only the fittest ones survive to compose a new 
population of chromosomes in which genetic operations 
will be applied again. This process continues until a certain 
number of generations or a reasonable levei of fitness is 
reached. 

Some properties distinguishes Genetic algorithms from 
the other probabilistic heuristic search methods [MIC96]. 
First, search is made from a set of solutions rather than 
from a single one. This leads to a more efficient search 
since many solutions are evaluated simultaneously. 
Moreover, the probability of attaining a local minimum (or 
maximum) is reduced. Second, the new solutions are 
created using information from the previous ones. In this 
way, GAs exploit historical information to find new search 
points that would probably lead to improvement. 

Classifier Systems (CS) were firstly proposed by 
[HOL78]. They are a class of adaptive systems, i. e., 
systems that are able to modify themselves to reach a 
particular goal. A classifier is basically a decision rule that 
is composed by a condition and an action. The action is 
only executed if the condition is true. A classifier system is 
made of severa! classifiers that interact in order to associate 
the environment conditions with the most suitable actions. 
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More than that, a classifier system is able to generate new 
rules from the existing ones and also make rules more 
generic or more specific [GOL89]. 

XCS (Special Classifier System) is a classifier system 
proposed by [WIL95] where rules are seen as individuais of 
a population. The goal of XCS is to generate more generic 
and efficient rules. To achieve this goal, XCS is composed 
by a population of very simple classifiers made of one 
condition and one action. Conditions and actions are 
received from and executed over the environment, 
respectively. The XCS condition is a temary string 
[O,I,#(don't care)] and the action is a binary string [0,1] . 
Each classifier has an associated value that represents its 
relative strength on the population. 

The execution of XCS is divided in trials. Each trial is 
either for exploration or exploitation. The exploration trial 
basically aims to refine an existing rule [BAROO]. Genetic 
algorithms are used at the exploitation trial and they search 
new and more efficient rules from the existing ones. As 
GAs are computationally intensive, they are not executed in 
every exploitation trial [BAROO]. 

Ill. DESIGN OF A CLASSIFIER SYSTEM FOR DYNAMIC 

LOAD BALANCING SCHEDULERS 

Our proposal consists in modifying an existing dynamic 
load balancer by adding a classifier system to it, in order to 
improve load balancing. We decided to use a processor 
scheduler simulator for distributed systems called 
Methusela. Methusela was developed by [HAR96] at the 
University of Califomia at Berkeley. lt simulates a network 
of interconnected computers where each computer receives 
processes to execute. [HAR96] first used this simulator to 
show the advantages of preemptive process migration on a 
distributed environment. In order to decide which process 
must migrate, Methusela uses information about process 
age distribution [HAR96]. 

A. Overview of the Methusela Simulator 

Methusela does preemptive dynamic load balancing this 
way: 

Periodically, the system load distribution is examined. 
In the case of load unbalancing, Methusela decides which 
processors are overloaded and underloaded by counting 
processes on their CPU queue. Having a migration source 
and a migration destination, Methusela chooses, among the 
migration source 's processes, which ones would more take 
benefit from migration. 

Dynamic load balancing is implemented in Methusela 
by the algorithm presented in figure 1. 



Methusela load balanc1ng() 
Begin - -
source_processor= most overloaded processor(); 
If (source_processor is sufficiently_overloaded) 
Begin 
dest_processor = processor_with_lowest_ load() ; 
If (dest_processor is underloaded) 

Begin 
old_processes = Select old enough processes 
in (source_processor) ; 
source_processes = Select processes by age 
and migration cost (old_processes) ; 
Migrate(source_processes,source_processor , 
dest_processor) ; 

End 
End 

End 
Figurei. Dynamic Load Balancing Algorithm used in 

Methuse/a 

The criterion used to choose processes for migration is 
process age and the older ones are chosen. To decide if a 
process is old enough, Methusela uses the following 
formula: 

( I) process_age >= a* (migration_cost) 
where a is a constant that specifies how much the 

process age must be greater than the migration cost. The 
migration cost is equal to 

migration_cost =f+ (m b) 
where fis the fixed cost associated with the migration, 

m is the total memory (in MB) that must be 
transferred and 
b is the memory transfer rate (in seconds per 
MB) 

Methusela provides also the so-called best analytical 
criterion. In this case, the formula (2) is used. 

