
Leaming Parallel Computing Concepts via a 
Turing Machine Simulator 

Mônica Xavier Py, Laira Vieira Toscani, Luís C. Lamb, Tiarajú Asmuz Diverio 
1 Universidade Federal do Rio Grande do Sul 

Instituto de Informática 
PO Box I 5064 - 9 150 I -970 Porto Alegre 

{ mpy, laira. lamb. diverio} @inf.ufrgs.br 

Abstract-
lt is well-known that technology developments in Computing Science 

has led to new developments in Computing Theory and vice-versa. This 
work is a contribution towards the formalisation of Parallel Processing 
concepts. We exploit variations of the Thring Machine model, referred 
as natural extensions, which may be composed by severa! control units, 
tapes and heads in such a way that one can define a variety of Parallel 
Thring Machine modcls. Severa! notions and definitions of parallelism 
are identified including computability, complexity and performance of 
computations. A prototype of the Parallcl Thring Machine model is 
presented. This prototype was used as a test bed for the assessment of 
the usefulness o f these machine models as a parallel processing teaching 
tool, as well as a tool to facilitate the creation of a "culture" among stu­
dents in high performance computing. Finally, we analyse the notions of 
performance, speedup, efficiency, load balancing, synchronisation and 
conununication in parallel processing. 

Keywords- Parallel Thring Machine, parallel computing, parallel 
computing thcory. 

I. lNTRODUCTION 

There is an increasing availability of high performance 
tools in the market. These tools are available in supercomput­
ers, computer networks, computer clusters and even in mul­
tiprocessed personaJ computers whose computational power 
betters that of supercomputers of some years ago. This re­
source avai lability allows one to solve more complex prob­
Jems faster by the use o f more powerful, but also Jess expen­
sive computers. 

In spite of these resources availabi lity, human users are 
not prepared to make use ofthem. We believe that most Uni­
versities have not been educating potentiaJ users for this new 
reality. Therefore, there is a demand for qualified profession­
als in parallel processing, which most probably contributes to 
enlarge the existing gap between software applications and 
technology developments. 

Both researchers and educators have been motivated 
towards identifying new parallel programming teaching 
methodologies and techniques in order to answer the follow­
ing: Have we not used parallel programming because our 
teaching environment lacks a parallel processing "culture" or 
is it a result of human beings being "sequential" creatures? 
How does one think in parallel? What kind of skills are nec­
essary to enable the use o f parallel processing? How can we 

134 

teach in a parallel environment? 

On the other hand, in order to teach parallel processing one 
has to identify skills and concepts which are essential in the 
understanding of the subjects being studied. In that way we 
aim at identifying the reasons why parallel programrning has 
not been as successful as expected, and we conjecture that 
this may be due to the two reasons above (the sequential na­
ture o f human beings and the probable "cultural deficiency"). 

Currently, we are working on the extension of sequential 
machine models in order to represent some parallel comput­
ing paradigms. For instance, we are studying the application 
of Turing Machines with multiple heads in the representation 
of shared memory environments, where each distinct head 
represents a processar. The prototype we have been imple­
menting allows the analysis and identification of a number 
o f parallel notions such as performance, efficiency, speedup, 
load balancing, synchronisation, communication [MARO I ]. 
One can easily understand how this model of parallelism 
works as it is among the easiest to understand and it is an ad­
equate model for the visualisation of how parallel concepts 
actual ly work. 

One of the aims of this work is to study Turing Machines 
with multiple heads in order to represent concurrency, de­
veloping a prototype model to analyse parallel processing 
definitions. In the development of our study, we adopted 
two methodologies. A theoretical approach, in which we 
analysed a variation of the Parallel Turing Machine (PTM) 
model, and a practical approach in which we used a prototype 
of the PTM, designed and implemented by the Computa­
tionaJ Mathematics and High Performance Group at UFRGS 
(GMC-PAD), which allowed the study of a number of is­
sues including computability, efficiency and performance. 
This prototype faci litated the observation of the practical­
theoretical integration. The parallelisation of a sequential 
algorithm was ruo in the prototype which made it possible 
to analyse the characteristics and constraints of the shared 
memory parallel computing model. lt is important to notice 
that the computation in this model significantly reduces the 
number o f execution steps [MARO I]. 

