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Abstract-
This paper evaluates the performance gains provided by 

VIA, ao user-level communication protocol, when compared 
to TCPIIP, a traditional, multilayered communication 
protocol. To achieve this purpose we ruo five distinct 
applications using the same network card and switch, and just 
change the communication protocol. For ali but one 
application, the speedup of TCPIIP was between 28% and 
97% that of achieved by VIÃ. We further ruo the same 
applications with a hardware implementation of VIA, to 
evaluate the gains that a hardware implementation could offer 
over a software implementation. For applications with high 
bandwidth demand, the hardware support helped to improve 
performance from 20% to 114%. Surprisingly, for one 
application, TCP/IP performs equally to the hardware 
implementation. 

Keywords-- VIA, User-Level Communication Protocols, 
TCPIIP, Communication Protocols Evaluation 

I. INTRODUCTION 

In the Jast few years, we have seen a continuous 
improvement in the performance of network; both in 
reduced Jatency and in increased bandwidth. These 
improvements have motivated interest in the development 
of applications that can take advantage of parallelism in 
clusters of standard workstations. Often, these applications 
use standard message passing libraries, based in standards 
such as MPI [MPI). However, ·not ali applications have 
benefited from network improvements. The main reason is 
that the software protocol overhead has remained. Initial 
efforts to reduce the software overhead of traditional 
system networking stacks [ABB 93, BRA 95, KA Y 93) 
were not sufficient. An altemative solution is to remove the 
operating system from the criticai path of communication, 
so that the application has direct access to the network card. 
In this case, the operating system is just called to set up the 
communication and mappings required to provide the 
application with direct and protected access to the network 
interface. From this time onwards, the application can send 
and receive data without further operating system 
involvement, which contributes to reduce the 
communication overhead. This approach is known as user
level communication protocol. 

Severa! academic user-level communication protocols 
have been developed for clusters to achieve low-latency 
and high-bandwidth communication [EIC 92, PAR 97, EIC 
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95, BLU 94). More recently, Intel, Compaq and Microsoft 
have decided to standardize such user-level communication 
protocols, creating the Virtual Interface Architecture (VIA) 
[VIA). This new protocol is being integrated with a new 
interconnection technology, InfiniBand [ffiA). 

The goal of this paper is to evaluate the performance 
gains provided by VIA, when compared to TCP/IP, a 
traditional, multilayered communication protocol. To 
achieve this purpose we run five distinct applications using 
the same network card and switch, and just change the 
communication protocol: Water from the SPLASH 
benchmark suíte [SIN 92) ; 3-0 FFT, IS and EP from NAS 
benchmark [BAI 91); and SOR, from [LU 95). We ran SOR 
and W ater with two different input sets: SOR internai 
elements of the matrix initialized to either zero (SOR-Z) or 
nonzero values (SOR-NZ); and Water with 288 and 1728 
molecules. For all but one appiication, the speedup of 
TCP/IP was between 28% and 97% that of achieved by 
VIA. TCP/IP outperformed VIA in just one application, 
SOR, with both input sets. 

We further run the applications with a hardware 
implementation of VIA, to evaluate the gains that a 
hardware implementation could offer over a software 
implementation. In two out seven executions, SOR-NZ and 
30-FFT, hardware support helped to improve performance 
from 20% to 114%. In four applications, SOR-Z, Water-
1726, Water-288, and IS (without the ROMA feature) the 
software performance is within 6% of the hardware. And 
finally, for the remaining application, EP, the VIA 
implementation in software actually outperforms the 
hardware implementation by 10%. Surprising1y, for both 
SOR data sets, TCPIIP performs equally to the hardware 
imp1ementation. We believe these resu1ts stem from 
inefficiencies in the VIA implementation o f MPI. 

This paper is organized as follows. Section 2 gives an 
overview of TCPIIP and the VI architecture. Section 3 
presents the applications used in the study and their results. 
Section 4 concludes the work. 

11. COMMUNICATION PROTOCOLS 

A. TCPIIP 

TCPIIP was developed by the United States Oepartrnent 
of Oefense (OoO) research project in order to connect a 



number of different networks designed by different vendors 
into a network of networks. The DoD designed TCPIIP to 
be robust and automatically recover from any node or 
network failure. However, the reliability provided by 
TCP/IP has a price, paid as overhead to the communication; 
to ensure reliable data transfer, protocol stack 
implementations like TCPIIP usually require data to be 
copied severa! times among layers and that communicating 
nodes exchange numerous protocol-related messages during 
the course of data transmission and reception. 

