
TCP/IP versus VIA on Network ofWorkstations
Marcelo Lobosco, Anderson Faustino da Silva, Vítor Santos Costa e Claudio Amorim 1

1Programa de Engenharia de Sistemas e Computação, COPPE, UFRJ
Centro de Tecnologia, Cidade Universitária, Rio de Janeiro, Brazil

{lobosco, faustino, vitor, amorim@cos.ufrj.br}

Abstract-
This paper evaluates the performance gains provided by

VIA, ao user-level communication protocol, when compared
to TCPIIP, a traditional, multilayered communication
protocol. To achieve this purpose we ruo five distinct
applications using the same network card and switch, and just
change the communication protocol. For ali but one
application, the speedup of TCPIIP was between 28% and
97% that of achieved by VIÃ. We further ruo the same
applications with a hardware implementation of VIA, to
evaluate the gains that a hardware implementation could offer
over a software implementation. For applications with high
bandwidth demand, the hardware support helped to improve
performance from 20% to 114%. Surprisingly, for one
application, TCP/IP performs equally to the hardware
implementation.

Keywords-- VIA, User-Level Communication Protocols,
TCPIIP, Communication Protocols Evaluation

I. INTRODUCTION

In the Jast few years, we have seen a continuous
improvement in the performance of network; both in
reduced Jatency and in increased bandwidth. These
improvements have motivated interest in the development
of applications that can take advantage of parallelism in
clusters of standard workstations. Often, these applications
use standard message passing libraries, based in standards
such as MPI [MPI). However, ·not ali applications have
benefited from network improvements. The main reason is
that the software protocol overhead has remained. Initial
efforts to reduce the software overhead of traditional
system networking stacks [ABB 93, BRA 95, KA Y 93)
were not sufficient. An altemative solution is to remove the
operating system from the criticai path of communication,
so that the application has direct access to the network card.
In this case, the operating system is just called to set up the
communication and mappings required to provide the
application with direct and protected access to the network
interface. From this time onwards, the application can send
and receive data without further operating system
involvement, which contributes to reduce the
communication overhead. This approach is known as user
level communication protocol.

Severa! academic user-level communication protocols
have been developed for clusters to achieve low-latency
and high-bandwidth communication [EIC 92, PAR 97, EIC

140

95, BLU 94). More recently, Intel, Compaq and Microsoft
have decided to standardize such user-level communication
protocols, creating the Virtual Interface Architecture (VIA)
[VIA). This new protocol is being integrated with a new
interconnection technology, InfiniBand [ffiA).

The goal of this paper is to evaluate the performance
gains provided by VIA, when compared to TCP/IP, a
traditional, multilayered communication protocol. To
achieve this purpose we run five distinct applications using
the same network card and switch, and just change the
communication protocol: Water from the SPLASH
benchmark suíte [SIN 92) ; 3-0 FFT, IS and EP from NAS
benchmark [BAI 91); and SOR, from [LU 95). We ran SOR
and W ater with two different input sets: SOR internai
elements of the matrix initialized to either zero (SOR-Z) or
nonzero values (SOR-NZ); and Water with 288 and 1728
molecules. For all but one appiication, the speedup of
TCP/IP was between 28% and 97% that of achieved by
VIA. TCP/IP outperformed VIA in just one application,
SOR, with both input sets.

We further run the applications with a hardware
implementation of VIA, to evaluate the gains that a
hardware implementation could offer over a software
implementation. In two out seven executions, SOR-NZ and
30-FFT, hardware support helped to improve performance
from 20% to 114%. In four applications, SOR-Z, Water-
1726, Water-288, and IS (without the ROMA feature) the
software performance is within 6% of the hardware. And
finally, for the remaining application, EP, the VIA
implementation in software actually outperforms the
hardware implementation by 10%. Surprising1y, for both
SOR data sets, TCPIIP performs equally to the hardware
imp1ementation. We believe these resu1ts stem from
inefficiencies in the VIA implementation o f MPI.

This paper is organized as follows. Section 2 gives an
overview of TCPIIP and the VI architecture. Section 3
presents the applications used in the study and their results.
Section 4 concludes the work.

