
Improving the Performance of a Dynamic Load
Balancer Using a Classifier System

Jan M. Correa, Alba C. Melo

Department o f Compu ter Science, University of Brasilia, Brazil
Campus Universitário- Asa Norte, Cx Postal4466, CEP 70910-900 Brasília DF

Uan, albamm}@cic.unb.br

Abstract-
Processor scheduling in its general formulation is a NP

Complete problem. In the Dynamic Load Balancing problem
the scheduler has to redistribute processes during their
running lifetime trying to improve the performance according
some optimization criterion. To tackle such a difficult
problem is worth use heuristics to seek for better results.
Among various heuristics, genetic algorithms are often used to
handle problems with high complexity. In this paper we try to
optimize the decisions taken by a dynamic load balancer with
pree~ptive migration in a distributed environment using a
Classlfier System (CS). CS is an adaptive program that
evolves decision rules applying genetic algorithms over a
population of rules and selecting the best of them. CS has the
ability of adapt to environment changes. The rules are
rewarded or punished depending on their performance. This
performance-driven behavior allows them to perform well
even with few information. The results have been impressive
and the classifier system was able to surpass, without previous
knowledge of the properties of workload, the performance of
a well designed analytic criterion.

Keywords-- Load Balancing, Processor Scheduling,
Genetic Algorithms, Classifier Systems

I. INTRODUCTION

There are severa] ways to improve the performance of a
cluster of computers when doing Distributed Processing. A
successful way is to perform a better process scheduling.
Process scheduling is a NP-Complete problem [PAP98]
where a scheduling algorithm has to decide which
processes must execute on which processors. This
decision is taken observing a particular optirnization
criterion. Load balancing is one of the most widely used
optimization criteria since it is assumed that, if the total
load of the system is divided more evenly between its
processors, the performance of the whole system can be
improved [CAS88].There are, basically, two classes of
scheduling algorithms to perform load balancing : static and
dynamic schedulers. Static load balancing works generally
on problems that have a predictable structure and balances
the work before execution time [WU97]. On the other hand,
dynamic load balancers perform scheduling activities at
execution time, using runtime system load information to
adjust load distribution. Dynarnic load balancing is suitable

126

for a wide set of applications and requires process
rnigration [WU97].

As we saw in [COROO], several attempts were made to
apply the power of GAs to the static processar scheduling
problem [DUS98], [GRA99], [SUN97], [COR99] and
[SAN97] In this kind of problem, the scheduling algorithm
generally has ali information and time enough to do ali
computations needed. Despite the good results achieved in
this field, very few attempts were made to apply GAs also
to the dynamic scheduling problem. One reason for this is
that it is difficult to evaluate the individuais of GA in a
dynarnic changing environment of the dynamic load
balancing. It happens because the dynarnic changing
environment is very sensitive to the actions performed on it.
Thus, it is nearly impossible to test the decisions about
load balancing advocated for aJI individual of the
population without disrupt the environment[CORO J a].

A possible solution to avoid this problem and apply the
power of GAs to perform dynarnic Ioad balancing could
be to use a Classifier System (CS). A CS can evolve
decision rules concerning load baJancing with genetic
algorithms in order to achieve better decision rules
[BAU95] . A classifier system is composed by rules and
relationships among these rules, enforced by a reward
system. To find better relationships among rules, genetic
operations of mutation and crossing-over can be applied
[GOL89]. One type of classifier system is XCS (SpeciaJ
Classifier System) [WlL95] that was recently developed to
generate more accurate and general decision rules than a
ordinary classifier system.

In this paper, we extend the work presented in
[COROlb]. We show that our modified XCS can achieve
better results than other methods when achieving
dynarnic load balancing with process preemption on a
cluster of computers. We investigated what is the impact of
the network bandwidth over the methods and explained
how our modified XCS take some scheduling decisions. We
also show that the standard deviation of the memory size
distribution can interfere with the system performance,
subject that were not taken in account by the Methusela
simulator developers [HAR96].