TCPIIP is composed of IP, responsible for routing 
individual packet of data from node to node; and TCP, 
responsible for breaking up the message into datagrams, 
reassembling them at the other end, and putting things back 
in the right order. TCP is also responsible for verifying the 
correctness of data delivery. TCP adds support to detect 
errors or lost data and to trigger retransmission until the 
data is correctly and completely received. 

In a typical implementation, a single data packet passes 
through these protocol Jayers. Each layer in the stack adds 
protocol information to the data packet. When the packet 
arrives at its destination, it must again pass through the 
protocol stack, this time in reverse. 

The number of protocol layers that are traversed, data 
copies, context switches and interrupts contributes directly 
to the software overhead. Also, the multiple copies of the 
data that must be maintained by the sender node and 
intermediate nodes until receipt of the data-packet is 
acknowledged, contributes to reduce memory resources and 
further slows down transmission. 
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B. VI Architecture 

The Virtual Interface Architecture (VIA) is a user-level 
memory-mapped communication architecture developed by 
the industry that aims to achieve Iow latency and high 
bandwidth communication within clusters of servers and 
workstations. The main idea is to remove the criticai path of 
communication from the operating system kernel. The 
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operating system is called just to control and setup the 
communication. Data is transferred directly to the network 
by the sending process and is read directly from the 
network by the receiving process. Even though VIA allows 
applications to bypass the operating system for message 
passing, VIA works with the operating system to protect 
memory so that applications use only the memory allocated 
to them. 

The basic components of VIA as defined by the VIA 
Specification [VIA] are: 

• VI consumer - The VI consumer is a software 
process that communicates through a VI. An 
application program, a standard operating 
system communication facility (such as an 
application program), and a VI user agent (see 
below) are examples of VI consumers. The VI 
consumer posts requests, in the form of 
descriptors, to the VI provider to send or 
receive data. 

• VI provider - The VI provider consists of a 
physical network adapter - the Network 
Interface Card (NIC) - and a kernel agent, such 
as a device driver. The NIC implements the 
VIs, work queues, and completion queues. 
Beside this, it also performs the data transfer 
functions. The VI kernel agent (described 
below) performs the resource management 
necessary to maintain the VI. 

• VI user agent - The VI user agent is a software 
component that enables an operating system 
communication facility to utilize a particular 
VI provider. The VI user agent issues 
commands to create, manage, and destroy VI 
instances under the control of the VI kernel 
agent. The VI user agent abstracts the details of 
the underlying VI NIC hardware in accordance 
with an interface defined by the operating 
system communication facility. 

• VI kernel agent - The VI kernel agent is a part 
of the operating system that acts as a device 
driver for the VI NIC. It includes the kernel 
software necessary to register communication 
and manage VIs. 

• Virtual interface - A virtual interface is the 
interface between a NIC and a process (such as 
a data transfer operation) that allows the VI 
direct access to the process' memory. The VI 
consists of two work queues: a send and a 
receive queue. 

• Completion queue - A completion queue 
contains information about completed 
descriptors. lt can be used to create a single 
point of completion notification for multiple 
queues. 



Figure I depicts the interaction between VI components 
and the application program. 

VIA supports two types of data transfers: Send-Receive, 
that is similar to traditional message-passing model, and 
Remote Direct Memory Access (ROMA), where the source 
and destination buffers are specified by the sender, and no 
receiver is required. VIA defines two ROMA operations, 
ROMA Write and ROMA Read, to respectively write and 
read remote data. 

Ill. PERFORMANCE EVALUATION 

A. Experimental Platform 

Our experiments were performed on a cluster of 16 
SMP PCs. Each PC contains two 650 MHZ Pentium m 
processors. For the results presented in this paper, we used 
just one processar on each node. Each processor has a 256 
Kb L2 cache and each node has 512 Mb of main memory. 
All nodes run Linux 2.2.14-5.0. 