11. COMMUNICATION PROTOCOLS

A. TCPIIP

TCPIIP was developed by the United States Oepartrnent
of Oefense (OoO) research project in order to connect a

number of different networks designed by different vendors
into a network of networks. The DoD designed TCPIIP to
be robust and automatically recover from any node or
network failure. However, the reliability provided by
TCP/IP has a price, paid as overhead to the communication;
to ensure reliable data transfer, protocol stack
implementations like TCPIIP usually require data to be
copied severa! times among layers and that communicating
nodes exchange numerous protocol-related messages during
the course of data transmission and reception.

TCPIIP is composed of IP, responsible for routing
individual packet of data from node to node; and TCP,
responsible for breaking up the message into datagrams,
reassembling them at the other end, and putting things back
in the right order. TCP is also responsible for verifying the
correctness of data delivery. TCP adds support to detect
errors or lost data and to trigger retransmission until the
data is correctly and completely received.

In a typical implementation, a single data packet passes
through these protocol Jayers. Each layer in the stack adds
protocol information to the data packet. When the packet
arrives at its destination, it must again pass through the
protocol stack, this time in reverse.

The number of protocol layers that are traversed, data
copies, context switches and interrupts contributes directly
to the software overhead. Also, the multiple copies of the
data that must be maintained by the sender node and
intermediate nodes until receipt of the data-packet is
acknowledged, contributes to reduce memory resources and
further slows down transmission.

Vl-Aware
Applications Programs

Applications Programs

OS Vendor API
...••............

IOpen/CioseiM•p Memory
V I Provider API ~

SendiRcc:oive/RDMA R.eodiRDMA W

'

il - ~~ -~~ -~~ I VI Kemel Agent I
I VI Kemel Interface I 1W un un

VI Hardware (Media Dependent Interface)

Fig. I VI Component Interaction

B. VI Architecture

The Virtual Interface Architecture (VIA) is a user-level
memory-mapped communication architecture developed by
the industry that aims to achieve Iow latency and high
bandwidth communication within clusters of servers and
workstations. The main idea is to remove the criticai path of
communication from the operating system kernel. The

141

operating system is called just to control and setup the
communication. Data is transferred directly to the network
by the sending process and is read directly from the
network by the receiving process. Even though VIA allows
applications to bypass the operating system for message
passing, VIA works with the operating system to protect
memory so that applications use only the memory allocated
to them.

The basic components of VIA as defined by the VIA
Specification [VIA] are:

• VI consumer - The VI consumer is a software
process that communicates through a VI. An
application program, a standard operating
system communication facility (such as an
application program), and a VI user agent (see
below) are examples of VI consumers. The VI
consumer posts requests, in the form of
descriptors, to the VI provider to send or
receive data.

• VI provider - The VI provider consists of a
physical network adapter - the Network
Interface Card (NIC) - and a kernel agent, such
as a device driver. The NIC implements the
VIs, work queues, and completion queues.
Beside this, it also performs the data transfer
functions. The VI kernel agent (described
below) performs the resource management
necessary to maintain the VI.

• VI user agent - The VI user agent is a software
component that enables an operating system
communication facility to utilize a particular
VI provider. The VI user agent issues
commands to create, manage, and destroy VI
instances under the control of the VI kernel
agent. The VI user agent abstracts the details of
the underlying VI NIC hardware in accordance
with an interface defined by the operating
system communication facility.

• VI kernel agent - The VI kernel agent is a part
of the operating system that acts as a device
driver for the VI NIC. It includes the kernel
software necessary to register communication
and manage VIs.

• Virtual interface - A virtual interface is the
interface between a NIC and a process (such as
a data transfer operation) that allows the VI
direct access to the process' memory. The VI
consists of two work queues: a send and a
receive queue.

• Completion queue - A completion queue
contains information about completed
descriptors. lt can be used to create a single
point of completion notification for multiple
queues.

Figure I depicts the interaction between VI components
and the application program.

VIA supports two types of data transfers: Send-Receive,
that is similar to traditional message-passing model, and
Remote Direct Memory Access (ROMA), where the source
and destination buffers are specified by the sender, and no
receiver is required. VIA defines two ROMA operations,
ROMA Write and ROMA Read, to respectively write and
read remote data.

Ill. PERFORMANCE EVALUATION

A. Experimental Platform

Our experiments were performed on a cluster of 16
SMP PCs. Each PC contains two 650 MHZ Pentium m
processors. For the results presented in this paper, we used
just one processar on each node. Each processor has a 256
Kb L2 cache and each node has 512 Mb of main memory.
All nodes run Linux 2.2.14-5.0.