Our approach uses a function that is dynamically
modified in order to adapt to the changing characteristics of
the distributed environment. We claim that such a property
is fundamental to achieve dynamic load balancing.
Although XCS has been applied to some computational
intensive problems such as Data Mining [SAX99] and
Robotics [TOM99], as far as we know, this is the first time
it is adapted to solve the dynamic load balancing problem.

Our results on the Methusela simulator [HAR96] show
that our modified XCS based on Barry's [BAROO]
implementation can reduce the average slowdown of a
collection of 500 processes in a wide range of conditions,
when compared with the native Methusela load balancing
algorithm. This reduction in the slowdown represents more
accurate migration decisions. The remainder o f this paper is
organized as follows. Section li presents the genetic
algorithms and classifier systems. The modifications made
to XCS are described in section m. Experiments and results
are provided in section IV. Finally, section V concludes the
pape r.

li. GENETIC ALGORITHMS AND CLASSIFIER SYSTEMS

Genetic Algorithm (GA) is an heuristic search method
that is based upon the principies of evolution and natural
genetics [GOL89]. In a basic GA, a set of possible solutions
is coded as chromosomes or individuais. Genetic operations
such as mutation and crossing-ovêr are applied over the
population of chromosomes thus generating new
chromosomes. An evaluation function is used to
characterize a chromosome's performance to the problem.
Such a function is applied to ali existing chromosomes and
generally only the fittest ones survive to compose a new
population of chromosomes in which genetic operations
will be applied again. This process continues until a certain
number of generations or a reasonable levei of fitness is
reached.

Some properties distinguishes Genetic algorithms from
the other probabilistic heuristic search methods [MIC96].
First, search is made from a set of solutions rather than
from a single one. This leads to a more efficient search
since many solutions are evaluated simultaneously.
Moreover, the probability of attaining a local minimum (or
maximum) is reduced. Second, the new solutions are
created using information from the previous ones. In this
way, GAs exploit historical information to find new search
points that would probably lead to improvement.

Classifier Systems (CS) were firstly proposed by
[HOL78]. They are a class of adaptive systems, i. e.,
systems that are able to modify themselves to reach a
particular goal. A classifier is basically a decision rule that
is composed by a condition and an action. The action is
only executed if the condition is true. A classifier system is
made of severa! classifiers that interact in order to associate
the environment conditions with the most suitable actions.

127

More than that, a classifier system is able to generate new
rules from the existing ones and also make rules more
generic or more specific [GOL89].

XCS (Special Classifier System) is a classifier system
proposed by [WIL95] where rules are seen as individuais of
a population. The goal of XCS is to generate more generic
and efficient rules. To achieve this goal, XCS is composed
by a population of very simple classifiers made of one
condition and one action. Conditions and actions are
received from and executed over the environment,
respectively. The XCS condition is a temary string
[O,I,#(don't care)] and the action is a binary string [0,1] .
Each classifier has an associated value that represents its
relative strength on the population.

The execution of XCS is divided in trials. Each trial is
either for exploration or exploitation. The exploration trial
basically aims to refine an existing rule [BAROO]. Genetic
algorithms are used at the exploitation trial and they search
new and more efficient rules from the existing ones. As
GAs are computationally intensive, they are not executed in
every exploitation trial [BAROO].

Ill. DESIGN OF A CLASSIFIER SYSTEM FOR DYNAMIC

LOAD BALANCING SCHEDULERS

Our proposal consists in modifying an existing dynamic
load balancer by adding a classifier system to it, in order to
improve load balancing. We decided to use a processor
scheduler simulator for distributed systems called
Methusela. Methusela was developed by [HAR96] at the
University of Califomia at Berkeley. lt simulates a network
of interconnected computers where each computer receives
processes to execute. [HAR96] first used this simulator to
show the advantages of preemptive process migration on a
distributed environment. In order to decide which process
must migrate, Methusela uses information about process
age distribution [HAR96].