Each node has two network cards: (a) Intel 
EtherExpress Pro 10/ 100; and (b) Giganet cLAN NIC. The 
EtherExpress Pro 10/100 card is connected to a Micronet 
SP624C 10/IOOMbps Dual-Speed Switch. The Giganet 
cLAN card is connected to a Giganet cLAN 5300 switch. 

To run VIA on the Intel EtherExpress Pro 10/ 100 card, 
we use M-VIA version 1.0 [MVI], a software 
implementation of VIA for Linux. 
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Fig. 2 - Latency 

Figures 2 and 3 show the latency and bandwidth of 
TCP/IP and M-VIA on Intel EtherExpress Pro 10/100 card 
and VIA on Giganet. The figures show that the latency of 
M-VIA is 70% of the TCPnP. Giganet 's latency is an order 
of magnitude smaller than on Ethernet. 
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TABLEI 

'"" 

SEQUENTIAL T IMES OF APPLICATIONS 

Program Size Sequential Standard 
Time (msec) Deviation (%) 

228 433724,3 0,01 

4096 X 4096, 48620,3 0,01 

50 iterations 

4096 X4096, 47593,6 0,02 

50 iterations 

N = 2
23

, Bm"" = 15102,5 0,13 
215

, 10 iterations 

288 molecules, 2285,4 0,07 

5 iterations 

1728 molecules, 82238, 1 0, 1 

5 iterations 

64 X 64 X 64, 6155,7 0,05 

lO iterations 

B. App/ications 

We first evaluate the performance of the communication 
protocols. For this purpose, we used the same network card, 
Ethemet, running applications with different 
communication protocols, TCP/IP and M-VIA. Then, we 
evaluate the impact of the underlying network in 
application performance. For this purpose, we run 
applications on two distinct networks, Ethemet and 
Giganet. We used five applications for both experiments: 
Water from the SPLASH benchmark suite [SlN 92]; 3-D 
FFT, IS and EP from NAS benchmark [BAI 91]; and SOR, 
from [LU 95]. We ran SOR and Water with two different 
input sets: SOR internai elements o f the matrix initialized to 
either zero or nonzero values; and Water with 288 and 1728 
molecules. The parallel applications were ported to MPI 
[MPI] from a previous version [LU 95] that used PVM 
[GEI 92]. We chose MPI because it has an implementation 



to VIA, called MVICH [MCH]. which supports both M
VIA and Giganet. Application code is exactly the same on 
ali possible configurations, not requiring any code 
adaptation. 

We used MPICH 1.2.0 in our experiments for TCPIIP 
and MVICH 1-aJpha 5 for VIA. The implementation of 
MVICH is in the early stages, so it is neither completely 
stable nor optimized for performance yet. Thus the VIA 
results presented here can become better with an optimized 
version of MVICH. We run the applications with and 
without RDMA (refer to section 2) for the tests with VIA. 
This option is enabled during the compi1ation of MVICH. 

The performance of the applications running MPICH -
so TCP/IP - on Giganet was poor. The execution times, 
when compared with MPICH on Ethemet, were between 
1,12 and 12,4 times slower. So we do not report the results 
o f this configuration on this paper. 

TABLEII 
MESSAGES ANO D ATA AT 8 PROCESSORS 

Numof Total MdMsg BWper 
Program Messages Transfers Size CPU 

(Kilobytes) (Kb/m) (MB/s) 
EP 7 0.3 0,04 o 

SOR-Zero 1372 10981 8,00 0,10 
SOR-NZ 1372 10981 8,00 0,14 

IS Class A 2024 360453 178,09 2,76 
Water-288 620 1483 2,39 0,36 

Water-1728 620 8908 14,37 0,07 
3-D FFf 686 39424 57,47 1,28 

The sequential execution times for the applications are 
presented in table I. Each application was run lO times; the 
times presented are an average of these values. We aJso 
present the standard deviation o f the times. 

Table ll shows the total amount of data and messages 
sent by the applications, as well as the medium message 
size (in kilobytes per message) and the bandwidth per 
processar, when running on 8 nodes. 

C. Results 

Table lli shows the application 's speedups for 8 
processors. More detailed results are given in figures 4 to 
10. We present the speedups for 8 processors because IS 
and FFf did not run for 16 processors with ali 
configurations. We also could not run IS Class A for 4 and 
8 CPUs using MVICH on Ethemet with RDMA. We 
believe it occurred because a bug in the interface between 
MVICH and M-VIA, since the version on Giganet runs. 