(2) process_age >= migration_cost I ( n - m) 
where n is the number o f processes at the source 

node and 
m is the number o f processes at the destination 
nade (including the potential migrant) 

Processes that are considered old enough by formula ( 1) 
or (2) are placed in a list ordered by process_age I 
migration_cost and processes that have the highest value 
are chosen. 

B. Integration between Methusela and XCS 

One of the main problems in using Methusela is to 
determine the value of the a parameter [HAR96]. This is a 
very important parameter since it is used to decide if a 
process is old enough to be migrated. In arder to determine 
the appropriate value o f a, extensive experimentation must 
be made. Moreover, there is no guarantee that a value that 
is appropriate for a particular load distribution would be 
adequate for another one. In fact, [HAR96] suggests that 
each load distribution must have a different value for a. 
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Based on these considerations, we propose to use a 
classifier system to adapt the value of a at execution time 
to the current load balancing distribution. In arder to do 
this, we integrated the XCS classifier system to the 
Methusela simulator. In this integration, the Methusela 
simulator has kept its independence and autonomy since ali 
interaction between Methusela and XCS is made through a 
communication layer. The interaction between the systems 
is illustrated in figure 2. 

Dynamic Load Balancing System 

While(True) 
I f Not first_round 

Cal cu late_reward ____. Whilc(True) 

Send reward - - Receive_condition 

Send_c~nditio~~ Execute_XCS 

Receive action 
........_ 

Send_action 

Exccute=simulati~_round --.Receive_reward 

Evaluate_action End 

End 

METHUSELA xcs 

... communication 

Figure 2- Interaction between Methusela and XCS 

To model the dynamic load balancing problem in a way 
that can be understood by a classifier system, we must 
answer many questions. The first one is which parameter 
must be modeled as a condition to XCS. We decided to use 
lhe process age as a XCS condition since it is one of the 
most important parameters used to decide if a process can 
migrate or not. The process age in fraction of second was 
mapped to severa! intervals. A function j{x)= a * (xb) 
where the current values are a=2 and b= 1.1 The 
ceiling of this function is 2 (condition sizc) . The values are 
chosen empirically. 

As can be seen, processes with small execution times 
were grouped together in few intervals and long processes 
were disposed in more intervals, since long processes have 
a greater probability to be migrated and is worth to allow 
more binary values for them so XCS can make a more 
accurate decision. 

Based on this condition, XCS chooses which action 
must be executed on the environment. As the objective of 
our modified XCS is to find a good value for the a 
parameter, ali the actions modify the value of a. The action 
is a 5-bit binary string where the first bit indicates if the 
value o f a must be increased (I) or decreased (0). For 
instance, the action 00 I 00 corresponds to a = a * C2 * 4 
where C2 = 1/ 2 action si•.e. This make the XCS to decrease a 



from it's initial value to zero if needed. By a similar 
mechanism XCS can increase a up to it's double what is 
enough to prevent unnecessary migrations. After taking this 
action, Methusela evaluates the migration decisions taken 
due to the new value of a and generates rewards 
considering the remaining execution time. The XCS actions 
receive a reward in two cases. First, if the system decides to 
migrate a process and its execution time at the destination 
node was long enough to compensate the migration cost, 
the action is rewarded since migration was a good decision. 
Second, i f Methusela decides not to migrate the process and 
the remaining execution time of the process was not 
sufficient to compensate the migration cost, the action is 
also rewarded. 