A. Overview of the Methusela Simulator

Methusela does preemptive dynamic load balancing this
way:

Periodically, the system load distribution is examined.
In the case of load unbalancing, Methusela decides which
processors are overloaded and underloaded by counting
processes on their CPU queue. Having a migration source
and a migration destination, Methusela chooses, among the
migration source 's processes, which ones would more take
benefit from migration.

Dynamic load balancing is implemented in Methusela
by the algorithm presented in figure 1.

Methusela load balanc1ng()
Begin - -
source_processor= most overloaded processor();
If (source_processor is sufficiently_overloaded)
Begin
dest_processor = processor_with_lowest_ load() ;
If (dest_processor is underloaded)

Begin
old_processes = Select old enough processes
in (source_processor) ;
source_processes = Select processes by age
and migration cost (old_processes) ;
Migrate(source_processes,source_processor ,
dest_processor) ;

End
End

End
Figurei. Dynamic Load Balancing Algorithm used in

Methuse/a

The criterion used to choose processes for migration is
process age and the older ones are chosen. To decide if a
process is old enough, Methusela uses the following
formula:

(I) process_age >= a* (migration_cost)
where a is a constant that specifies how much the

process age must be greater than the migration cost. The
migration cost is equal to

migration_cost =f+ (m b)
where fis the fixed cost associated with the migration,

m is the total memory (in MB) that must be
transferred and
b is the memory transfer rate (in seconds per
MB)

Methusela provides also the so-called best analytical
criterion. In this case, the formula (2) is used.

(2) process_age >= migration_cost I (n - m)
where n is the number o f processes at the source

node and
m is the number o f processes at the destination
nade (including the potential migrant)

Processes that are considered old enough by formula (1)
or (2) are placed in a list ordered by process_age I
migration_cost and processes that have the highest value
are chosen.

B. Integration between Methusela and XCS

One of the main problems in using Methusela is to
determine the value of the a parameter [HAR96]. This is a
very important parameter since it is used to decide if a
process is old enough to be migrated. In arder to determine
the appropriate value o f a, extensive experimentation must
be made. Moreover, there is no guarantee that a value that
is appropriate for a particular load distribution would be
adequate for another one. In fact, [HAR96] suggests that
each load distribution must have a different value for a.

128

Based on these considerations, we propose to use a
classifier system to adapt the value of a at execution time
to the current load balancing distribution. In arder to do
this, we integrated the XCS classifier system to the
Methusela simulator. In this integration, the Methusela
simulator has kept its independence and autonomy since ali
interaction between Methusela and XCS is made through a
communication layer. The interaction between the systems
is illustrated in figure 2.

Dynamic Load Balancing System

While(True)
I f Not first_round

Cal cu late_reward ____. Whilc(True)

Send reward - - Receive_condition

Send_c~nditio~~ Execute_XCS

Receive action
........_

Send_action

Exccute=simulati~_round --.Receive_reward

Evaluate_action End

End

METHUSELA xcs

... communication

Figure 2- Interaction between Methusela and XCS

To model the dynamic load balancing problem in a way
that can be understood by a classifier system, we must
answer many questions. The first one is which parameter
must be modeled as a condition to XCS. We decided to use
lhe process age as a XCS condition since it is one of the
most important parameters used to decide if a process can
migrate or not. The process age in fraction of second was
mapped to severa! intervals. A function j{x)= a * (xb)
where the current values are a=2 and b= 1.1 The
ceiling of this function is 2 (condition sizc) . The values are
chosen empirically.

As can be seen, processes with small execution times
were grouped together in few intervals and long processes
were disposed in more intervals, since long processes have
a greater probability to be migrated and is worth to allow
more binary values for them so XCS can make a more
accurate decision.