The PTM model also facilitated the characterisation of 



performance and efficiency notions. In the computability ap­
proach, we propose variations which allow parallel problem 
solving, both in a shared memory environment and in a dis­
tributed memory environment with message passing commu­
nication. The distributed memory model is represented by 
the use of multitape Turing Machines. We also show that 
these Turing Machine extensions can be simulated by the 
standard Turing Machines, andas consequence, they have the 
same computing power. These results are shown in [MIN67]. 

In the efficiency approach we tackle complexity notions. 
Complexity is measured by the number of elementary oper­
ations executed. In sequential computing one takes into ac­
count operations executed by a Turing Machine control unit 
over one single tape, whereas in parallel Turing Machines 
the existence of multiple heads requires that the number of 
operations performed over the tapes by each individual head 
to be added. In the case of message passing communication, 
one has to consider the time spent for message distribution. 
In addition, one should also take into account the minimal 
number of heads required in order to solve a problem, since 
this number may affect the complexity of the problem solu­
tion. 

In the performance approach we aim at solving a problem 
in a minimum amount o f time. This time interval is measured 
from the beginning to the end o f the execution o f the solution 
by every head o f the Turing Machine. 

II. THE THEORETICAL APPROACH: PARALLEL TURING 

MACHI NES 

It is well-known that Turing Machines, proposed by Alan 
M. Turing, in 1936 are a formalisation of the notion of algo­
rithm. Church's thesis [LEW99, ODI89, ROG67] states that 
Turing Machines are universal models of computing in the 
sense that it computers every computable function. Modifi­
cations in the structure ofTuring Machines, such as the addi­
tion of tapes, control units, non-determinism, among others 
proved not to increase the computing power of the original 
model. However, technology advances and new generations 
of computers were presented and new types of parallel pro­
cessing models were proposed. Computing became a con­
current process in which several processes can be executed 
simultaneously. The definition of parallel processing more 
widely accepted is the one formulated by Hwang. He says 
that parallel processing is an efficient way of processing in­
formation which emphasises the use of concurrent events in 
the computation process [HWA84]. 

A. Turing Machines 

The computational model presented in this paper 
uses the formal definition presented by Diverio and 
Menezes [DIVOO]. 

A Turing Machine is an 8-tuple 

135 

M = (:E,Q, II, qo, F , V,B,*), where: 

:E the set of input symbols (or the input alphabet) 
Q a finite set o f states 
II the program or transition function 

Il : Q x (~ U V U { B, *}} -t Q x (~ U V U { B, *}) x {L, R} 

(which is a partia! function) 
q0 the initial state o f the machine, such that Qo E Q 
F a set o f final states, such that F c Q 
V the auxiliary alphabet 
B a special symbol, the blank symbol 
* a special symbol to mark the beginning o f the tape 

The special symbol is used to indicare the leftmost position 
o f the tape, and helps to control the head's motion. The tran­
sition function (program) has a pair composed by the current 
state and the symbol currently being read in the tape as its 
arguments in order to determine a new state, a symbol to be 
written over the tape, and the direction of the head's moves 
(either left (L) or right (R)). We denote the transition function 
by Il(p,a1,) = (q,av,m). 

Itissupposedthatp, q E Q ,a1"av E (:EUVU {B,*})and 
mE {L, R}). 

B. On Parallel Machines Taxonomy 

There exists a number of parallel machine classification 
criteria [HWA84]. Since parallel machines can be seen as a 
set of processors working cooperatively in the solution of a 
computational problem or algorithm, a relationship between 
these criteria (which are known as Flynn's taxonomy) and the 
ones used to classify Turing Machines can be established. 

One can improve the performance of a computing system 
by applying parallel techniques into two ofthe system's com­
ponents: its memory and its processing. As for the processor, 
one can change the number o f processors used in the system, 
as well as change the connections between them. Usually, the 
type of connection between the processors and the system's 
memory defines the type o f parallelism being executed/used. 