The table shows 3 classes of applications: 
• Applications insensitive to both 

communication protocol and hardware 
platform. SOR performs equal or better in 

TCP/IP than in VIA, even with a better 
hardware support. 

• Applications sensitive to the communication 
protocol but insensitive to hardware platform. 
EP and Water perform equal or better in 
Ethemet than in Giganet, when using the same 
communication protocol. 

• Applications sensitive to both communication 
protocol and hardware platform. 3-D FFf and 
IS Class A performs better with VIA than IP. 
Also, Giganet is effective in improving 
performance. 

TABLE l1I 
SPEEDUPS - 8 PROCESSORS 

Application MPICH MVICH 

Eth Eth Eth Gig Gig 
RDMA RDMA 

EP 7,48 8,48 8,48 8,31 8,29 

SOR-Zero 3,66 3,15 3,23 3,59 3,52 

SOR- 4,84 3,88 3,84 4,51 3,97 
Nonzero 

Water-288 4,59 9,16 9,04 8,92 8,96 

Water-1728 5,33 6,21 8,42 5,42 5,40 

3-D FFf 1,63 1,68 2,42 3,61 3,47 

IS Class A 0,94 3, 18 NA 3,22 4,89 
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C. I Applications lnsensitive to Both Communication 
Protocol and Hardware Platform 

Red-Black SOR 

Red-B1ack Successive Over-Relaxation (SOR) is a 
method for solving parallel differential equations. The 
program divides the red and the black array into roughly 
equal size bands of rows, and each band is assigned to a 
processar. Communication occurs across the boundary rows 
between bands: each processar sends the boundary rows to 
its neighbors. 

We run Red-Biack SOR with a 4096 X 4096 matrix for 
50 iterations. In SOR-Z, edge elements are initialized to I 
and ali other to O, whereas in SOR-NZ all elements are 
initialized to non-zero numbers. The results are shown on 
figure 4 and 5. The improvement in speedup obtained by all 
communication protocols in SOR-NZ is due its better load 
balancing, when compared to SOR-Z. Load imbalance 
occurs in SOR-Z because floating-point computations 
invo1ving zeros take longer than those involving non-zeros, 
causing the processors working on the middle parts of the 
array to take longer between iterations [LU 95]. 

Surprisingly, VIA was not effective in SOR. For SOR
Z, the speedup of MVICH is 91 %-97% that of MPICH. For 
SOR-NZ, the speedup of MVICH is 82%-10 I% that o f 



MPICH. Note that, for 2 processors, the speedup of both 
MVICH on Ethemet and Giganet are near linear, while the 
speedup of MPICH is between 1.18 and 1.24. Nevertheless, 
for 4 processors, the speedup of both MVICH and MPICH 
maintains near 2, while the speedup of MPICH grows to 
2.2. We decided to examine why this occurs. The 
Multiprocessing Environrnent library (MPE) was used to 
profile the application. Jumpshot, a graphical visualization 
tool for parallel programs, was used to visualize the results. 
Both applications are distributed together with MPICH. 

The result showed that the MPI_Recv primitive 
implementation on MVICH is slower than on MPICH for 
any number of nodes. For 2 nodes, the speedup is better 
because this primitive is invoked less time than for 4 and 8 
nodes, so the other MPI primitives, which are faster on 
MVICH than on MPICH, hides the overhead to this call. 

C.2 Applications Sensitive to the Communication Protocol 
But Insensitive to Hardware P1atform. 

EP 

The Embarrassingly Parallel program is part of the NAS 
parallel benchmark suite. It evaluates an integral by means 
of pseudorandom trials. This kemel requires virtually no 
inter-process communication; the only communication is 
summing up an integer list at the end of the program. The 
processor O receives the lists from each processar and sums 
them up. 

The c1ass A prob1em, that generates 228 pairs of random 
numbers, was solved in our experiments. The results are 
shown on figure 6. The super linear speedup achieved by ali 
configurations is due the cache effect. 