Based on this condition, XCS chooses which action
must be executed on the environment. As the objective of
our modified XCS is to find a good value for the a
parameter, ali the actions modify the value of a. The action
is a 5-bit binary string where the first bit indicates if the
value o f a must be increased (I) or decreased (0). For
instance, the action 00 I 00 corresponds to a = a * C2 * 4
where C2 = 1/ 2 action si•.e. This make the XCS to decrease a

from it's initial value to zero if needed. By a similar
mechanism XCS can increase a up to it's double what is
enough to prevent unnecessary migrations. After taking this
action, Methusela evaluates the migration decisions taken
due to the new value of a and generates rewards
considering the remaining execution time. The XCS actions
receive a reward in two cases. First, if the system decides to
migrate a process and its execution time at the destination
node was long enough to compensate the migration cost,
the action is rewarded since migration was a good decision.
Second, i f Methusela decides not to migrate the process and
the remaining execution time of the process was not
sufficient to compensate the migration cost, the action is
also rewarded.

In our approach, a genetic algorithm is executed every
25 trials and acts only on the rules activated by the
Methusela condition. Our GA executes crossing-over and
mutalions on the conditions but only mutations on the
actions. This choice was made because the genetic
algorithm is not searching for better actions but for better
mappings between conditions and actions. By applying
crossing-over on the conditions, the GA is able to generate
more general or more specific rules. Crossing-over is done
by the roulette-wheel method [MIC96]. Mutating
conditions is necessary to refine the classifier activation by
testing different Methusela conditions over it. The crossing
over and mutation rates used in our GA are 80% and 2%,
respectively. The values are chosen empirically.

After applying the genetic operations, new individuais
are generated. New and old individuais are evaluated
according to the accuracy of their actions. The most
accurate classi fiers survive. This is a important issue
because we want classifiers to achieve the results they
claim.

IV. EXPER!MENTS ANO RESULTS

This section evaluates the gains obtained by our
Methusela + XCS approach to the dynamic load balancing
problem. The metric used was the slowdown which
describes how much migration and process scheduling
contributed to augment the process' total execution time.
Slowdown is defined to be: (time_process_ends
time_process_starts) I CPU_time.

The performance of the system was measured by the
average slowdown, the slowdown standard deviation and
the number of severely slowed processes. The average
slowdown measures how much the average execution time
was augmented due to migration and scheduling. The
slowdown standard deviation reflects the difference
between slowdowns of processes with distinct duration
times. This metric can give some hints about how much
processes with a big slowdown can interfere in other
processes. The number of severely slowed processes
measures how many processes had a slowdown equal or

129

greater than 3. Policies that allow a great number of
severely slowed processes must be avoided.

In the original Methusela [HAR96] the memory size of
each process was chosen randornly, with the same random
seed. This yielded the problem that every time Methusela
executed, the same memory size was associated to a given
process, and decisions that were taken randornly were
always the same. This is fixed in this new version. Further
to this we added extra parameters to generate a memory
size gaussian distribution [CAR94] with a given average
and standard deviation. Surprisingly, it had a great impact
on the system's measures, subject that were not treated in
[HAR96]. The results presented here were obtained with a
Pentium li 350 MHz with 64 MB of RAM. The processing
cost of each XCS trial was 4.2 milliseconds on average and
the migration decisions were taken in intervals of one
second. Each value obtained here is an average o f I O runs.

Methusela receives as input a tuple of parameters that
will conduct the simulation. This tuple is presented below:

<file_ na me> <migrai ion _pol icy> <placement _pol icy>
<load_threshold> <n_processes><w<r _exec>
<fiXed _cosi> <mem _transf_ cost>

Table I gives an explanation about each parameter.