In shared memory parallel compu ter systems, the memory 
is accessible to each individual processor, and the communi­
cation among processors is carried out through reading and 
writing in the system's memory. In distributed memory par­
aliei systems, only the memory individually connected to a 
particular processor is accessible to that processor. Commu­
nication among processors is made by message passing from 
a processor to another. 

In order to simulare shared memory parallel machines, we 
have used a Turing Machine with one tape to represent the 
shared memory and a control unit which manage the heads 
(each of which represents a processor). lt is possible to in­
crease the number of tapes and the number of control units, 
where each control unit can have one or more heads. Since 



TABLEI 

CLASSIACATION TABLE. 

Tape cu Heads Description 
s s s original Thring Machine 
s M s shared-memory TM 
s s M single CU, multiple heads 
s M M multi pie CUs, multiple heads 
M s s multiple tapes 
M M s message passing 
M s M multiple processors 
M M M cluster 

one has the possibility of using a Thring Machine with multi­
pie heads working over the tape (memory), it is clearly possi­
ble to simulate parallel computers with distributed memory. 
The study presented in this paper will focus on the shared­
memory variant. 

In [WOR97] the definition of multiple tapes, multiple 
heads, multiple control units Thring machines, denoted by 
MMM, is seen as a cluster. Notice that the processors of 
a parallel Thring Machine are controlled by the same pro­
gram, but each individual processar (head) decides its own 
operation over the tape. Communication between processors 
is done by message passing mechanisms, which suggests a 
notion of a distributed aJgorithm. Therefore, this machine 
model can be seen as a model o f distributed computing. 

Table I presents a classification of different Turing Ma­
chine models. 

C. On Turing Machines with Multiple Heads 

Parallel Thring Machines can also be thought of as a 
combination of standard Thring Machines working over a 
single tape [WIE95]. Each individual processar of a par­
aliei machine can then be represented by a standard Thr­
ing Machine. It is important to observe that some authors 
e.g. [WIE95, YAN90] define parallel Thring Machines as a 
non-deterministic Thring Machine with a single tape. How­
ever, this definition leads to what is known as false concur­
rency, which is unsuitable as a model for a large class of 
problems. The formal definition of a PTM is as follows. 

Definition 1 A 
a 9-tuple M 

Parallel Turing Machine (PTM) is 
= (Q , T, :E, UC, F , Qo, e, 6, {3) where: 

136 

Q finite state set 
T tape alphabet 
:E input alphabet, :E C T 
CU control unit 
F set offinal states 
Qo initial state 
e empty symbol 
ó transitionfunction 
{3 blank symbol 

The program function II = Q x :E i Q x T1 x D x A where: 

TI 
D = 
A = 

{:Eu é} 
{R , L , S} 
{0, 1} ('0' does not, '1 ' activates heads) 

Each contrai unit, specified by C U , reads symbols from 
cells i being pointed by heads j. Formally: 

uc : Q X N-+ N 
UC = {(q, {P I,I, · · · ,Pi,j } )jq E Q , Pi.j E /N} 

In the initial state, the PTM has only one active head, it is 
in state Qo, and pointing to the leftmost tape position. The 
input string is written on the tape, beginning in the leftmost 
cell. Cells on the right o f the input string are filled with blank 
symbols. The PTM has at least one active head at each in­
stant of time. Each individual head contains a copy of the 
symbols which control the transition to the next state, and 
every head executes the same transition function. There is a 
distinction between active heads which are currently working 
over non-terminating states, and passive heads which are the 
ones currently at final states. There is also a clear distinction 
between the empty symbol and the blank symbol. The com­
putation works as follows: at each moment the PTM has one 
or more active processors. Each processar has a read/write 
head and a copy o f the information which contrais a state. In 
that way every processar executes the same program func­
tion. At any moment, each processar is exactly at one state 
in the set Q. As in the standard model, the tape is infinite to 
the right. 

The PTM complexity measure definition is analogous to 
the standard Thring Machine complexity definition. The 
PTM's parallel execution time PT(n) is defined as the 
(largest) number of execution steps taken by NI for each in­
put string of length n . The space complexity PS(n ) of the 
PTM is defined as the distance from the leftmost cell of the 
tape taken for a head to scan a symbol o f length n. 