Each node has two network cards: (a) Intel
EtherExpress Pro 10/ 100; and (b) Giganet cLAN NIC. The
EtherExpress Pro 10/100 card is connected to a Micronet
SP624C 10/IOOMbps Dual-Speed Switch. The Giganet
cLAN card is connected to a Giganet cLAN 5300 switch.

To run VIA on the Intel EtherExpress Pro 10/ 100 card,
we use M-VIA version 1.0 [MVI], a software
implementation of VIA for Linux.

Llttney

....
._.. TCPAP (Eih) -A M.YIA (Eih)

....
• VIA(Gog)

1000

10 100 1000 10000

Fig. 2 - Latency

Figures 2 and 3 show the latency and bandwidth of
TCP/IP and M-VIA on Intel EtherExpress Pro 10/100 card
and VIA on Giganet. The figures show that the latency of
M-VIA is 70% of the TCPnP. Giganet 's latency is an order
of magnitude smaller than on Ethernet.

100000

142

'"

..
1

Program

EP

SOR-Zero

SOR-
Nonzero

IS Class A

Water-288

Water-
1728

3-D FFT

/
,/

/

/
/

/
/

.'

/

/ " ----·---
e -;=1

Fig. 3 - Bandwidth

TABLEI

'""

SEQUENTIAL T IMES OF APPLICATIONS

Program Size Sequential Standard
Time (msec) Deviation (%)

228 433724,3 0,01

4096 X 4096, 48620,3 0,01

50 iterations

4096 X4096, 47593,6 0,02

50 iterations

N = 2
23

, Bm"" = 15102,5 0,13
215

, 10 iterations

288 molecules, 2285,4 0,07

5 iterations

1728 molecules, 82238, 1 0, 1

5 iterations

64 X 64 X 64, 6155,7 0,05

lO iterations

B. App/ications

We first evaluate the performance of the communication
protocols. For this purpose, we used the same network card,
Ethemet, running applications with different
communication protocols, TCP/IP and M-VIA. Then, we
evaluate the impact of the underlying network in
application performance. For this purpose, we run
applications on two distinct networks, Ethemet and
Giganet. We used five applications for both experiments:
Water from the SPLASH benchmark suite [SlN 92]; 3-D
FFT, IS and EP from NAS benchmark [BAI 91]; and SOR,
from [LU 95]. We ran SOR and Water with two different
input sets: SOR internai elements o f the matrix initialized to
either zero or nonzero values; and Water with 288 and 1728
molecules. The parallel applications were ported to MPI
[MPI] from a previous version [LU 95] that used PVM
[GEI 92]. We chose MPI because it has an implementation

to VIA, called MVICH [MCH]. which supports both M
VIA and Giganet. Application code is exactly the same on
ali possible configurations, not requiring any code
adaptation.

We used MPICH 1.2.0 in our experiments for TCPIIP
and MVICH 1-aJpha 5 for VIA. The implementation of
MVICH is in the early stages, so it is neither completely
stable nor optimized for performance yet. Thus the VIA
results presented here can become better with an optimized
version of MVICH. We run the applications with and
without RDMA (refer to section 2) for the tests with VIA.
This option is enabled during the compi1ation of MVICH.

The performance of the applications running MPICH -
so TCP/IP - on Giganet was poor. The execution times,
when compared with MPICH on Ethemet, were between
1,12 and 12,4 times slower. So we do not report the results
o f this configuration on this paper.

TABLEII
MESSAGES ANO D ATA AT 8 PROCESSORS

Numof Total MdMsg BWper
Program Messages Transfers Size CPU

(Kilobytes) (Kb/m) (MB/s)
EP 7 0.3 0,04 o

SOR-Zero 1372 10981 8,00 0,10
SOR-NZ 1372 10981 8,00 0,14

IS Class A 2024 360453 178,09 2,76
Water-288 620 1483 2,39 0,36

Water-1728 620 8908 14,37 0,07
3-D FFf 686 39424 57,47 1,28

The sequential execution times for the applications are
presented in table I. Each application was run lO times; the
times presented are an average of these values. We aJso
present the standard deviation o f the times.