Para meter
file_name

migration_policy

placement_policy

V alue
Name of the file that contains the
processes and its associated execution
times
O- no migration;
I - non-preemptive migration;
2 - age-based preemptive migration only
when a new process arrives at a heavily
loaded node
3 - periodical check for heavily-loaded
nodes and preemptive migration

O - always choose lhe node with the lowest
load
I - choose the node with the lowest
process total age

load_threshold O - does not consider a threshold in the
migration policy
I - otherwise

n_processes (only lf the node has more than number of
used if the forrner processes in its CPU queue, it is
parameter is set to considered overloaded
I)
a

r_exec
fixed_cost
mem_transf_cost

Constant that multiplies the migration
cost. If negative, the best analytical
criterion is used
Cost o f remote execution in seconds
Fixed migration cost in seconds
Memory to memory transfer cost in
seconds oer MB

Table I - List of Methusela parameters

In our experiments, we used a selection of 500
processes (file t_trace) that were collected randomly by
[HAR96] on a real educational environment. Despite
having various types of processes, only batch and
independent processes were considered eligible for
migration.

Besides Plain Methusela (PM), Best Analytic Criterion
(BAC), XCS+Methusela (XCS) we established a new
policy Best Result (BR). This policy uses a priori
knowledge about the process duration to migrate the
process that will execute longer to a processor where it can
execute without sharing a processor. BR provides the best
result that can be obtained by the Methusela algorithm.
We also use the Theoretical Limit (TL) that is the same of
BR with fixed migration cost equal to zero and infinite
network bandwidth. Therefore, TL provides the best results
for Methusela algorithm when migration is for free. Thus,
TL offers the theoretical limits of the performance
measures that Methusela algorithm can achieve. TL is used
as the Jower values of the figures and is independent of
simulator parameters.

In our first experiment we will show that the process
memory size standard deviation has a impact over the
performance. We used migration fixed cost of 0.002
seconds as measured in a real system MOSIX for LINUX
[BAR99].For instance, the input for Methusela in this first
experiment was:

t trace 3 O I 2.0 / .0 0.1 0.002 0.1
The same input (500 files) was used for

Methusela_algorithm, Best_analytical_criterion and
XCS+Methusela. The network bandwidth was 80Mb/s
(0.1 second for MB) and the mean of memory size is I MB.

The average slowdown of PB, BAC, XCS and BR are
shown in figure 3. When standard deviation of processes
size is zero means that ali processes have the same size. A
non-zero value means a bell shaped curve with a given
deviation on its average. Zero and 0.5 are respectively the
minimum and maximum for the gaussian random number
generator.

1,3446

1,3246

1 ,3046

Average Slowdown

o 0,5

Standard Deviation of Processes Size

Figure 3 -Average Slowdown of the policies for the values
ofstandard deviation ofprocesses size

In figure 3 we can see that the average slowdown increased
for almost ali policies. For instance, the slowdown for
BAC with 0.5 of deviation is 39.3% bigger than with
deviation O, when compared to TL. It possibly happens
because as standard deviation of processes size increases,
so does the complexity of the search space. It does not
affect negatively the BR policy because it always does the
right choice. We can also see that XCS+Methusela had
better results than BAC e PM, showing less dependency on
the conditions of the environment. When compared to TL,
XCS showed an improvement of 19,7% over BAC for
deviation zero and 36,3% over BAC for deviation 0.5.

One important factor to take in account conceming
these policies of preemptive migration is the bandwidth of
the network. The greater the network bandwidth is , less
wi ll be the migration cost and more processes will be
eligible for migration. The choice to migrate these
processes will probably improve the system performance.
Thus, it is worth to investigate how the performance of the
policies will vary dependi11g on the network bandwidth.

In our trials we used fixed migration cost of 0.002
seconds, process average site of 1MB and standard
deviation of 0.25, a reasonable number for a big set of
processes [COU96]. In figures 4, 5 and 6 we show the
results for average slowdown, standard deviation of
slowdown and severely slowed processes for network
bandwidth of 80, 160 and 320Mb/s.