A computation step of a PTM is defined as the parallel 
execution the following tasks. The transition function defines 
the values of the transition relation based on its current state 
and on lhe symbol being read on the tape. I f the value o f the 
head's activator is equal to one, the processar makes a copy 
of itself. Each copy of the processar is added to machine, 



I 
l 

and from that point on, the new head shall act independently. 
According to the symbol scanned by the head, the processor 
executes one of the following: 

a transition to a new state; 
if new state = final state 

then processor passive 
else 

a rewriting of the current symbol ; 
if e read 

then no-write operation 
"if two heads attempting write on same cell 

then priority to hea d first act i vated ; 

Passive processors shall not execute any other action. One 
should also notice that the definition of the PTM not only 
allows the creation of processors, but also their elimination. 
PTM processors are controlled by a single program, but each 
processor independently decides about its own next move. 

III . THE PRACTICAL APPROACH: lMPLEMENTING A 

PARALLEL TURING MACHINE PROTOTYPE 

In order to simulate shared-memory parallel machines, we 
implemented PTM model in the prototype. This PTM has 
only one infinite tape, one control unit anda variable number 
of heads which execute the instructions defined by the pro­
gram. The control unit controls the execution, creation and 
destruction of heads, and manages confticts and dependen­
cies. 

In order to simulate concurrent behaviour, one has to think 
of the following considerations. Concurrency occurs when­
ever two or more processes interact with each other in or­
der to solve a problem. This may require parallelisation of 
algorithms and the use of parallel and distributed architec­
tures. If two concurrent processes need to share common 
resources, such as the memory space, their interaction can 
lead to what is known as race condition [TAN95], where the 
process execution ordering in time determines the result. The 
race condition may also lead to a behaviour that, in general, 
cannot be reproduced and is known as non-deterministic or 
non-functional behaviour. We define process synchronisa­
tion as the forced serialisation of events run by asynchronous 
concurrent processes [SHA96]. For instance, suppose that 
two heads are concurrently and asynchronously processing 
two distinct events. Since these heads are concurrent and 
asynchronous the events can happen at any instant, and in 
any order, even simultaneously. Two heads can be unified 
after a certain point (known as synchronisation point). The 
heads' synchronisation defines two kinds of synchronisation, 
synchronous and asynchronous [AND91 ]. 

We have implemented an example parallel program which 
computes the square function. This program allows the study 
o f parai lei computing notions, such as computability and per­
formance issues. 

The concept of computability is established by the fact 

137 

I 
J 

TABLEll 

EXECUTIONS OF I 0 SQUARED WITH SEVERAL HEADS. 
No. No. Percentage No. 

heads iterations operations 
I 10201 100,0% 10201 
2 5161 51,6% 10165 
3 3481 34,1% 10131 
4 2635 25,8% 10086 
5 2135 20,9% 10067 
10 1150 11 ,3% 10142 
30 504 4,9% 10701 
50 399 3,9% 10503 

-!DI 
1\ 
\ 

4 '\. . 
' • 
l • 11 n 1~ u 1!1 010 • • • u l iiJ" 

Hnl\b 

Fig. I. Relation between lhe number of iterations and heads used. 

that Parallel Turing Machine can be simulated by Standard 
Turing Machines (or equivalent). Thus, the computational 
power, represented by the class of problems solved by the 
standard machine, and just a few problems can be solved 
more easily ancJ/or with more velocity. The facility is associ­
ated with the concept of the added computational resources. 
The velocity is associated with performance, that is, the time 
that is taken to solve the whole problem. The processing 
time does not mean number of operations carried out in each 
head or number of interventions of the control unit to solve 
the confticts, is the interval o f time that the program took to 
be executed running. In this case, the time was measured in 
iterations. 

The Concurrency is studied with the purpose of solving the 
problem in a shorter period o f time, through the utilisation o f 
more than one head (processor). For instance, we can cal­
culate, ten squared using one, two, three, ten or thirty heads. 
Table Il relates the number of iterations with the number of 
heads used, and gives the percentage of the processing time 
in relation to the processing time with a single head (perfor­
mance) and the number of confticts generated by the use of 
the heads. Figure 1 presents the same information in a graph­
ical form. 