In our approach, a genetic algorithm is executed every 
25 trials and acts only on the rules activated by the 
Methusela condition. Our GA executes crossing-over and 
mutalions on the conditions but only mutations on the 
actions. This choice was made because the genetic 
algorithm is not searching for better actions but for better 
mappings between conditions and actions. By applying 
crossing-over on the conditions, the GA is able to generate 
more general or more specific rules. Crossing-over is done 
by the roulette-wheel method [MIC96]. Mutating 
conditions is necessary to refine the classifier activation by 
testing different Methusela conditions over it. The crossing­
over and mutation rates used in our GA are 80% and 2%, 
respectively. The values are chosen empirically. 

After applying the genetic operations, new individuais 
are generated. New and old individuais are evaluated 
according to the accuracy of their actions. The most 
accurate classi fiers survive. This is a important issue 
because we want classifiers to achieve the results they 
claim. 

IV. EXPER!MENTS ANO RESULTS 

This section evaluates the gains obtained by our 
Methusela + XCS approach to the dynamic load balancing 
problem. The metric used was the slowdown which 
describes how much migration and process scheduling 
contributed to augment the process' total execution time. 
Slowdown is defined to be: (time_process_ends­
time_process_starts) I CPU_time. 

The performance of the system was measured by the 
average slowdown, the slowdown standard deviation and 
the number of severely slowed processes. The average 
slowdown measures how much the average execution time 
was augmented due to migration and scheduling. The 
slowdown standard deviation reflects the difference 
between slowdowns of processes with distinct duration 
times. This metric can give some hints about how much 
processes with a big slowdown can interfere in other 
processes. The number of severely slowed processes 
measures how many processes had a slowdown equal or 
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greater than 3. Policies that allow a great number of 
severely slowed processes must be avoided. 

In the original Methusela [HAR96] the memory size of 
each process was chosen randornly, with the same random 
seed. This yielded the problem that every time Methusela 
executed, the same memory size was associated to a given 
process, and decisions that were taken randornly were 
always the same. This is fixed in this new version. Further 
to this we added extra parameters to generate a memory 
size gaussian distribution [CAR94] with a given average 
and standard deviation. Surprisingly, it had a great impact 
on the system's measures, subject that were not treated in 
[HAR96]. The results presented here were obtained with a 
Pentium li 350 MHz with 64 MB of RAM. The processing 
cost of each XCS trial was 4.2 milliseconds on average and 
the migration decisions were taken in intervals of one 
second. Each value obtained here is an average o f I O runs. 

Methusela receives as input a tuple of parameters that 
will conduct the simulation. This tuple is presented below: 

<file_ na me> <migrai ion _pol icy> <placement _pol icy> 
<load_threshold> <n_processes><w<r _exec> 
<fiXed _cosi> <mem _transf_ cost> 

Table I gives an explanation about each parameter. 

Para meter 
file_name 

migration_policy 

placement_policy 

V alue 
Name of the file that contains the 
processes and its associated execution 
times 
O- no migration; 
I - non-preemptive migration; 
2 - age-based preemptive migration only 
when a new process arrives at a heavily­
loaded node 
3 - periodical check for heavily-loaded 
nodes and preemptive migration 

O - always choose lhe node with the lowest 
load 
I - choose the node with the lowest 
process total age 

load_threshold O - does not consider a threshold in the 
migration policy 
I - otherwise 

n_processes (only lf the node has more than number of 
used if the forrner processes in its CPU queue, it is 
parameter is set to considered overloaded 
I ) 
a 

r_exec 
fixed_cost 
mem_transf_cost 

Constant that multiplies the migration 
cost. If negative, the best analytical 
criterion is used 
Cost o f remote execution in seconds 
Fixed migration cost in seconds 
Memory to memory transfer cost in 
seconds oer MB 

Table I - List of Methusela parameters 



In our experiments, we used a selection of 500 
processes (file t_trace) that were collected randomly by 
[HAR96] on a real educational environment. Despite 
having various types of processes, only batch and 
independent processes were considered eligible for 
migration. 