1,3846

i 1,3646
o
~ 1,3446
o
iii 1,3246

1,3046

80

Average Slowdown

----- PM

-- - sAC

--xcs
160 240 320

Network bandwidth Mb/s

Figure 4- Average Slowdown of the policies for the va/ues
of network bandwidth

c: c:
~ o o ;
'C ..
~ > o 111
iii c

Slowdown Standard Deviation

:·:; L""·---···•• coe:•: ::J
0,507

80 160 240 320

Network bandwldth Mb/s

····· PM

--- BAC
-xcs

Figure 5 - Slowdown Standard deviation of the policies
for the values ofnetwork bandwidth

130

2,14

~ 1,64
o

1,14

0,64

Processes Slowed by 3 or more --l
f'-~---~-.. _--] ::~-~ :~c

80 160 240
--xcs

320

Network bandwidth Mb/s

Figure 6 - Processes S/owed by 3 or more of the policies
for the values o f network bandwidth

In figure 4 we can see that as network bandwidth
increases, the average slowdown decreases. lt happens
because migration gets less costly and then more processes
migrate, yielding a better load balancing and therefore
better results. As the network bandwidth increases, we
expected that PM, BAC and XCS would present very
similar results because too many processes would be
considered eligible for migration, making the differences
between PM, BAC and XCS to disappear. That was not the
case. XCS performed better than PM and BAC for ali
values of network bandwidth. For 320Mb/s XCS performed
40,4% better than the others in relation to TL. BAC was
designed to perform better than PM [HAR96] but it was
not the case when migration is less costly as here.

In figures 5 and 6 we can see that XCS performed better
than PM and BAC for these metrics too, showing that XCS
is dividing the overhead of process migration more evenly
between the processes.

It is difficult to forecast how long a process will last
based on its actual age. Figure 7 shows the relation between
the process duration and the age o f the process by the time
the process was evaluated.

H;~
o ~---------------L-~~-----------~

o 0,2 0,4 0,6

Process Age

0,8

Figure 7 -Process Duration related to its age by the time of
the evaluation (in seconds)

As we can see in figure 7 Process Duration seems to
increase when Process Age increases, but not in a
predictable fashion. One measure of the XCS action is the
ratio alfa I Process Age. The alfa parameter is associated

131

to a process evaluated for migration by XCS based on its
age. Figure 8 shows how XCS varies alfa according to the
process age for processes greater than 0.5 second, average
process size of 1MB and parameters

t_trace 3 O 1 2.0 1.0 0.1 0.002 0.1

Alfa/Process Age X Process Age
Cl
Cll
<

IL UI
UI
Cl
u 0,5 e e:

.:!! o < o 5 10 15

Process Age

Figure 8 - Ratio Alfa I Process Age given by
Methusela+XCS for processes greater than 0.5 second

As we can see, the greater is the process age the smaller
is the alfa associated to it. It results that processes with
greater ages have their probability of migration increased
by XCS. When migration costs are very low, migration
becomes very attractive. So, long processes tend to migrate
continuously once they reach the migration threshold.
Methusela+XCS was able to understand this situation,
augmenting the a parameter to avoid early migrations
In order to see why Methusela+XCS was performing better
than the analytic criterion we compared how the decision if
a process is old enough for migration was related to process
age. In figure 9 we compare the results of criterion of
decision of Methusela+XCS and Analytic Criterion with
the same parameters.

Old Enough Criterion X Process Age

'§, c 150 I 5 .g 100
c Cl
w ~ 50
:E o
o o

o

-xcs
- BAC

0,5

Process Age

Figure 9 - How Methuse/a+XCS and Analytic Criterion
decide if a process is o/d enoughfor migration.

Figure 9 shows that Methusela+XCS is more likely to
consider processes with greater ages suitable for migration.
It is important to note that at the bandwidth o f I OMB/s
(80Mb/s) and average process size of 1MB, an average
migration would cost 0.1 seconds. Thus processes with
very small age are now eligible for migration because

migration is less costly when compared to their total
execution time. That is why processes with less than I
second have great values by Old Enough Criterion in figure
9. The problem now is that such smaH duration processes
are much more difficult to have their distribution modeled
[HAR96). So, it is more difficult to predict for how long
a process will continue to execute based on its age and this
is the basis of most non adaptive preemptive load
balancing algorithms.