Table ll shows the total amount of data and messages
sent by the applications, as well as the medium message
size (in kilobytes per message) and the bandwidth per
processar, when running on 8 nodes.

C. Results

Table lli shows the application 's speedups for 8
processors. More detailed results are given in figures 4 to
10. We present the speedups for 8 processors because IS
and FFf did not run for 16 processors with ali
configurations. We also could not run IS Class A for 4 and
8 CPUs using MVICH on Ethemet with RDMA. We
believe it occurred because a bug in the interface between
MVICH and M-VIA, since the version on Giganet runs.

The table shows 3 classes of applications:
• Applications insensitive to both

communication protocol and hardware
platform. SOR performs equal or better in

TCP/IP than in VIA, even with a better
hardware support.

• Applications sensitive to the communication
protocol but insensitive to hardware platform.
EP and Water perform equal or better in
Ethemet than in Giganet, when using the same
communication protocol.

• Applications sensitive to both communication
protocol and hardware platform. 3-D FFf and
IS Class A performs better with VIA than IP.
Also, Giganet is effective in improving
performance.

TABLE l1I
SPEEDUPS - 8 PROCESSORS

Application MPICH MVICH

Eth Eth Eth Gig Gig
RDMA RDMA

EP 7,48 8,48 8,48 8,31 8,29

SOR-Zero 3,66 3,15 3,23 3,59 3,52

SOR- 4,84 3,88 3,84 4,51 3,97
Nonzero

Water-288 4,59 9,16 9,04 8,92 8,96

Water-1728 5,33 6,21 8,42 5,42 5,40

3-D FFf 1,63 1,68 2,42 3,61 3,47

IS Class A 0,94 3, 18 NA 3,22 4,89

143

C. I Applications lnsensitive to Both Communication
Protocol and Hardware Platform

Red-Black SOR

Red-B1ack Successive Over-Relaxation (SOR) is a
method for solving parallel differential equations. The
program divides the red and the black array into roughly
equal size bands of rows, and each band is assigned to a
processar. Communication occurs across the boundary rows
between bands: each processar sends the boundary rows to
its neighbors.

We run Red-Biack SOR with a 4096 X 4096 matrix for
50 iterations. In SOR-Z, edge elements are initialized to I
and ali other to O, whereas in SOR-NZ all elements are
initialized to non-zero numbers. The results are shown on
figure 4 and 5. The improvement in speedup obtained by all
communication protocols in SOR-NZ is due its better load
balancing, when compared to SOR-Z. Load imbalance
occurs in SOR-Z because floating-point computations
invo1ving zeros take longer than those involving non-zeros,
causing the processors working on the middle parts of the
array to take longer between iterations [LU 95].

Surprisingly, VIA was not effective in SOR. For SOR
Z, the speedup of MVICH is 91 %-97% that of MPICH. For
SOR-NZ, the speedup of MVICH is 82%-10 I% that o f

MPICH. Note that, for 2 processors, the speedup of both
MVICH on Ethemet and Giganet are near linear, while the
speedup of MPICH is between 1.18 and 1.24. Nevertheless,
for 4 processors, the speedup of both MVICH and MPICH
maintains near 2, while the speedup of MPICH grows to
2.2. We decided to examine why this occurs. The
Multiprocessing Environrnent library (MPE) was used to
profile the application. Jumpshot, a graphical visualization
tool for parallel programs, was used to visualize the results.
Both applications are distributed together with MPICH.

The result showed that the MPI_Recv primitive
implementation on MVICH is slower than on MPICH for
any number of nodes. For 2 nodes, the speedup is better
because this primitive is invoked less time than for 4 and 8
nodes, so the other MPI primitives, which are faster on
MVICH than on MPICH, hides the overhead to this call.

C.2 Applications Sensitive to the Communication Protocol
But Insensitive to Hardware P1atform.

EP

The Embarrassingly Parallel program is part of the NAS
parallel benchmark suite. It evaluates an integral by means
of pseudorandom trials. This kemel requires virtually no
inter-process communication; the only communication is
summing up an integer list at the end of the program. The
processor O receives the lists from each processar and sums
them up.

The c1ass A prob1em, that generates 228 pairs of random
numbers, was solved in our experiments. The results are
shown on figure 6. The super linear speedup achieved by ali
configurations is due the cache effect.