Besides Plain Methusela (PM), Best Analytic Criterion 
(BAC), XCS+Methusela (XCS) we established a new 
policy Best Result (BR). This policy uses a priori 
knowledge about the process duration to migrate the 
process that will execute longer to a processor where it can 
execute without sharing a processor. BR provides the best 
result that can be obtained by the Methusela algorithm. 
We also use the Theoretical Limit (TL) that is the same of 
BR with fixed migration cost equal to zero and infinite 
network bandwidth. Therefore, TL provides the best results 
for Methusela algorithm when migration is for free. Thus, 
TL offers the theoretical limits of the performance 
measures that Methusela algorithm can achieve. TL is used 
as the Jower values of the figures and is independent of 
simulator parameters. 

In our first experiment we will show that the process 
memory size standard deviation has a impact over the 
performance. We used migration fixed cost of 0.002 
seconds as measured in a real system MOSIX for LINUX 
[BAR99].For instance, the input for Methusela in this first 
experiment was: 

t trace 3 O I 2.0 / .0 0.1 0.002 0.1 
The same input (500 files) was used for 

Methusela_algorithm, Best_analytical_criterion and 
XCS+Methusela. The network bandwidth was 80Mb/s 
(0.1 second for MB) and the mean of memory size is I MB. 

The average slowdown of PB, BAC, XCS and BR are 
shown in figure 3. When standard deviation of processes 
size is zero means that ali processes have the same size. A 
non-zero value means a bell shaped curve with a given 
deviation on its average. Zero and 0.5 are respectively the 
minimum and maximum for the gaussian random number 
generator. 

1,3446 

1,3246 

1 ,3046 

Average Slowdown 

o 0,5 

Standard Deviation of Processes Size 

Figure 3 -Average Slowdown of the policies for the values 
ofstandard deviation ofprocesses size 

In figure 3 we can see that the average slowdown increased 
for almost ali policies. For instance, the slowdown for 
BAC with 0.5 of deviation is 39.3% bigger than with 
deviation O, when compared to TL. It possibly happens 
because as standard deviation of processes size increases, 
so does the complexity of the search space. It does not 
affect negatively the BR policy because it always does the 
right choice. We can also see that XCS+Methusela had 
better results than BAC e PM, showing less dependency on 
the conditions of the environment. When compared to TL, 
XCS showed an improvement of 19,7% over BAC for 
deviation zero and 36,3% over BAC for deviation 0.5. 

One important factor to take in account conceming 
these policies of preemptive migration is the bandwidth of 
the network. The greater the network bandwidth is , less 
wi ll be the migration cost and more processes will be 
eligible for migration. The choice to migrate these 
processes will probably improve the system performance. 
Thus, it is worth to investigate how the performance of the 
policies will vary dependi11g on the network bandwidth. 

In our trials we used fixed migration cost of 0.002 
seconds, process average site of 1MB and standard 
deviation of 0.25, a reasonable number for a big set of 
processes [COU96]. In figures 4, 5 and 6 we show the 
results for average slowdown, standard deviation of 
slowdown and severely slowed processes for network 
bandwidth of 80, 160 and 320Mb/s. 

1,3846 

i 1,3646 
o 
~ 1,3446 
o 
iii 1,3246 

1,3046 

80 

Average Slowdown 

----- PM 

-- - sAC 

--xcs 
160 240 320 

Network bandwidth Mb/s 

Figure 4- Average Slowdown of the policies for the va/ues 
of network bandwidth 

c: c: 
~ o o ; 
'C .. 
~ > o 111 
iii c 

Slowdown Standard Deviation 

:·:; L""·---···•• coe:•: ::J 
0,507 

80 160 240 320 

Network bandwldth Mb/s 

····· PM 

--- BAC 
-xcs 

Figure 5 - Slowdown Standard deviation of the policies 
for the values ofnetwork bandwidth 
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2,14 