One important feature of XCS is to adapt to
environment changes. Methusela+XCS is able to perform
better despite having less parameters to take decisions than
BAC. lt happens because rules in XCS are rewarded when
doing something right and punished when doing wrong.
Further to this XCS has the abi lity of generalize rules or
turn one more specific if heeded. So the same decision of
migrate a process of a given age may be rewarded
differently depending on the behavior of the remaining
processes of the system. Its allows XCS to take advantage
o f temporary situations.

It is important to point that XCS learned to do load
balancing indirectly since it did not access the average
information. Another point is that it was learned during the
runtime since XCS has no 'a priori' knowledge of the
workload.

One of the weaknesses of our model is that 1/0 is not
specifically modeled. Concerning this issue, some
considerations must to be made. First the traces are taken
from a real academic environment and processes that are
known to be interactive (such as Mail and Emacs) are not
considered eligible for migration by Methusela. Further to
this, the decisions of migration were taken in intervals of I
second which means at most one migration per second.
Thus, with a process average size of 1MB and network
bandwidth of IOMB/s as used here, an average migration
would take 0.1 second. It means that the network use of
preemptive Q1_igration is only 10% on average and can be
much less in fas ter networks.

V. CONCLUSIONS AND FuTURE WORK

The preliminary results of Methusela with XCS to solve
the dynamic load balancing problem showed that it can
achieve similar results and even perform better than a well
designed analytic criterion. This is done even without the
same amount of information of the analytic criterion. lt is
probably achieved because XCS is performance-driven
allowing it to discover when certain evaluation parameter
is useful and when is not. . Further to this XCS has the
ability of generalize rules or turn one more specific if
needed. It results that XCS can evolve rules to explore
temporary situations that the analytic criterion is not able to
use. As future work we intend to extend the number of
parameters used by XCS, deciding what parameters are
useful and if the cost of obtaining it is worthwhile,

132

allowing the creation of even more effective decision rules.
Those rules can be used to design better migration policies
and new analytic criteria. We also intend to implement a
XCS scheduler in a real environment aiming to achieve
better results exploring temporary behavior of the system.

ACKNOWLEDGMENTS

The authors would like to thank Harchol-Balter and
Downey for their Methusela source code and Alwyn Barry
for his XCS source code. We also would like to thank the
anonymous reviewers for their helpful comments.

REFERENCES

[BAU95]

[BAR99]

[BAROO]

[C~94]

[CAS88]

[COROO]

BAUMGARTNER, J ., COOK, D. J., and SHLRAZI,
B. Genetic solutions to the load balancing problem,
Proc o f !CPP 95 Workshop, pp 72-78.
BARAK, A., LA'ÁDAM O. and SHILOH A.
Scalable Cluster Computing with MOSIX for
LINUX, Proc .Linux Expo '99, pp. 95-1 00, Raleigh,
U.S.A., May 1999.
BARRY , A.M. "XCS Performance and Population
Structure within Multiple-StepEnvironments", PhD
Thesis, Queens University Belfas t, Sept 2000.
CARTER, E.F, 1994; The Generation and Application
of Random Numbers, Forth Dimensions V oi XVI Nos
I & 2, Forth lnterest Group, Oakland Califomia
CASA V ANT, Th.omas L. , KUHL Jon G .,A
Taxonomy of Scheduling in Genera1-Purpose
Distributed Computing System, IEEE Transactions on
Software Engineering, Vol 14, No. 2, Febuary 1988.
CORRÊA, Jan M., MELO, Alba C. , Algoritmos
Genéticos para Escalonamento de Processadores,
Workshop em Sistemas Computacionais de Alto
Desempenho, São Pedro, Brasil 2000