The use of VIA resu1ted in a small improvement in
performance, since the communication is insignificant: For
16 processors, the speedup of MPICH was 88% that of
MVICH on Ethemet and 97% that of MVICH on Giganet.
For the same reason, the use of RDMA was not effective in
improving performance.

When comparing VIA on Ethemet and Giganet,
Giganet's lower latency and higher bandwidth do not
contribute to reduce computation time. In fact, Giganet's
speedup was 90% that of Ethemet using VIA. Again, the
insignificant communication among processes is
responsib1e by this result.

Water

Water is a N-body molecular application that evaluates
forces and potentials in a system of water molecules in
liquid state. The algorithm equally divides the water
molecules among processors. The algorithm has two key
phases: (a) the force computation phase, where a processar
update forces due to the interaction of its molecules with
those of other processors; and (b) the displacement
computation phase, where a processar updates the

144

displacements of its molecules based on the forces
calculated in the previous phase.

In our experiments we run Water with two different data
sets, 288 and 1728 molecules. The results are shown on
figures 7 and 8. Again, the super linear speedup achieved
by ali configurations is due the cache effect. The low
computation I communication ratio helps to explain the
better speedup achieved by Water-1728 for ali
configurations, when compared to Water-288. Table III
illustrates this situation. While the bandwidth per process is
0,36 MB/s in Water-288, the bandwidth in Water-1728 is
0,07 MB/s.

Again, MVICH outperformed MPICH: for Water-1728,
the MPICH speedup was just 59% that MVICH on Ethemet
without/without and 63% that of MVICH on Giganet
with/without RDMA. For Water-288, the MPICH speedup
was 47% that MVICH on Ethernet without/without and
45% that of MVICH on Giganet with/without RDMA.

For Water-1728 running on 8 CPUs, the RDMA Write
support was quite effective in improving performance: both
MVICH on Ethemet and Giganet performs better with the
ROMA support than without it. For 16 processors, the
performances of the configurations with and without
RDMA are similar. This occurs because the average
message size drops from 14,37 Kb when running on 8
processors to 8,02 Kb, when running on 16 CPUs. For
Water-288, ROMA did not improve performance because
the medium message size is too small.

When comparing VIA on Ethernet and Giganet, we see
that Giganet's performed worst for Water- 1728 than
Ethemet, and better for Water-288 than Ethemet. The
exp1anation is the higher bandwidth per process required by
Water-288. As the bandwidth required by Water-1728 is
low, the difference between Ethemet and Giganet is small
(less than 5%).

Water-1728 has 1ess data communication and should
therefore achieve better performance than Water-288. We
would also expect similar performance for ali MVICH
configurations. For smaller number of processors, 2 and 4,
we did achieve quite good performance with ali MVICH
configurations. For 1arger numbers of processors, we
surprisingly only found consistent good results with
MVICH-RDMA on Fast Ethemet. Fast Ethernet MVICH
without ROMA performs well on 16 processors, as
expected, but also shows bad performance at 8 processors.
Giganet MVICH also performs badly for 8 processors. For
16 it performs slightly worse than Fast Ethernet, as had
been the case for EP. We believe that ali these problems lie
in issues with the current implementation of MVICH.

"
" '
..
•o

i

"

,

•o

o
o

" ..

"
A •O

i . .

M""'H-Gio
--MYK:H-Og ROMA

- - -l.rear

SOR.Z

7 •O
Nl.llftbetof~

Fig. 4 - SOR-Z

SOR·NZ

Nlmberof Proue1011

Fig. 5 - SOR-NZ

EP

•o
Nurnberof,~

Fig. 6 - EP

" •• •• .. ••

•o

,

••

•o

f

..

..
"
••
i •o

•

145

---MVICH-Eih

_.,_I.MCH-Eift ROMA

- """""""'" ---"""""""'"""""' --- Ur.el

-"""""""'"""""'
---~

Wtttr 211

•o .. " .. "
Fig. 7- Water 288

Wattr 1721

•o " " ••

Fig. 8- Water 1728

ISCLASSA

NumMr oi Proc"10f'l

Fig. 9 - IS Class A

C.3 Applications Sensitive to Both Communication
Protocol and Hardware Platform

IS

lnteger Sort (IS), from the NAS benchmark, uses bucket
sort to rank an unsorted sequence of keys. The algorithm
divides up the keys among processors and each processor
counts its keys, writing the result in a private array of
buckets. After counting their keys, the processors form a
chain, in which processor n send its local array of buckets
to processor n+ 1, which adds the values received in its local
array of buckets and forwards the result to the next
processor. The last processor calculates the final result and
broadcasts it. So, this problem requires significant data
communication, as Table li shows.