~ 1,64 
o 

1,14 

0,64 

Processes Slowed by 3 or more --l 
f'-~---~-.. _--] ::~-~ :~c 

80 160 240 
--xcs 

320 

Network bandwidth Mb/s 

Figure 6 - Processes S/owed by 3 or more of the policies 
for the values o f network bandwidth 

In figure 4 we can see that as network bandwidth 
increases, the average slowdown decreases. lt happens 
because migration gets less costly and then more processes 
migrate, yielding a better load balancing and therefore 
better results. As the network bandwidth increases, we 
expected that PM, BAC and XCS would present very 
similar results because too many processes would be 
considered eligible for migration, making the differences 
between PM, BAC and XCS to disappear. That was not the 
case. XCS performed better than PM and BAC for ali 
values of network bandwidth. For 320Mb/s XCS performed 
40,4% better than the others in relation to TL. BAC was 
designed to perform better than PM [HAR96] but it was 
not the case when migration is less costly as here. 

In figures 5 and 6 we can see that XCS performed better 
than PM and BAC for these metrics too, showing that XCS 
is dividing the overhead of process migration more evenly 
between the processes. 

It is difficult to forecast how long a process will last 
based on its actual age. Figure 7 shows the relation between 
the process duration and the age o f the process by the time 
the process was evaluated. 

H;~ 
o ~---------------L-~~-----------~ 

o 0,2 0,4 0,6 

Process Age 

0,8 

Figure 7 -Process Duration related to its age by the time of 
the evaluation (in seconds) 

As we can see in figure 7 Process Duration seems to 
increase when Process Age increases, but not in a 
predictable fashion. One measure of the XCS action is the 
ratio alfa I Process Age. The alfa parameter is associated 
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to a process evaluated for migration by XCS based on its 
age. Figure 8 shows how XCS varies alfa according to the 
process age for processes greater than 0.5 second, average 
process size of 1MB and parameters 

t_trace 3 O 1 2.0 1.0 0.1 0.002 0.1 

Alfa/Process Age X Process Age 
Cl 
Cll 
< 

IL UI 
UI 
Cl 
u 0,5 e e: 

.:!! o < o 5 10 15 

Process Age 

Figure 8 - Ratio Alfa I Process Age given by 
Methusela+XCS for processes greater than 0.5 second 

As we can see, the greater is the process age the smaller 
is the alfa associated to it. It results that processes with 
greater ages have their probability of migration increased 
by XCS. When migration costs are very low, migration 
becomes very attractive. So, long processes tend to migrate 
continuously once they reach the migration threshold. 
Methusela+XCS was able to understand this situation, 
augmenting the a parameter to avoid early migrations 
In order to see why Methusela+XCS was performing better 
than the analytic criterion we compared how the decision if 
a process is old enough for migration was related to process 
age. In figure 9 we compare the results of criterion of 
decision of Methusela+XCS and Analytic Criterion with 
the same parameters. 

Old Enough Criterion X Process Age 

'§, c 150 I 5 .g 100 
c Cl 
w ~ 50 
:E o 
o o 

o 

-xcs 
- BAC 

0,5 

Process Age 

Figure 9 - How Methuse/a+XCS and Analytic Criterion 
decide if a process is o/d enoughfor migration. 

Figure 9 shows that Methusela+XCS is more likely to 
consider processes with greater ages suitable for migration. 
It is important to note that at the bandwidth o f I OMB/s 
(80Mb/s) and average process size of 1MB, an average 
migration would cost 0.1 seconds. Thus processes with 
very small age are now eligible for migration because 



migration is less costly when compared to their total 
execution time. That is why processes with less than I 
second have great values by Old Enough Criterion in figure 
9. The problem now is that such smaH duration processes 
are much more difficult to have their distribution modeled 
[HAR96). So, it is more difficult to predict for how long 
a process will continue to execute based on its age and this 
is the basis of most non adaptive preemptive load 
balancing algorithms. 