[COROla] ÇORREA, Jan M., MELO, Alba C., Using a Classifier
.System in a Dynamic Changing Environment :An
Application to Dynamic Load Balancing to appear in
Encontro Nacional de Inteligência Artificial,

[COR01b]

[COR99]

[COU96]

[DUS98]

Fortaleza, Julho, 2001
COlliA, Jan M., MELO, Alba C., Using a Classifier
System to lmprove Dynamic Load Balancing, to
appear in 303

- lnternational Conference on Paral lel
Processing, Valencia, Spain, September, 2001
CORR~A. Ricardo C.; FERREIRA, Afonso;
REBREYEND, Pascal Scheduling Multipocessors
Tasks with Genetic Aigorithms, IEEE Transaction On
Paral1e1 and Distribute Systems, V oi 10, No.8, pp 825-
837 August 1999
COUCH, Alva L. Visualizing Huge Tracefiles with

· Xscal,Tenth USENIX System Administration
Conference Chicago, IL, USA, Sept. 29- Oct. 4, 1996.
DUSSA-ZIEGER, K. and SCHWEHM, M. Scheduling
of Parallel Programs on Configurab1e Mu1tiprocessors
by Genetic Algorithms, Journa1 of Approximate
Reasoning, Special Issue on ' Approximative Methods
in Scheduling', Voll9 (1-2) 23-38, 1998.

[GOL89] GOLDBERG, David E., Genetic Algorithms in
Search, Optimization, And Mach.ine Learning,
Addison-Wesley, 1989.

[GRA99] GRAJCAR, M. Genetic List Scheduling Algorithm
for Scheduling and Allocation on a Loosely Coupled

Heterogeneous Mult.iprocessor System; Proceedings of
the 36th Design Automat.ion Conference (DAC), New
Orleans, 1999

[HAR96] HARCHOL-BALTER, Mor and DOWNEY, Allen B.
Exploiting process Iifetime distributions for dynarnic
load balancing. In Proceedings of the 1996 ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 13--24, May
1996.

[HOL78] HOLLAND, J. H. and REITMAN, J. S .. Cognitive
systems based on adaptive algorithms, Pattern-directed
inference systems. Acadernic Press, New York, 1978.

[MIC96] MICHALEWICZ, Z. Genetic A1gorithms + Data
Structures = Evolution Prograrns, Springer-Verlag,
1996, .

[PAP98] PAPADIMITRIOU, C. and STEIGLITZ, K.
Combinatorial Opt.irnization: Algorithms and
Complexity, Dover Publications Inc.,1998

[SAN97] SANDNES, F.E. and MEGSON, G.M. Improved
Static Multiprocessor Scheduling Using Cyclic Task
Graphs -A Genetic Approach. IPPS'97 Workshop on
Randornised Parallel Computing, 1997.

[SAX99] SAXON, S, and BARRY A. (1999). XCS and the
Monk's Problem. Second lnternational Workshop on
Learning C1assifier Systems (IWLCS-99), Orlando,
FL, USA, Ju1y 13, 1999.

[SUN97] SUNG-HO Woo; SUNG-BONG Yang; SHIN-DUG
K.im; TACK-DON Han, "Task scheduling in
distributed computing systems with a genetic
algorithm ",Proceedings of the High-Performance
Computing on the Informaúon Superhighway, HPC
Asia '97, 1997.

[TOM99] TOMLINSOM, A. and BULL, L. A corporate XCS.
In Proceedings of the1999 Genetic and Evo1ulionary
Computation Conference Workshop, pages 298--305,
Morgan Kaufmann, San Francisco, California.1999

[WIL95] WILSON, S. C1assifier fitness based on
accuracy . Evolutionary Computalion, 1995.

[WU97] WU, M. On Runtime Parallel Schedul.ing for
Processors Load Balancing, IEEE Transactions on
Parallel and Distributed Systems, v.8, n.2, February,
1997

133