From these experiences, students notice the performance 
increase in processing with the use of more than one head. 
On the other hand, it is clear that to excessively increase the 
number o f heads does not reduce the processing time. There 



is an ideal number o f heads to be used, which compares the 
processing time reduction with the increase of conflicts (effi­
ciency). 

Severa! situations were identified and analysed in order to 
maintain coherence computation. They are the following: 

• more than one head trying to read the same cell on the 
tape; 

• more than one head trying to write a different symbol in 
the same cell on the tape; 

• more than one head trying to write different symbols in 
the same cell on the tape; 

• one head trying to read while another tries to write in 
the same cell on the tape; and 

• severa! heads reading and writing in different cells on 
the tape. 

Some of these situations were understood as conflicts, and 
due to this they were treated by the control unit. This unit 
applies the adopted access policy, and defines what has be 
done in this type o f cases. The adopted policy was: 

• reading can always be done concurrently; 
• in case of a conftict between reading and writing, must 

give priority to reading; 
• in case of a writing conftict, we must always do the ex­

clusive writing, i.e., only one head can perform a task at 
a given time (in a specific program, where the result is 
given by the number of cells used), in this way we have 
situations of postponement of tasks for conftict resolu­
tion. 

A. An Algorithm for Conftict Resolution 

The algorithm is described as follows: 
I. The computation begins with one head, which scans the 

tape counting up to three; then the head returns to square 
one in the tape 

2. After reaching square 3, a new head is created 
3. A new head always returns to square one. Then it starts 

the computation, substituting the first symbol read 
4. I f necessary, A new head is created o ver the second tape 

cell. This new head then moves to th~ right until it 
reaches a blank symbol, writes an X over it, and restarts 
the computation from square one on the tape 

5. If there is no symbol to substitute, the computation 
halts. 

In the algorithm, there is no fixed set of states associated 
to each head, as every head works over every symbol. As a 
result, we reduce the size o f the transition table and we have 
a greater degree o f independence among heads (this is dueto 
the fact that a head does not need to wait for a given symbol 
to begin the computation). 

We can also study additional models of parallel com­
puting in the prototype. For instance, we have studied 
some modifications over the Concurrent Reading Concur-

138 

Fig. 2. Conflict situation in the running program x2. 

rent Writing (CRCW) model, which allows concurrent ac­
cess for reading and writing operations can be considered, 
such as [JáJá92, GOU95] : 

• COMMON: this model allows concurrent read­
ing/writing only when processors are trying to write the 
same symbol 

• ARBITRARY: it allows an arbitrary processor to write 
a symbol 

• PRIORITY: it assumes that processors are linearly or­
dered and gives priority according to their correspond­
ing indexes. 

This simulator use the PRIORITY model, we constructed 
a PTM to compute the square function. Whenever a con­
ftict situation occurs, the head indexed by the smallest num­
ber is given priority to write over the cell, whereas the other 
confticting head writes over the next cell containing a blank 
symbol. 

Conftict situations are detected by the prototype as fol­
lows. Figure 2 shows the exact position after 33 iterations 
out of 1244. At the top of the Figure, the cells in black in­
dicate that there is more than one head trying to write over 
them. In our example, the two heads positioned over cell 3 
are trying to write the symbol "A" over the number " I". The 
master program allows only one head to execute this instruc­
tion and then moves to cell 4. The other head stays put, and 
does nothing. 

Figure 3 indicates that there is another head, previously at 
cell 4, but we can notice from the picture that only one o f the 
heads (which is in state q4 ) is trying to write over a cell. The 
head currently at q3 is trying to read a tape symbol and then 
move to the left. As this is not a conftict situation, the two 
heads execute their instructions and then move to the position 
indicated by their programs (the head which is writing a "B" 
moves to the right (R) and the head which is only reading a 
symbol moves to the left (L)). 



Fig. 3. Conftict solution. 

With this study, we can identify the importance of the 
communication mechanism since the shared memory model 
required communication between the heads and the control 
unit. This was obtained through the addition of a fourth com­
ponent in the transition function that describes the program. 
This unit manages confticts, the creation, and exclusion of 
heads. 