One important feature of XCS is to adapt to 
environment changes. Methusela+XCS is able to perform 
better despite having less parameters to take decisions than 
BAC. lt happens because rules in XCS are rewarded when 
doing something right and punished when doing wrong. 
Further to this XCS has the abi lity of generalize rules or 
turn one more specific if heeded. So the same decision of 
migrate a process of a given age may be rewarded 
differently depending on the behavior of the remaining 
processes of the system. Its allows XCS to take advantage 
o f temporary situations. 

It is important to point that XCS learned to do load 
balancing indirectly since it did not access the average 
information. Another point is that it was learned during the 
runtime since XCS has no 'a priori' knowledge of the 
workload. 

One of the weaknesses of our model is that 1/0 is not 
specifically modeled. Concerning this issue, some 
considerations must to be made. First the traces are taken 
from a real academic environment and processes that are 
known to be interactive (such as Mail and Emacs) are not 
considered eligible for migration by Methusela. Further to 
this, the decisions of migration were taken in intervals of I 
second which means at most one migration per second. 
Thus, with a process average size of 1MB and network 
bandwidth of IOMB/s as used here, an average migration 
would take 0.1 second. It means that the network use of 
preemptive Q1_igration is only 10% on average and can be 
much less in fas ter networks. 

V. CONCLUSIONS AND FuTURE WORK 

The preliminary results of Methusela with XCS to solve 
the dynamic load balancing problem showed that it can 
achieve similar results and even perform better than a well 
designed analytic criterion. This is done even without the 
same amount of information of the analytic criterion. lt is 
probably achieved because XCS is performance-driven 
allowing it to discover when certain evaluation parameter 
is useful and when is not. . Further to this XCS has the 
ability of generalize rules or turn one more specific if 
needed. It results that XCS can evolve rules to explore 
temporary situations that the analytic criterion is not able to 
use. As future work we intend to extend the number of 
parameters used by XCS, deciding what parameters are 
useful and if the cost of obtaining it is worthwhile, 
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allowing the creation of even more effective decision rules. 
Those rules can be used to design better migration policies 
and new analytic criteria. We also intend to implement a 
XCS scheduler in a real environment aiming to achieve 
better results exploring temporary behavior of the system. 

ACKNOWLEDGMENTS 

The authors would like to thank Harchol-Balter and 
Downey for their Methusela source code and Alwyn Barry 
for his XCS source code. We also would like to thank the 
anonymous reviewers for their helpful comments. 

REFERENCES 

[BAU95] 

[BAR99] 

[BAROO] 

[C~94] 

[CAS88] 

[COROO] 

BAUMGARTNER, J ., COOK, D. J., and SHLRAZI, 
B. Genetic solutions to the load balancing problem, 
Proc o f !CPP 95 Workshop, pp 72-78. 
BARAK, A., LA'ÁDAM O. and SHILOH A. 
Scalable Cluster Computing with MOSIX for 
LINUX, Proc .Linux Expo '99, pp. 95-1 00, Raleigh, 
U.S.A., May 1999. 
BARRY , A.M. "XCS Performance and Population 
Structure within Multiple-StepEnvironments", PhD 
Thesis, Queens University Belfas t, Sept 2000. 
CARTER, E.F, 1994; The Generation and Application 
of Random Numbers, Forth Dimensions V oi XVI Nos 
I & 2, Forth lnterest Group, Oakland Califomia 
CASA V ANT, Th.omas L. , KUHL Jon G .,A 
Taxonomy of Scheduling in Genera1-Purpose 
Distributed Computing System, IEEE Transactions on 
Software Engineering, Vol 14, No. 2, Febuary 1988. 
CORRÊA, Jan M., MELO, Alba C. , Algoritmos 
Genéticos para Escalonamento de Processadores, 
Workshop em Sistemas Computacionais de Alto 
Desempenho, São Pedro, Brasil 2000 

[COROla] ÇORREA, Jan M., MELO, Alba C., Using a Classifier 
.System in a Dynamic Changing Environment :An 
Application to Dynamic Load Balancing to appear in 
Encontro Nacional de Inteligência Artificial, 