The use of VIA resu1ted in a small improvement in 
performance, since the communication is insignificant: For 
16 processors, the speedup of MPICH was 88% that of 
MVICH on Ethemet and 97% that of MVICH on Giganet. 
For the same reason, the use of RDMA was not effective in 
improving performance. 

When comparing VIA on Ethemet and Giganet, 
Giganet's lower latency and higher bandwidth do not 
contribute to reduce computation time. In fact, Giganet's 
speedup was 90% that of Ethemet using VIA. Again, the 
insignificant communication among processes is 
responsib1e by this result. 

Water 

Water is a N-body molecular application that evaluates 
forces and potentials in a system of water molecules in 
liquid state. The algorithm equally divides the water 
molecules among processors. The algorithm has two key 
phases: (a) the force computation phase, where a processar 
update forces due to the interaction of its molecules with 
those of other processors; and (b) the displacement 
computation phase, where a processar updates the 
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displacements of its molecules based on the forces 
calculated in the previous phase. 

In our experiments we run Water with two different data 
sets, 288 and 1728 molecules. The results are shown on 
figures 7 and 8. Again, the super linear speedup achieved 
by ali configurations is due the cache effect. The low 
computation I communication ratio helps to explain the 
better speedup achieved by Water-1728 for ali 
configurations, when compared to Water-288. Table III 
illustrates this situation. While the bandwidth per process is 
0,36 MB/s in Water-288, the bandwidth in Water-1728 is 
0,07 MB/s. 

Again, MVICH outperformed MPICH: for Water-1728, 
the MPICH speedup was just 59% that MVICH on Ethemet 
without/without and 63% that of MVICH on Giganet 
with/without RDMA. For Water-288, the MPICH speedup 
was 47% that MVICH on Ethernet without/without and 
45% that of MVICH on Giganet with/without RDMA. 

For Water-1728 running on 8 CPUs, the RDMA Write 
support was quite effective in improving performance: both 
MVICH on Ethemet and Giganet performs better with the 
ROMA support than without it. For 16 processors, the 
performances of the configurations with and without 
RDMA are similar. This occurs because the average 
message size drops from 14,37 Kb when running on 8 
processors to 8,02 Kb, when running on 16 CPUs. For 
Water-288, ROMA did not improve performance because 
the medium message size is too small. 

When comparing VIA on Ethernet and Giganet, we see 
that Giganet's performed worst for Water- 1728 than 
Ethemet, and better for Water-288 than Ethemet. The 
exp1anation is the higher bandwidth per process required by 
Water-288. As the bandwidth required by Water-1728 is 
low, the difference between Ethemet and Giganet is small 
(less than 5%). 

Water-1728 has 1ess data communication and should 
therefore achieve better performance than Water-288. We 
would also expect similar performance for ali MVICH 
configurations. For smaller number of processors, 2 and 4, 
we did achieve quite good performance with ali MVICH 
configurations. For 1arger numbers of processors, we 
surprisingly only found consistent good results with 
MVICH-RDMA on Fast Ethemet. Fast Ethernet MVICH 
without ROMA performs well on 16 processors, as 
expected, but also shows bad performance at 8 processors. 
Giganet MVICH also performs badly for 8 processors. For 
16 it performs slightly worse than Fast Ethernet, as had 
been the case for EP. We believe that ali these problems lie 
in issues with the current implementation of MVICH. 
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C.3 Applications Sensitive to Both Communication 
Protocol and Hardware Platform 

IS 

lnteger Sort (IS), from the NAS benchmark, uses bucket 
sort to rank an unsorted sequence of keys. The algorithm 
divides up the keys among processors and each processor 
counts its keys, writing the result in a private array of 
buckets. After counting their keys, the processors form a 
chain, in which processor n send its local array of buckets 
to processor n+ 1, which adds the values received in its local 
array of buckets and forwards the result to the next 
processor. The last processor calculates the final result and 
broadcasts it. So, this problem requires significant data 
communication, as Table li shows. 

In our experiments we run IS Class A, that sorts 223 

keys ranging from O to 215 for 10 iterations. Recall that 
MVICH on Ethernet using RDMA Writing did not run. We 
believe this occurred because a bug in the interface between 
MVICH and M-VIA, since the version on Giganet runs. 
The results are shown on figure 9. 