In our experiments we run IS Class A, that sorts 223

keys ranging from O to 215 for 10 iterations. Recall that
MVICH on Ethernet using RDMA Writing did not run. We
believe this occurred because a bug in the interface between
MVICH and M-VIA, since the version on Giganet runs.
The results are shown on figure 9.

MVICH outperformed MPICH because of the
significant data communication required by the benchmark.
This is the same reason why Giganet performéd better than
Ethernet. IS is a communication bound application.
Consequently, IS is bandwidth dependent. The MPICH
speedup was just 29% that MVICH on Ethernet and 19%
that of MVICH on Giganet with RDMA. The large medium
message size combined with the high bandwidth
requirement of IS explains way the RDMA support was
effective in improving performance, when compared with
the version without RDMA.

3D-FFT

3D-FFT solves a partia] differential equation using
three-dimensional forward and inverse FFT's. The input
array A is n1 x n2 x n3, organized in row-major order. The
3-D FFT first performs an n3-point 1-D FFT on each of the
n1 x n2 complex vectors, performing then an nr point 1-D
FFT on each of the n1 x n3 vectors. Next, the resulting array
is transposed into an n2 x n3 x n1 complex array and an n1-

point 1-D FFT is applied to each of the n2 x n3 complex
vectors

The computation on the array elements along the first
dimension of A is distributed so that for any i, ali elements
Aijk 0<=j<n2, 0<=k<n3 are assigned to a single processor.
No communication is needed in the first two phases,
because a single processor computes each of the n3-point
FFTs or the n2-point FFTs. The communication occurs at
the transpose phase, because each processor accesses a
different set of elements afterwards.

146

The input used in the experiment was a 64 x 64 x 64
array o f double precision complex numbers for I O
iterations. Results are shown on figure I O.

Again, MVICH outperformed MPICH: the MPICH
speedup was 97% that MVICH on Ethernet; 67% that of
MVICH with RDMA; and 45% that of MVICH on Giganet
with/without RDMA. The high bandwidth requirement,
1,28 MB/s, helps to explain why M-VIA performed better
than TCPIIP, and why Giganet performed better than
Ethernet.

The medium size of each message, 58 Kbytes, helps to
explain why MVICH outperformed MPICH. Again, with a
large amount of data to be transferred, the bandwidth
becomes decisive for achieve a good performance.

- MYOi·EI'tROMA

-- - lll'*f

FFT

,'

Fig. 10 - 3D-FFf

IV. CONCLUSIONS

This work presented (a) a performance evaluation of
two communication protocols, TCP/IP, still widely used in
cluster architectures, and VIA, a new user-level
communication protocol, and (b) the impact o f the
underlying network in application performance. For this
purpose, we run applications on two distinct networks,
Ethernet and Giganet. We run tive applications for ali
possible configurations: Water, 3-D FFT, IS, EP, and SOR.
We ran SOR and Water with two different input sets: SOR
interna] elements of the matrix initialized to either zero or
nonzero values; and Water with 288 and 1728 molecules.
The performance of the applications running MPICH on
Giganet was poor, so we do not report the results of this
configuration on this paper.

Our experiments identified 3 distinct classes of
applications:

• Applications insensitive to both
communication protocol and hardware
platform. For SOR, TCP/IP performed between
3% and 20% better than VIA and equally to the
hardware implementation. This occurs because

of the MPI_Recv primitive implementation on
MVICH that is slower than on MPICH for any
number of nodes. For 2 nodes, the speedup is
better because this primitive is invoked less
time than for 4 and 8 nodes, so the other MPI
primitives, which are faster on MVICH than on
MPICH, hides the overhead to this cal!.

• Applications sensitive to the communication
protocol but insensitive to hardware platform.
EP and W ater perform equal or better in
Ethemet than in Giganet, when using the same
communication protocol. For Water, the
hardware support was not effective in
improving performance because the data sets
were too small, so the applications do not
benefit from a better hardware support. For EP
this occurs because bandwidth is quite small,
thus after removing TCP/IP stack latency there
is little room for the application to benefit from
a faster network.