[COR01b] 

[COR99] 

[COU96] 

[DUS98] 

Fortaleza, Julho, 2001 
COlliA, Jan M., MELO, Alba C., Using a Classifier 
System to lmprove Dynamic Load Balancing, to 
appear in 303

- lnternational Conference on Paral lel 
Processing, Valencia, Spain, September, 2001 
CORR~A. Ricardo C.; FERREIRA, Afonso; 
REBREYEND, Pascal Scheduling Multipocessors 
Tasks with Genetic Aigorithms, IEEE Transaction On 
Paral1e1 and Distribute Systems, V oi 10, No.8, pp 825-
837 August 1999 
COUCH, Alva L. Visualizing Huge Tracefiles with 

· Xscal,Tenth USENIX System Administration 
Conference Chicago, IL, USA, Sept. 29- Oct. 4, 1996. 
DUSSA-ZIEGER, K. and SCHWEHM, M. Scheduling 
of Parallel Programs on Configurab1e Mu1tiprocessors 
by Genetic Algorithms, Journa1 of Approximate 
Reasoning, Special Issue on ' Approximative Methods 
in Scheduling', Voll9 (1-2) 23-38, 1998. 



[GOL89] GOLDBERG, David E., Genetic Algorithms in 
Search, Optimization, And Mach.ine Learning, 
Addison-Wesley, 1989. 

[GRA99] GRAJCAR, M. Genetic List Scheduling Algorithm 
for Scheduling and Allocation on a Loosely Coupled 

Heterogeneous Mult.iprocessor System; Proceedings of 
the 36th Design Automat.ion Conference (DAC), New 
Orleans, 1999 

[HAR96] HARCHOL-BALTER, Mor and DOWNEY, Allen B. 
Exploiting process Iifetime distributions for dynarnic 
load balancing. In Proceedings of the 1996 ACM 
SIGMETRICS Conference on Measurement and 
Modeling of Computer Systems, pages 13--24, May 
1996. 

[HOL78] HOLLAND, J. H. and REITMAN, J. S .. Cognitive 
systems based on adaptive algorithms, Pattern-directed 
inference systems. Acadernic Press, New York, 1978. 

[MIC96] MICHALEWICZ, Z. Genetic A1gorithms + Data 
Structures = Evolution Prograrns, Springer-Verlag, 
1996, . 

[PAP98] PAPADIMITRIOU, C. and STEIGLITZ, K. 
Combinatorial Opt.irnization: Algorithms and 
Complexity, Dover Publications Inc.,1998 

[SAN97] SANDNES, F.E. and MEGSON, G.M. Improved 
Static Multiprocessor Scheduling Using Cyclic Task 
Graphs -A Genetic Approach. IPPS'97 Workshop on 
Randornised Parallel Computing, 1997. 

[SAX99] SAXON, S, and BARRY A. (1999). XCS and the 
Monk's Problem. Second lnternational Workshop on 
Learning C1assifier Systems (IWLCS-99), Orlando, 
FL, USA, Ju1y 13, 1999. 

[SUN97] SUNG-HO Woo; SUNG-BONG Yang; SHIN-DUG 
K.im; TACK-DON Han, "Task scheduling in 
distributed computing systems with a genetic 
algorithm ",Proceedings of the High-Performance 
Computing on the Informaúon Superhighway, HPC­
Asia '97, 1997. 

[TOM99] TOMLINSOM, A. and BULL, L. A corporate XCS. 
In Proceedings of the1999 Genetic and Evo1ulionary 
Computation Conference Workshop, pages 298--305, 
Morgan Kaufmann, San Francisco, California.1999 

[WIL95] WILSON, S. C1assifier fitness based on 
accuracy . Evolutionary Computalion, 1995. 

[WU97] WU, M. On Runtime Parallel Schedul.ing for 
Processors Load Balancing, IEEE Transactions on 
Parallel and Distributed Systems, v.8, n.2, February, 
1997 

133 