Finally, it is important to emphasise the study for this im­
plementation. Two basic algorithms were developed. The 
first algorithm doubles the value to be squared in the tape (it 
multiplies the number by itself). Then, different heads were 
created in order to carry out the sums, as multiplication can 
be represented by successive sums. This model allowed the 
heads to execute, different tasks, which would make difficult 
the definition and formalisation of a corresponding Turing 
Machine. However, in the second algorithm, which was ef­
fectively implemented, it was used only one program for ali 
heads. Executing a cooperative work; that is, they cooperated 
in ali the tasks. 

IV. CONCLUSIONS 

This work is based on parallel machines theory, and es­
tablishes a relationship between practical aspects of parallel 
computing and theoretical concepts from computing theory. 
Our aim was to show that by using the notion of Parallel Tur­
ing Machines one can understand and learn parallel comput­
ing through examples implemented on a prototype, since one 
can visual i se in a clear and concrete way a number o f parallel 
computing notions such as performance evaluation, load bal­
ancing, synchronisation, and process communication. Our 
model shows to be an adequate tool to work on these notions, 
since we can see in the examples we have implemented that 
the increase in the number of heads (processors) renders a 
smaller number of instructions. Extensions of this study to 
a larger class of parallel computing models via Turing Ma-

139 

chines are currently being investigated. 

REFERENCES 

[AND91] ANDREWS, Gregory R. Concurrent programming: principies 
and practice. Redwood City: Benjamin/Cumrnings, 1991. 637p. 

[DIVOO] OIVERIO, T.; MENEZES, P. Teoria da computação: máquinas 
universais e computabilidade. Second.ed. Porto Alegre: Sagra­
Luzzalto, 2000. (Livros Didáticos, v.5). 

[GOU95] GOULART, Peter C. el ai. Paralelismo: algoritmos e complex­
idade. [S.I.]: PPGC da UFRGS, 1995. (RP 306). 

[HWA84] HWANG, K.; BRIGGS, F. A. Computer architecture and par­
aliei processing. New York: McGraw-Hill, 1984. 846p. 

[JáJá92] JáJá, Joseph. An introduction to parallel algorithms. Reading: 
Addison-Wesley, 1992. 

[LEW99] LEWIS, H.; PAPADIMITRIOU, C. Elements of the theory of 
computation. [S.I.]: Prentice Hall, 1999. 

[MAROI] MARQUEZAN, C. C. et ai. Learning concurrency using parallel 
Thring Machine. In: PROC. OF THE 7TH WORLD CONFER­
ENCE ON COMPUTER EDUCATION, 200 1. Copenhagen. 
Anais . .. [S.I.: s.n.], 2001. 

[MIN67] MINSKY. M. L. Computation: finile and infinite machines. En­
glewood Cliffs: Prentice Hall. 1967. 

[00189) ODIFREDDI, Piergiorgio. Classical recursion theory: the the­
ory o f functions and seis o f natural numbers. Amsterdam: North­
Holland, 1989. Studies in Logic and lhe Foundations of Mathe­
matics. 

[ROG67) ROGERS JR, H. Theory of recursive functions and effective 
computability. [S.I.): McGraw-Hi ll, 1967. 

[SHA96] SHAY. William A. Sistemas operacionais. São Paulo: Makron 
Books do Brasil, 1996. 758p. 

[TAN95] TANENBAUM, Andrew S. Siste mas operacionais modernos. 
Rio de Janeiro: Prentice Hall do Brasil. 1995. 493p. 

[VAN90) VAN EMDE BOAS, P. Machine models and simulations. In: 
LEEUWEN, J. van (Ed.). Handbook of theoretica l computcr 
sciencc. Amslerdam: Elsevier Science, 1990. v.A, p. l-66. 

[WIE95) WIEDERMANN, J. Quo vadetis, parallel machines models. In: 
LEEUWEN, J. van (Ed.). Computer scicncc today. Berlin: 
Springer, 1995. p. IOI- 114. (Lecture Notes in Computer Science, 
v. IOOO). 

[WOR97] WORSCH, T. On parallel Thring Machines with multi-head con­
trol unils. Parallel Computing, v.23, p. l683-1697, 1997. 