• Applications sensitive to both communication
protocol and hardware platform. 3-D FFT and
IS Class A performs better with VIA than IP.
Also, Giganet is effective in improving
performance. This occurred because of the
high communication bandwidth required by
these applications.

And finally, we showed that the RDMA support for
VIA tends to be useful just when the medium message size
of application is large.

ACKNOWLEDGMENTS

We would Iike to thank Sandhya Dwarkadas from Rice
University for giving us the source code of applications
used in this paper. We would also thank Wagner Meira
from UFMG and Raquel Pinto and Lauro Whately from
UFRJ for their helpful suggestions.

R EFERENCES

[ABB 93] ABBOT, M. ; PETERSON, L. Jncreasing Network
Throughput by lntegrating Protocol Layers.
IEEEIACM Transactions on Networking. V oi. I ,
(no.5), Oct. 1993, pp 600-610.

[BRA 95] BRAUN, T.; DIOT, C. Protocol implementation using
integrated layer processing. ln ACM SIGCOMM '95,
Cambridge, MA, USA, August. 1995.

[KA Y 93] KA Y, J .; PASQUALE, J. The lmportance of Non
Data Touching Processing Overheads in TCPIIP.
Computer Communication Review, vol. 23, (no. 4),
Oct. 1993, pp. 259-268.

[EIC 92] EICKEN, T. von; CULLER, D.; GOLDSTEIN, S.;
SCHAUSER, K. Aclive messages: a Mechanism for
lntegrated Communication and Computation. In
Proceedings of the I 9th Annual International
Symposium on Computer Architecture, Gold Coast,
Australia, May 1992, pp.256-266.

147

[PAR 97] PAKIN, S.; KARAMCHETI, V.; CHIEN, A. Fast
messages: efficient, portable communication for
workstation clusters and MPPs. IEEE Concurrency,
vol.5, (no.2), Aprii-June 1997, pp.60-72.

[EIC 95] EICKEN, T. von; BASU, A.; BUCH, V.; VOGELS,
W. U-Net: A User-level Network Interface of parallel
and Distributed Computing. In Proc. of the 15th ACM
Symposium of Operating Systems Principies, vol. 29,
(no.5), December 1995, pp. 40-53.

[BLU 94] BLUMRICH, M. et ai. Virhtal Memory Mapped
Network Interface for the SHRIMP Multicomputer. In
Proceedings of the 21 .. International Symposium on
Computer Architecture, April 1994, pp. 142-153.

[LU 95] LU, H.; DVARKADAS, S.; COX, A.;
ZWAENEPOEL, W. Message Passing Versus
Distributed Shared Memory on Networks of
Workstations. In Supercomputing '95, 1995.

[VIA] Compaq, Intel, and Microsoft. Virtual Interface
Architecture Specification, Version 1.0. Available at
http://www. viarch.org.

[lBA] Compaq, Dell, Hewlett-Packard, IBM, Intel, Microsoft
and Sun Microsystems. JnfiniBand Trade Association.
http://www.infinibandta.org

[SIN 92] SINGH, J .; WEBER, W.; GUPTA, A. SPLASH:
Stanford Parallel Applications for Shared-Memory.
Compu ter Architecture News, 20(I):2-1 2, March
1992.

[BAI 91] BAILEY, D.; BARTON, J. ; LASINSKI, T. ; SIMON,
H. The NAS Parallel Benchmarks. Technical Report
103863, NASA, July 1993.

[MVI] National Energy Research Scientific Computing
Center. M-V!A : A High Performance Modular VIA for
Linux. http://www .nersc.gov/research/FTG/vial.

[MCH] National Energy Research Scientific Computing
Center. M VICH: MP/ for Virtual Interface
Architecture.

[GIG]
[MP!]

[GEI92]

http://www .nersc.gov/research/FTG/mvich.
Giganet Inc. http://www.giganet.com/
Message Passing Interface Forum. http://www.mpi
forum.org/.
GEIST, G.; SUNDERAM, V. Network based
concurrent compllfing on the PVM system.
Concurrency: Practice and Experience, June 1992, pp.
293-311.