MVICH outperformed MPICH because of the 
significant data communication required by the benchmark. 
This is the same reason why Giganet performéd better than 
Ethernet. IS is a communication bound application. 
Consequently, IS is bandwidth dependent. The MPICH 
speedup was just 29% that MVICH on Ethernet and 19% 
that of MVICH on Giganet with RDMA. The large medium 
message size combined with the high bandwidth 
requirement of IS explains way the RDMA support was 
effective in improving performance, when compared with 
the version without RDMA. 

3D-FFT 

3D-FFT solves a partia] differential equation using 
three-dimensional forward and inverse FFT's. The input 
array A is n1 x n2 x n3, organized in row-major order. The 
3-D FFT first performs an n3-point 1-D FFT on each of the 
n1 x n2 complex vectors, performing then an nr point 1-D 
FFT on each of the n1 x n3 vectors. Next, the resulting array 
is transposed into an n2 x n3 x n1 complex array and an n1-

point 1-D FFT is applied to each of the n2 x n3 complex 
vectors 

The computation on the array elements along the first 
dimension of A is distributed so that for any i, ali elements 
Aijk 0<=j<n2, 0<=k<n3 are assigned to a single processor. 
No communication is needed in the first two phases, 
because a single processor computes each of the n3-point 
FFTs or the n2-point FFTs. The communication occurs at 
the transpose phase, because each processor accesses a 
different set of elements afterwards. 
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The input used in the experiment was a 64 x 64 x 64 
array o f double precision complex numbers for I O 
iterations. Results are shown on figure I O. 

Again, MVICH outperformed MPICH: the MPICH 
speedup was 97% that MVICH on Ethernet; 67% that of 
MVICH with RDMA; and 45% that of MVICH on Giganet 
with/without RDMA. The high bandwidth requirement, 
1,28 MB/s, helps to explain why M-VIA performed better 
than TCPIIP, and why Giganet performed better than 
Ethernet. 

The medium size of each message, 58 Kbytes, helps to 
explain why MVICH outperformed MPICH. Again, with a 
large amount of data to be transferred, the bandwidth 
becomes decisive for achieve a good performance. 

- MYOi·EI'tROMA 
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FFT 

,' 

Fig. 10 - 3D-FFf 

IV. CONCLUSIONS 

This work presented (a) a performance evaluation of 
two communication protocols, TCP/IP, still widely used in 
cluster architectures, and VIA, a new user-level 
communication protocol, and (b) the impact o f the 
underlying network in application performance. For this 
purpose, we run applications on two distinct networks, 
Ethernet and Giganet. We run tive applications for ali 
possible configurations: Water, 3-D FFT, IS, EP, and SOR. 
We ran SOR and Water with two different input sets: SOR 
interna] elements of the matrix initialized to either zero or 
nonzero values; and Water with 288 and 1728 molecules. 
The performance of the applications running MPICH on 
Giganet was poor, so we do not report the results of this 
configuration on this paper. 

Our experiments identified 3 distinct classes of 
applications: 

• Applications insensitive to both 
communication protocol and hardware 
platform. For SOR, TCP/IP performed between 
3% and 20% better than VIA and equally to the 
hardware implementation. This occurs because 



of the MPI_Recv primitive implementation on 
MVICH that is slower than on MPICH for any 
number of nodes. For 2 nodes, the speedup is 
better because this primitive is invoked less 
time than for 4 and 8 nodes, so the other MPI 
primitives, which are faster on MVICH than on 
MPICH, hides the overhead to this cal!. 

• Applications sensitive to the communication 
protocol but insensitive to hardware platform. 
EP and W ater perform equal or better in 
Ethemet than in Giganet, when using the same 
communication protocol. For Water, the 
hardware support was not effective in 
improving performance because the data sets 
were too small, so the applications do not 
benefit from a better hardware support. For EP 
this occurs because bandwidth is quite small, 
thus after removing TCP/IP stack latency there 
is little room for the application to benefit from 
a faster network. 

• Applications sensitive to both communication 
protocol and hardware platform. 3-D FFT and 
IS Class A performs better with VIA than IP. 
Also, Giganet is effective in improving 
performance. This occurred because of the 
high communication bandwidth required by 
these applications. 

And finally, we showed that the RDMA support for 
VIA tends to be useful just when the medium message size 
of application is large. 
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